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Regression Testing

o Software is constantly modified
Bug fixes
Addition of functionality

o After making changes, test using regression
test suite
Provides confidence in correct modifications
Detects new faults

o High cost of regression testing
More modifications > larger test suite
May execute for days, weeks, or months
Testing costs are very high
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Reducing the Cost

o Cost-saving technigues
Selection: Use a subset of the test cases
Prioritization: Reorder the test cases

o Prioritization methods
Initial ordering
Reverse ordering
Random ordering
Based on fault detection ability
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Ordering Tests with Fault Detection

o ldea: First run the test cases that will
find faults first

o Complications:
Different tests may find the same fault
Do not know which tests will find faults

o Use coverage to estimate fault
finding ability
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Prioritization Example

Prioritized Test Suite (with some fault information)

T2 T1 T4 T5 T6 T3
1 fault 7 faults 3 faults 3 faults 3 faults 2 faults
1 min. 9 min. 4 min. 4 min. 4 min. 3 min.

Faults found /7 minute
1.0 0.778 0.75 0.75 0.75 0.667

» Retesting generally has a time budget

« |s this prioritization best when the time budget is considered?

Contribution: A test prioritization technique that
Intelligently incorporates a time budget
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Fault Aware Prioritization

oronse B B B o f Ty f
T1 X | X X X | X XX
T2 X

T3 X X

T4 X | X X
T5 X X X
T6 X X X

TESTING GOAL: Find as many faults as soon as possible
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Time Budget: 12 minutes

TL | f, | f, f, | f. | f | f, | f,
T2 | f,
T3 | f, f,
T4 f,  f, f,
T5 f, f, f,
T6 f, f, f,
Fault-based Prioritization

T4 T5 T6 T3 T2
3 faults 3 faults 3 faults 2 faults 1 fault
4 min. 4 min. 4 min. 3 min. 1 min.

Finds 7 unique faults in 9 minutes
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Time Budget: 12 minutes

TL | f, | f, f, f. | f | f | f
T2 | f,
T3 | f, f.
T4 f, | f, f,
T5 f, f. f,
T6 f, f, f,
Naive Time-based Prioritization
3 faults 7 faults
4 min. 9 min.

Finds 8 unique faults in 12 minutes
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Time Budget

- 12 minutes

TL | f, | f, f, | f. | f, | f, | f,
T2 | f,
T3 | f, f,
T4 f, | f, f,
T5 f, fe fy
T6 f, f, f
Average-based Prioritization
T4 5 T6 T3
3 faults 3 faults | | 3 faults 2 faults
4 min. 4 min. 4 min. 3 min.

Finds 7 unique faults in 10 minutes
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Time Budget: 12 minutes

T1 | f, | f, f, f.  f, | F | f,
T2 | f,

T3 | f, f.

T4 f, | f, f,

T5 f, f, f,
T6 f, f, f,

Intelligent Time-Aware Prioritization

Finds 8 unique faults in 11 minutes

T1 T2 T6
7 faults 1 fault 3 faults
9 min. 1 min. 4 min.
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Time-Aware Prioritization

o Time-aware prioritization (TAP) combines:
Fault finding ability (overlapping coverage)
Test execution time

O Time constrained test suite prioritization
problem 0/1 knapsack problem

Use genetic algorithm heuristic search technique
Genetic algorithm

o Fitness ideally calculated based on faults

o A fault cannot be found if code is not covered

o Fitness function based on test suite and test case
code coverage and execution time
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Prioritization Infrastructure

Program

Number tuples/iteration
Maximum # of iterations
Percent of test suite
execution time
Crossover probability
Mutation probability
Addition probability
Deletion probability

Test adequacy criteria
Program coverage weight

Genetic algorithm

Create Iinitia

Test suit

: Tuple 1 Tuple 2
population
Calculate
fitnesses
Select
Best
Next Final test
generation tuple
|
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Fitness Function

Becoada Aitihdsess

Test Suite 1: 70% coverage <mmm Preferred!
| | |

Test Suite 2: 40% coverage
| | |

o Fitness function components
Overall coverage
Cumulative coverage of test tuple

Time required by test tuple
o If over time budget, receives very low fitness
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Creation of New Test Tuples

