
Interactive Coverage Effectiveness Multiplots for Evaluating Prioritized Regression Test Suites
Adam M. Smith†, Joshua J. Geiger†, Gregory M. Kapfhammer‡, Manos Renieris◦, and G. Elisabeta Marai†

†Department of Computer Science, University of Pittsburgh ‡Department of Computer Science, Allegheny College ◦Google

Presented at the IEEE Information Visualization Conference (IEEE InfoVis 2009), Atlantic City, NJ

SOFTWARE TESTING CHALLENGES

I Complex source code, databases, files, and network communication
I Defects may exist in the individual components or their interactions
I Testing isolates defects and establishes confidence in the correctness of software

Input Method 
 Under Test

Output Test 
 Oracle

Expected 
 Output

Verdict

Tear Down

Set Up

Figure 1: What is a test case? Each test case invokes a method within the program and compares the actual and

expected output values.

I A sequence of test cases is a test suite
I A test suite executor such as JUnit runs each test case independently

REGRESSION TESTING

Begin Coverage Report End

VSRT Repeat
Program

Test Suite 
 Prioritization

Original 
 Test Suite

Modified 
 Test Suite

Test Suite 
 Execution

Testing Results

GRT Repeat

Figure 2: Regression testing . A test suite will be executed repeatedly throughout development, searching for faults

introduced by changes made to the software.

Before After
I When software is modified , new tests run in addition to

the old, increasing the test suite size
I Execution time of a test suite may be prohibitive
I Prioritization techniques re-order the tests to locate

defects earlier in the test execution process [6, 7]
I Coverage reports identify points in the source code

executed, or covered , by each test case
I Prioritizers must analyze the requirements covered by

each test case to effectively re-order the test suite

EVALUATING TEST SUITES

I Coverage Effectiveness (CE) rates test suites by how quickly they cover each requirement [4]

I Prioritize to increase the CE of a test suite where CE =
Actual
Ideal

∈ [0, 1]

Figure 3: Calculating Coverage Effectiveness (CE). The CE score is the area under C(T , l) divided by the area

under the ideal test suite function (dashed line). Cover R(ti) denotes the set of requirements covered by test ti

L IMITATIONS FOR TESTERS

I Many prioritization methods exist because finding the highest CE by evaluating all orderings
of a test suite is too expensive

I Each of these prioritization techniques can have many configurations from which to choose
I Testers relying on static coverage effectiveness multiplots, such as Figure 4, and/or large

tables of CE scores and test orders can be easily overwhelmed
I Existing visualizations assist during different development processes such as manual

debugging and automated fault localization [2, 3, 5]

Figure 4: Static Coverage Effectiveness Multiplot. Multiple lines severely clutter the visualization making evaluation

and comparison of prioritized test suites nearly impossible.

VISUALIZATION DESIGN GOALS

I Enable software testers to quickly find the best test suite order for their own applications
I Interactively pick prioritizers, comparing CE values and the actual ordering of the tests
I Utilize prioritization techniques such as greedy (GRD), 2-optimal greedy (2OPT), delayed

greedy (DGR), and Harrold Gupta Soffa (HGS) which use greedy choice metrics (GCMs) to
efficiently construct new test orders [7]

Figure 5: Greedy approaches to test prioritization. Re-order the test suite by repeatedly performing reduction.

I Make use of the potential power of reverse and random prioritizations [7]
I Visualization and UI features demonstrated by Becker et al. [1] and a NY Times interactive

visualization of market statistics (http://www.nytimes.com/interactive/2008/10/
11/business/20081011BEARMARKETS.html )

I Encourage empirical study on the use of visualization during test suite prioritization

VISUALIZATION FEATURES

Figure 6: Interactive Coverage Effectiveness Multiplot in RAISE. Visualization using Interactive Multiplots and

details on demand allows the users to quickly filter, evaluate and compare prioritized test suites.

Left Panel
I Displays information about the test suite and

controls multiplot display
I Toggle display of cumulative coverage

functions for each prioritization method
I Color coding of prioritization techniques for

easy identification
I Adjust the number of random prioritizations
I Display cumulative averages and standard

deviations of random prioritizations

Right Panel
I Multiplot of cumulative coverage step

functions of all selected prioritization methods
I Mouse-over of plots highlights the line and

shades the area under the line
I Mouse-over a line reveals its corresponding

prioritizer, GCM, and CE score
I Vertical axis to display the number of covered

requirements and horizontal axis to show the
test suite execution time

CONCLUSIONS AND FUTURE WORK

Figure 7: http://raise.googlecode.com/ provides tools, data sets and resources.

I An interactive visualization that enables the evaluation of prioritized regression test suites
I Free and open source Reduce And prIoritize SuitEs (RAISE) system available for download
I Intend to add new features and conduct more experimental studies
I Will extend RAISE to support other metrics like average percentage of faults detected (APFD)

and average percentage of requirements covered (APRC)
I RAISE will serve as a simple and valuable tool in a comprehensive framework supporting all

of the phases in the regression testing process

REFERENCES
[1] R. A. Becker, S. G. Eick, and A. R. Wilks. Visualizing Network Data. IEEE Trans. on Visual. and Comput. Graph., 1:16–28, 1995.

[2] J. A. Cottam, J. Hursey, and A. Lumsdaine. Representing unit test data for large scale software development. In Proc. of 4th SoftVis, 2008.

[3] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault localization. In Proc. of 24th ICSE, 2002.

[4] G. M. Kapfhammer and M. L. Soffa. Using coverage effectiveness to evaluate test suite prioritizations. In Proc. of WEASELTech, 2007.

[5] S. Mukherjea and J. T. Stasko. Toward visual debugging: integrating algorithm animation capabilities within a source-level debugger. ACM Trans. Comput.-Hum.
Interact., 1(3), 1994.

[6] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for regression testing. IEEE Trans. on Soft. Engin., 27(10):929–948, 2001.

[7] A. M. Smith and G. M. Kapfhammer. An empirical study of incorporating cost into test suite reduction and prioritization. In Proc. of 24th SAC, 2009.

http://raise.googlecode.com/ Contact Author: Adam M. Smith (ams292@cs.pitt.edu)

http://www.nytimes.com/interactive/2008/10/11/business/20081011 BEARMARKETS.html
http://www.nytimes.com/interactive/2008/10/11/business/20081011 BEARMARKETS.html
http://raise.googlecode.com/

