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SOFTWARE TESTING CHALLENGES

I Complex source code, databases, files, and network communication
I Defects may exist in the individual components or their interactions
I Testing isolates defects and establishes confidence in the correctness of software
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Figure 1: What is a test case? Each test case invokes a method within the program and compares the actual and

expected output values.

I A sequence of test cases is a test suite
I A test suite executor such as JUnit runs each test case independently
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Figure 2: Regression testing . A test suite will be executed repeatedly throughout development, searching for faults

introduced by changes made to the software.

Before After
I When software is modified , new tests run in addition to

the old, increasing the test suite size
I Execution time of a test suite may be prohibitive
I Prioritization techniques re-order the tests to locate

defects earlier in the test execution process [6, 7]
I Coverage reports identify points in the source code

executed, or covered , by each test case
I Prioritizers must analyze the requirements covered by

each test case to effectively re-order the test suite

EVALUATING TEST SUITES

I Coverage Effectiveness (CE) rates test suites by how quickly they cover each requirement [4]

I Prioritize to increase the CE of a test suite where CE =
Actual
Ideal

∈ [0, 1]

Figure 3: Calculating Coverage Effectiveness (CE). The CE score is the area under C(T , l) divided by the area

under the ideal test suite function (dashed line). Cover R(ti) denotes the set of requirements covered by test ti

L IMITATIONS FOR TESTERS

I Many prioritization methods exist because finding the highest CE by evaluating all orderings
of a test suite is too expensive

I Each of these prioritization techniques can have many configurations from which to choose
I Testers relying on static coverage effectiveness multiplots, such as Figure 4, and/or large

tables of CE scores and test orders can be easily overwhelmed
I Existing visualizations assist during different development processes such as manual

debugging and automated fault localization [2, 3, 5]

Figure 4: Static Coverage Effectiveness Multiplot. Multiple lines severely clutter the visualization making evaluation

and comparison of prioritized test suites nearly impossible.

VISUALIZATION DESIGN GOALS

I Enable software testers to quickly find the best test suite order for their own applications
I Interactively pick prioritizers, comparing CE values and the actual ordering of the tests
I Utilize prioritization techniques such as greedy (GRD), 2-optimal greedy (2OPT), delayed

greedy (DGR), and Harrold Gupta Soffa (HGS) which use greedy choice metrics (GCMs) to
efficiently construct new test orders [7]

Figure 5: Greedy approaches to test prioritization. Re-order the test suite by repeatedly performing reduction.

I Make use of the potential power of reverse and random prioritizations [7]
I Visualization and UI features demonstrated by Becker et al. [1] and a NY Times interactive

visualization of market statistics (http://www.nytimes.com/interactive/2008/10/
11/business/20081011BEARMARKETS.html )

I Encourage empirical study on the use of visualization during test suite prioritization

VISUALIZATION FEATURES

Figure 6: Interactive Coverage Effectiveness Multiplot in RAISE. Visualization using Interactive Multiplots and

details on demand allows the users to quickly filter, evaluate and compare prioritized test suites.

Left Panel
I Displays information about the test suite and

controls multiplot display
I Toggle display of cumulative coverage

functions for each prioritization method
I Color coding of prioritization techniques for

easy identification
I Adjust the number of random prioritizations
I Display cumulative averages and standard

deviations of random prioritizations

Right Panel
I Multiplot of cumulative coverage step

functions of all selected prioritization methods
I Mouse-over of plots highlights the line and

shades the area under the line
I Mouse-over a line reveals its corresponding

prioritizer, GCM, and CE score
I Vertical axis to display the number of covered

requirements and horizontal axis to show the
test suite execution time

CONCLUSIONS AND FUTURE WORK

Figure 7: http://raise.googlecode.com/ provides tools, data sets and resources.

I An interactive visualization that enables the evaluation of prioritized regression test suites
I Free and open source Reduce And prIoritize SuitEs (RAISE) system available for download
I Intend to add new features and conduct more experimental studies
I Will extend RAISE to support other metrics like average percentage of faults detected (APFD)

and average percentage of requirements covered (APRC)
I RAISE will serve as a simple and valuable tool in a comprehensive framework supporting all

of the phases in the regression testing process
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