
Laboratory Assignment Five 1 Due: February 19, 2015

CMPSC 112
Introduction to Computer Science II

Spring 2015

Laboratory Assignment Five: Evaluating the Performance of Iteration and Recursion

Introduction

The Fibonacci sequence includes the numbers in the integer sequence that develops in the follow-
ing fashion: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .. More formally, we can define the n-th Fibonacci
number, denoted Fn, by the following equation Fn = Fn−1 + Fn−2. In this laboratory assignment,
we will explore and extend an implementation of iterative and recursive algorithms for calculating
the numbers in the Fibonacci sequence. Moreover, we will investigate how the bit-depth of the
variable that stores the output of the Fibonacci calculator can influence the correctness of the final
result. After learning how to conduct a detailed experimental study of an algorithm, students will
develop and refine their writing skills as they create a comprehensive report of their results.

Accessing and Using the Fibonacci Benchmarking Framework

To start this laboratory assignment, you should return to the cs112S2015-share Git reposi-
tory and type the “git pull” command in the terminal window. Now, you should have a
lab5/FibonacciBenchmark directory that you can explore further. Once again, please make sure
that you can find the source code in this new directory and you understand why the directories
in the assignment are structured the way that they are. Next, you should use GVim to study the
source code in the build.xml file. As in the past assignment, you can type the command “:Ant
compile” in GVim and it will compile the three Java classes and save the bytecode in the correct
subdirectories inside of the bin/ directory. Please see the instructor if you cannot get this to work.

As part of this assignment, we will examine the following different implementations: (i)
RecursiveFibonacci using int, (ii) RecursiveFibonacci using long, (iii) IterativeFibonacci

using int, and (iv) IterativeFibonacci using long. The UseFibonacci class relies on the
Profiler class is in the profiler.jar file in the lib/ directory of the Git repository. This means
that the UseFibonacci program will not run correctly unless you have both the bin/ directory and
the profiler.jar archive inside of your CLASSPATH environment variable.

Try to execute the UseFibonacci program for different input values from 0 to 50. You should
see the output from the computation and timing information that is related to the performance
of the different algorithms. For example, try to execute the following command in your terminal
window: “java edu.allegheny.benchmark.UseFibonacci 10 all”.

Adding Additional Features

If you study the source code carefully, you will see that the UseFibonacci program currently accepts
two command-line arguments. What are they? As part of this laboratory assignment, you must
extend the UseFibonacci class and the command-line arguments that it can accept. You should
add a third command-line argument that corresponds to one of the words int, long, or all. After
UseFibonacci extracts this new command-line argument, it should use this additional information

Handed out on February 12, 2015 Handout 6



Due: February 19, 2015 2 Laboratory Assignment Five

to run a specific experiment. One valid execution might be: “java edu.allegheny.benchmark.Use-

Fibonacci 10 all long”. This command line would indicate that you should only execute the
methods within RecursiveFibonacci and IterativeFibonacci that operate on variables with
the long data type. You will need to add conditional logic to UseFibonacci in order to correctly
implement this additional feature. Please see the instructor if you have questions about this task.

Conducting Experiments to Evaluate Efficiency

Now, you are ready to conduct an experiment to evaluate the performance of the four separate
configurations of the Fibonacci algorithms. You should execute the program with ten different
input values from 1 through 50. For each of the ten input values that you select, you should
run the experiment five times and calculate the arithmetic mean. Make sure that your experiment
determines when the int primitive type can no longer represent the final answer that is returned by
the method that calculates the Fibonacci number. Your experiment also should identify whether
the iterative or the recursive algorithm is more efficient. Finally, you should try to determine
whether the use of long or int yields better performance for the iterative and recursive algorithms.
Whenever possible, your report should explain why these trends are evident in your data sets.

Your report should explain your experimental goals and design by clearly describing the com-
mands that you type and the order in which you typed them. Your report should also include tables
of results that list the running times for each of the different configurations of UseFibonacci. Make
sure that you label the tables and directly reference them in the text of your report. You must
format your report so that it can be easily printed on a sheet of paper that provides 80 characters
per single row. Reports will not be accepted unless the tables of data and the paragraphs of anal-
ysis are properly justified. Please remember that it is not acceptable to simply submit the source
code of your program and the output from running your program. It is very important to write a
comprehensive report that identifies the most noteworthy trends in your data sets.

Summary of the Required Deliverables

This assignment invites you to submit a signed and printed version of the following deliverables:

1. Using diagram(s), an explanation of how recursion works in the Java programming language.

2. A short discussion of the different primitive types that are available in the Java language.

3. The final version of the commented source code for your Fibonacci benchmarking framework.

4. A comprehensive written report that fully explains the results of your experimental study.

5. A reflective commentary on the challenges that you faced when implementing the benchmarks.

6. A reflective commentary on the challenges that you faced when conducting the experiments.

Along with turning in a printed version of these deliverables, you should ensure that everything
is also available in the repository that is named according to the convention cs112S2015-<your

user name>. Please note that students in the class are responsible for completing and submitting
their own version of this assignment. While it is acceptable for members of this class to have high-
level conversations, you should not share source code or full command lines with your classmates.
Deliverables that are nearly identical to the work of others will be taken as evidence of violating the
Honor Code. Please see the instructor if you have questions about the policies for this assignment.

Handout 6 Handed out on February 12, 2015


