
Laboratory Assignment Ten 1 Due: November 21, 2016

CMPSC 112
Introduction to Computer Science II

Fall 2016

Laboratory Assignment Ten: A Queue-Based Solution to the Josephus Problem

Introduction

Many real-world programs use the queue abstract data type (ADT) to solve a problem. For instance,
as discussed in class, an operating system may use a round-robin scheduler that leverages a queue
to determine which process it should execute next. In this laboratory assignment, you will use a
linked-list-based queue, called the NodeQueue, to run a “simulator” that can “solve” the Josephus
problem. Then, you will analyze the source-code of the simulator to determine its worst-case time
complexity. Finally, you will extend the solver so that it accepts command-line arguments and then
use this enhanced version to conduct a comprehensive study of the method’s time efficiency.

Learning About the Queue Abstract Data Type

Before you start to extend the implementation of the JosephusSolver, you should take some time
to learn more about the queue ADT described in Chapter 6. What are the methods that the queue
provides? What is the difference between an ArrayQueue and a NodeQueue? What is an example
of a problem that can be solved using the queue? Your response to the previous question should
include a brief introduction to the problem and a discussion of how the queue is incorporated into
the solution. For instance, you could explain a program that you have previously implemented that
manipulated a queue to solve a problem. Alternatively, you can study books, articles, and online
sources to investigate a well-known problem that can be solved through the use of a queue. Please
see the instructor if you have questions about the tasks for this part of the assignment.

Using Simulation to Solve the Josephus Problem

Many children have played the game of “hot potato” that requires them to sit in a circle and pass
an object around the circle until a leader rings a bell or stops playing some music. At this point
in the game, the child holding the potato must stop playing the game and, after the remaining
children move closer together in the circle, the game continues in the same fashion. This game play
continues until there is only one child left, who is then declared the winner.

It turns out that this “game” was first recorded by Flavius Josephus, a first century Jewish
historian who was a solider in a Jewish-Roman war. It is possible to use a queue to “simu-
late” the process of playing this game and then quickly determine who will win. After typing
the command git pull in the cs112F2016-share repository, you will see that there is now a
labs/lab10/ directory that contains a build.xml file, a net-datastructures-5-0.jar Java
archive, and JosephusSolver.java file in the src/edu/allegheny/solver/ directory. You can
run this program by typing “ant JosephusSolver” in the terminal. What output do you see?

If you study JosephusSolver.java you will notice that it contains a main method that creates
different groups of children and then runs the solver by specifying a group of children and a stopping
point for each round. While this approach is suitable for demonstrating the use of the solver, it

Handed out on November 14, 2016 Handout 11



Due: November 21, 2016 2 Laboratory Assignment Ten

is not ideal if you need to run a series of experiments to evaluate the efficiency of this technique.
Therefore, you should modify the program so that it accepts two command-line arguments: the
number of children involved in the simulated game and the number of steps for which each round
must be run. Next, you should enhance the program so that it automatically generates a list of
“children” and calls the solver with both an instance of the child-populated NodeQueue and the
steps parameter. Finally, you should add timing code to the program that can calculate how long it
takes to run the solver. What is the program’s output? How did you determine it worked correctly?

Evaluating the Efficiency of the Solver

After you have finished enhancing the JosephusSolver by adding command lines and timing code,
you should carefully study the method called Josephus. Using the big-O notation, what is the
worst-case time complexity of this method? In addition to stating your chosen complexity, you
should clearly justify your choice. Does this analysis suggest that this solver is efficient or inefficient?

Finally, you should conduct a doubling-based empirical study to evaluate the run-time efficiency
of the JosephusSolver. To develop an accurate understanding of the solver’s performance, you
should pick different values for k and run the solver with different groups of children of increasing
size. For each value of k and size of the group, you should run the solver ten times and calculate
the arithmetic mean of the execution times. Make sure that you pick values for k and the size of
the group that will give an accurate picture of worst-case time efficiency. Next, you should create
a table of data or a graph that summarizes your results. Does the data from your experimental
evaluation confirm the worst-case time complexity that you derived? Why or why not?

Summary of the Required Deliverables

This assignment invites you to submit a signed and printed version of the following deliverables:

1. A description of a problem that can be solved by using the queue abstract data type.

2. The fully commented version of JosephusSolver.java and any other Java files you create.

3. The output from five separate runs of JosephusSolver, demonstrating its correctness.

4. A written report that provides a response to all of the questions posed in this assignment.

5. A justified statement of the worst-case time complexity for the Josephus method.

6. A written analysis of the JosephusSolver’s efficiency when it is run in different configurations.

7. A reflective commentary on the challenges that you faced when completing this assignment.

Along with turning in a printed version of these deliverables, you should ensure that everything
is also available in the repository that is named according to the convention cs112F2016-<your

user name>. Please note that students in the class are responsible for completing and submitting
their own version of this assignment. While it is acceptable for members of this class to have high-
level conversations, you should not share source code or full command lines with your classmates.
Deliverables that are nearly identical to the work of others will be taken as evidence of violating the
Honor Code. Please see the instructor if you have questions about the policies for this assignment.

Handout 11 Handed out on November 14, 2016


