Test Suite Reduction and Prioritization with Call Trees
A Tool Paper Presented at the 22" IEEE/ACM International Conference on Automated Software Engineering ALLEGI—[ENY

Atlanta, Georgia, November 5-9, 2007 COLLEGE

Adam M. Smith Joshua J. Geiger Gregory M. Kapfhammer Mary Lou Soffa
adammatthewsmith@gmail.com joshua.geiger@gmail.com gkapfham@allegheny.edu soffa@cs.virginia.edu

Regression Testing Challenges Reduction Techniques Experimental Analysis

: Test Suit . i - - n-1
Execution time of a test suite may be @ @ » @ ¢ ° ° Cover R(T,) Cover U R(T)
prohibitive. ' ‘ .
. . F e b, SR < — Cover R(T)
oo - Coverage monitoring supports regression ~ |
D)))))) ; —— T, Done
testing by tracking the coverage of test 2 n
@ requirements. %
" Figure 4: Reduction techniques eliminate overlapping coverage in the test suite. Tests T2, > v © o o
eduction or . : :] . s
Repeat Do i e Call trees eff|C|entIy store the dynamlc T9, and T6 cover every requirement; the remaining tests are redundant. % A L Area g(n) C(T, t)
')
behavior of a program under test. Traditional Greedy Algorithm 3 f
Modified Test Suite _ T Testing Time (t)
and Program - The coverage of the tests can be examined to - Greedily choose tests by coverage, cost, or the ratio of coverage to cost.
see where there is coverage overlap. 2-Optimal Algorithm [Harman et al, 2007] T, Done Tn-1 Done
Test Suite
ExecutionﬁRepeat . Reduction attempts to eliminate test overlap. » All-pairs comparison of the tests’ coverage. Figure 6: Cumulative coverage.
T . _ « Generalizes to K-Way. A _ _ .
End Testing » Prioritization aims to rapidly cover the test . - Prioritization is rated by the test suite’s Coverage Effectiveness: the ratio between the area of
requirements. Harrold, Gupta, Soffa Algorithm [Harrold et al, 1993 the cumulative coverage of a prioritized test suite and an optimal test suite.

 The tests that cover sparsely covered requirements are more likely to be

. . _ * Prioritizing to maximize coverage effectiveness ensures requirements are covered earlier during
needed in the final test suite.

Figure 1: Reduction and prioritization tool. _
the testing process.

« Greedily choose tests by coverage from covering sets of increasing cardinality.

" " GradeBook — COriginal radeBoo - rioritize
TeSt COve rage MOn |t0r| ng Delayed Greedy Algorithm [Tallam and Gupta, 2005] ~ 100 ———— e ~ rateRet e
- ~ 140}
- Remove tests whose set of covered requirements is a subset of another test’s S ol .
' N Call Tree - 0 | o 1l
Probe insertion: set of covered requirements. o |27
_ Initialization | |, 100
- Insert probes using AspectJ. { . Remove requirements whose set of covering tests is a superset of another g 60| e
. : . % % ,
« Static instrumentation — Probes are <Start Testing requirement's set of covering tests. 240 2 gg |
inserted directly into the Java bytecode. ! - Add tests to the test suite that are the only covering test for a requirement, or C SN
. . SN greedily choose a test based on coverage. 5 20| - |
Dynamlc Instrumentation Prgbes Before | Update ; | e 20 :_
are inserted when the Java class is Probe : e N
|Oaded + - D | | | 2[]'[][]‘ | | 4DIOD‘ | | 50}30‘ | | 3[]'[][]‘ N CI | | | 2[]'[][]‘ | | 4DIDD‘ | | EDIDD‘ | | SDIDD‘
- - - Time (ms) Time (ms)
Probe location: Method or Test Continue PrIOrItlzatIOn MethOdS
. Before and after each test case in the Invocation Testing Figure 7: Cumulative coverage of the GradeBook application. On the left, the original test suite has a poor coverage
test suite + effectiveness. The prioritized test suite on the right covers the requirements more rapidly.
| After | Update
. Before and after each method in the Probe @ Each reduction algorithm produces a subset of the original test suite. F C) b)
program. v The reduction algorithm can be repeated on the set of tests that did not get chosen. Utu e O ntrl Utl ons
Implementation: éﬂ d Testing fThe :)hutput frpm the repeated execution of the algorithm can be added to the output
. . . rom the previous run. « Software Testing Tools:
« Dynamic probes are inserted using v o na the reduct aorith ih dual test il tost has b
class loaders or the JVMTI. Tl e y running the reduction aigorinm on ine residual tests untiy every 1est nas been - We are releasing the source code, tutorials, and stand-alone tools in phases.
chosen, a reordering of the test will be obtained that covers all of the requirements
« Call trees are stored in binary or XML. Storage faster than the original test suite. - A coverage effectiveness calculator is already available for download.

Figure 2: Probes and Call Tree Construction. « Future Research:

Original Test Suite - Empirically evaluate the efficiency and effectiveness of the regression testing algorithms using
Ca” TreeS @ @ @ @ both real world and synthetic test suites.
« Compare the existing algorithms to search-based methods including hill climbing, genetic
algorithms, and simulated annealing.

Call Tree: tree-based representation Call Tree Path: Each path from the root

Reduction Technique

of the dynamic behavior of the node to a leaf node is considered a
program during testing. requirement [McMaster and Memon, 2005]. //,//' m R efe rences

First Output First Residual Second Output Second Residual | | Third Output
@ @ @ @ @ @ @ M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A Methodology for Controlling the Size of a Test Suite. ACM
i Transactions on Software Engineering Methodologies 2(3): pages 270-285, 1993.
\ Prioritized Test Sulte / Sriraman Tallam and Neelam Gupta. A Concept Analysis Inspired Greedy Algorithm for Test Suite Minimization.
@ @ @ @ Program Analysis for Software Tools and Engineering, pages 1-8, 2005.

Mark Harman, Zheng Li, and Robert M. Hierons. Search Algorithms for Regression Test Case Prioritization. /[EEE
Transactions on Software Engineering, pages 1-12, 2007.

_ , _ o . Scott McMaster and Atif Memon. Call Stack Coverage for Test Suite Reduction. IEEE International Conference on
Figure 5: Repeated reduction on residual tests prioritizes the test suite. Software Maintenance, pages 539-548, 2005.

Figure 3: On the left, an example of a call tree; the Main method calls Methods A, B, and C. Method
A calls Method D. On the right, the individual call tree paths of the tree on the left.

http://cs.allegheny.edu/~gkapfham/research/kanonizo/

