Time-Aware Test Suite

Prioritization

Kristen R. Walcott, Gregory M. Kapfhammer,
Mary Lou Soffa Robert S. Roos

University of Virginia Allegheny College

International Symposium on Software Testing and Analysis
Portland, Maine July 17-20, 2006

Regression Testing

o Software is constantly modified
Bug fixes
Addition of functionality

o After making changes, test using regression
test suite
Provides confidence in correct modifications
Detects new faults

o High cost of regression testing
More modifications > larger test suite
May execute for days, weeks, or months
Testing costs are very high

ﬁTITﬁ Computer Science

Reducing the Cost

o Cost-saving technigues
Selection: Use a subset of the test cases
Prioritization: Reorder the test cases

o Prioritization methods
Initial ordering
Reverse ordering
Random ordering
Based on fault detection ability

ﬁTITﬁ Computer Sc1ence

Ordering Tests with Fault Detection

o ldea: First run the test cases that will
find faults first

o Complications:
Different tests may find the same fault
Do not know which tests will find faults

o Use coverage to estimate fault
finding ability

ﬁTITﬁ Computer Science

Prioritization Example

Prioritized Test Suite (with some fault information)

T2 T1 T4 T5 T6 T3
1 fault 7 faults 3 faults 3 faults 3 faults 2 faults
1 min. 9 min. 4 min. 4 min. 4 min. 3 min.

Faults found /7 minute
1.0 0.778 0.75 0.75 0.75 0.667

» Retesting generally has a time budget

« |s this prioritization best when the time budget is considered?

Contribution: A test prioritization technique that
Intelligently incorporates a time budget

X -
sy Computer Science

at the UINIVERSITY of VIRGINIA

Fault Aware Prioritization

oronse B B B o f Ty f
T1 X | X X X | X XX
T2 X

T3 X X

T4 X | X X
T5 X X X
T6 X X X

TESTING GOAL: Find as many faults as soon as possible

ﬁl‘ﬁﬁ Computer Science

Time Budget: 12 minutes

TL | f, | f, f, | f. | f | f, | f,
T2 | f,
T3 | f, f,
T4 f, f, f,
T5 f, f, f,
T6 f, f, f,
Fault-based Prioritization

T4 T5 T6 T3 T2
3 faults 3 faults 3 faults 2 faults 1 fault
4 min. 4 min. 4 min. 3 min. 1 min.

Finds 7 unique faults in 9 minutes

X -
sy Computer Science

at the UINIVERSITY of VIRGINIA

Time Budget: 12 minutes

TL | f, | f, f, f. | f | f | f
T2 | f,
T3 | f, f.
T4 f, | f, f,
T5 f, f. f,
T6 f, f, f,
Naive Time-based Prioritization
3 faults 7 faults
4 min. 9 min.

Finds 8 unique faults in 12 minutes

!"ﬁi Computer Science

at the UNIVERSITY of VIRGINIA

Time Budget

- 12 minutes

TL | f, | f, f, | f. | f, | f, | f,
T2 | f,
T3 | f, f,
T4 f, | f, f,
T5 f, fe fy
T6 f, f, f
Average-based Prioritization
T4 5 T6 T3
3 faults 3 faults | | 3 faults 2 faults
4 min. 4 min. 4 min. 3 min.

Finds 7 unique faults in 10 minutes

Al .
=== (Com r Scien
Hiiih Co P}‘J-S Science

7 NIVERSITY of VIRGINIA

Time Budget: 12 minutes

T1 | f, | f, f, f. f, | F | f,
T2 | f,

T3 | f, f.

T4 f, | f, f,

T5 f, f, f,
T6 f, f, f,

Intelligent Time-Aware Prioritization

Finds 8 unique faults in 11 minutes

T1 T2 T6
7 faults 1 fault 3 faults
9 min. 1 min. 4 min.
Al
Hiiia Com

puter Science

at the UNIVERSITY of VIRGINIA

Time-Aware Prioritization

o Time-aware prioritization (TAP) combines:
Fault finding ability (overlapping coverage)
Test execution time

O Time constrained test suite prioritization
problem 0/1 knapsack problem

Use genetic algorithm heuristic search technique
Genetic algorithm

o Fitness ideally calculated based on faults

o A fault cannot be found if code is not covered

o Fitness function based on test suite and test case
code coverage and execution time

ﬁﬁiﬁ Computer Science

e UINIVERSITY of VIRGINIA

Prioritization Infrastructure

Program

Number tuples/iteration
Maximum # of iterations
Percent of test suite
execution time
Crossover probability
Mutation probability
Addition probability
Deletion probability

Test adequacy criteria
Program coverage weight

Genetic algorithm

Create Iinitia

Test suit

: Tuple 1 Tuple 2
population
Calculate
fitnesses
Select
Best
Next Final test
generation tuple
|
Al

|]