Crossover

To | Tof Loy Do Ty Ty Tis] T Ty T

Crossover Point

e Vary test tuples using recombination

e|f recombination causes duplicate test case execution, replace
duplicate test case with one that is unused
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Creation of New Test Tuples

o Mutation

For each test case in tuple
o Select random number, R
o If R < mutation probability, replace test case

o Addition- Append random unused
test case
o Deletion- Remove random test case
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Experimentation Goals

o Analyze trends in average percent of
faults detected (APFD)

o Determine If time-aware prioritizations
outperform selected set of other
prioritizations

o ldentify time and space overheads
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Experiment Design

o GNU/Linux workstations
1.8 GHz Intel Pentium 4
1 GB main memory

o Junit test cases used for prioritization

o Case study applications
Gradebook
JDepend

o Faults seeded into applications
25, 50, and 75 percent of 40 errors
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Evaluation Metrics

O Average percent of faults detected (APFD)
T = test tuple

g = number of faults in program under test
n = number of test cases

reveal(i, T) = position of the first test in T that exposes
fault i

|
APFD(T,P) = 1- 2 reveal (i SLNE.

ng 2n

o Peak memory usage
o User and system time
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TAP APFD Values

Code Coverage: Block vs. Method

038

. JDepend, Method

| N Depend, Block

] Gradebook, Method
[ ] Gradebook, Block

Block coverage preferred:
11% better in Gradebook
13% better in JDepend

25% 50% 75%

Percent of Total Time
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TAP Time Overheads

Time (s)

User Time Overhead

70000 5
60000 "
50000 '
40000 "

30000 -

20000 =

| |
(25.,60) (50.30) (75.15)

Number of Generations, Population Size

=——e— ]Depend, Method
JDepend, Block
——%— Gradebook, Method
——=—— Gradebook, Block

More generations with
smaller populations:

Took less time

eSame quality results
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Gradebook: Intelligent vs Random

APFD

Gradebook Prioritization: TAP vs. Random

0.5 7

-0.5

B TAP Tuple
Random Tuple

| | | | | | | |

(25%.10)  (75%.10)  (50%.20)  (25%30)  (75%.30)

(50%.10)  (25%20)  (753%20)  (50% 30)

(Percent of Total Time, Number of Faults)
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JDepend: Intelligent vs. Random

JDepend Prioritization: TAP vs. Random

[ TAP Tuple
Bl Random Tuple

APFD

| I | | | | | I |
(25%,10) (753%.10) (509 20) (25%.30)  (75%.30)
(50%,10) (25%200  (7T5%20)  (50%.30)

(Percent of Total Time, Number of Faults)
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Other Prioritizations

o Random prioritizations redistribute
fault-revealing test cases

o Other prioritizations
Initial ordering
Reverse ordering

Fault-aware
o Impossible to implement
o Good watermark for comparison
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Gradebook: Alternative Prioritizations

’ _total # Faults Initial Reverse
time

0.25 10 -0.6 -0.2
0.25 20 -0.9 -0.2
0.25 30 -0.9 -0.0
0.50 10 -0.04 0.1
0.50 20 -0.2 0.2
0.50 30 -0.3 0.3
0.75 10 0.3 0.5
0.75 20 0.1 0.4
0.75 30 0.04 0.5

Fault
aware

0.7

0.7

0.5

0.9

0.9

0.8

0.9

0.9

0.9

e Time-aware prioritization up to 120% better than other
prioritizations
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Conclusions and Future Work

O Analyzes a test prioritization technique that
accounts for a testing time budget

o Time intelligent prioritization had up to 120%
APFD improvement over other technigues

o Future Work
Make fitness calculation faster
Distribute fitness function calculation
Exploit test execution histories

Create termination condition based on prior
prioritizations

Analyze other search heuristics
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Thank you!

Time-Aware Prioritization (TAP) Research:
o http://www.cs.virginia.edu/~krw7c/TimeAwarePrioritization.htm
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