Computer Science

at the UINIVERSITY of VIRGINIA

Fitness Function

Becoada Aitihdsess

Test Suite 1: 70% coverage <mmm Preferred!
| | |

Test Suite 2: 40% coverage
| | |

o Fitness function components
Overall coverage
Cumulative coverage of test tuple

Time required by test tuple
o If over time budget, receives very low fitness

ﬁTITﬁ Computer Science

Creation of New Test Tuples

Crossover

To | Tof Loy Do Ty Ty Tis] T Ty T

Crossover Point

e Vary test tuples using recombination

e|f recombination causes duplicate test case execution, replace
duplicate test case with one that is unused

X -
sy Computer Science

at the UINIVERSITY of VIRGINIA

Creation of New Test Tuples

o Mutation

For each test case in tuple
o Select random number, R
o If R < mutation probability, replace test case

o Addition- Append random unused
test case
o Deletion- Remove random test case

ﬁTITﬁ Computer Science

Experimentation Goals

o Analyze trends in average percent of
faults detected (APFD)

o Determine If time-aware prioritizations
outperform selected set of other
prioritizations

o ldentify time and space overheads

ﬁTITﬁ Computer Sc1ence

Experiment Design

o GNU/Linux workstations
1.8 GHz Intel Pentium 4
1 GB main memory

o Junit test cases used for prioritization

o Case study applications
Gradebook
JDepend

o Faults seeded into applications
25, 50, and 75 percent of 40 errors

ﬁTITﬁ Computer Science

Evaluation Metrics

O Average percent of faults detected (APFD)
T = test tuple

g = number of faults in program under test
n = number of test cases

reveal(i, T) = position of the first test in T that exposes
fault i

|
APFD(T,P) = 1- 2 reveal (i SLNE.

ng 2n

o Peak memory usage
o User and system time

ﬁTITﬁ Computer Science

TAP APFD Values

Code Coverage: Block vs. Method

038

. JDepend, Method

| N Depend, Block

] Gradebook, Method
[] Gradebook, Block

Block coverage preferred:
11% better in Gradebook
13% better in JDepend

25% 50% 75%

Percent of Total Time

!"ﬁi Computer Science

at the UNIVERSITY of VIRGINIA

TAP Time Overheads

Time (s)

User Time Overhead

70000 5
60000 "
50000 '
40000 "

30000 -

20000 =

| |
(25.,60) (50.30) (75.15)

Number of Generations, Population Size

=——e—]Depend, Method
JDepend, Block
——%— Gradebook, Method
——=—— Gradebook, Block

More generations with
smaller populations:

Took less time

eSame quality results

X -
sy Computer Science

at the UINIVERSITY of VIRGINIA

Gradebook: Intelligent vs Random

APFD

Gradebook Prioritization: TAP vs. Random

0.5 7

-0.5

B TAP Tuple
Random Tuple

| | | | | | | |

(25%.10) (75%.10) (50%.20) (25%30) (75%.30)

(50%.10) (25%20) (753%20) (50% 30)

(Percent of Total Time, Number of Faults)

X -
sy Computer Science

at the UINIVERSITY of VIRGINIA

JDepend: Intelligent vs. Random

JDepend Prioritization: TAP vs. Random

[TAP Tuple
Bl Random Tuple

APFD

| I | | | | | I |
(25%,10) (753%.10) (509 20) (25%.30) (75%.30)
(50%,10) (25%200 (7T5%20) (50%.30)

(Percent of Total Time, Number of Faults)

i‘ﬁi Computer Science

at the UNIVERSITY of VIRGINIA

Other Prioritizations

o Random prioritizations redistribute
fault-revealing test cases

o Other prioritizations
Initial ordering
Reverse ordering

Fault-aware
o Impossible to implement
o Good watermark for comparison

ﬁTITﬁ Computer Science

Gradebook: Alternative Prioritizations

’ _total # Faults Initial Reverse
time

0.25 10 -0.6 -0.2
0.25 20 -0.9 -0.2
0.25 30 -0.9 -0.0
0.50 10 -0.04 0.1
0.50 20 -0.2 0.2
0.50 30 -0.3 0.3
0.75 10 0.3 0.5
0.75 20 0.1 0.4
0.75 30 0.04 0.5

Fault
aware

0.7

0.7

0.5

0.9

0.9

0.8

0.9

0.9

0.9

e Time-aware prioritization up to 120% better than other
prioritizations

!"l‘ﬁri Com

puter Science

at the UNIVERSITY of VIRGINIA

Conclusions and Future Work

O Analyzes a test prioritization technique that
accounts for a testing time budget

o Time intelligent prioritization had up to 120%
APFD improvement over other technigues

o Future Work
Make fitness calculation faster
Distribute fitness function calculation
Exploit test execution histories

Create termination condition based on prior
prioritizations

Analyze other search heuristics

ﬁﬁiﬁ Computer Science

Thank you!

Time-Aware Prioritization (TAP) Research:
o http://www.cs.virginia.edu/~krw7c/TimeAwarePrioritization.htm

X -
sy Computer Science

at the UINIVERSITY of VIRGINIA

