DAVID PATERSON,
UNIVERSITY OF SHEFFIELD

JOSE CAMPOS,
UNIVERSITY OF WASHINGTON

An Empirical Study on the Use of Defect

Prediction for Test Case Prioritization RU| ABREU.

UNIVERSITY OF LISBON

GREGORY M. KAPFHAMMER,
ALLEGHENY COLLEGE

International Conference on Software Testing, Verification and Validation

Xi'an, China GORDON FRASER,
April 22-27 2019 UNIVERSITY OF PASSAU

PHIL MCMINN,
UNIVERSITY OF SHEFFIELD

DPATERSON1@SHEFFIELD.AC.UK

Defect
Prediction

In software development, our goal is
to minimize the impact of faults

If we know that a fault exists, we can

use fault localization to pinpoint the
code unit responsible

If we don’t know that a fault exists, we
can use defect prediction to estimate
which code units are likely to be faulty

Defect

Prediction

ClassA

33%

ClassB

10%

ClassC

72%

ClassD

3%

Defect Prediction

Code Smells Farile Eestiea Version Cor\trol
Information

e Feature Envy e Cyclomatic e Number of Changes

e God Class Complexity e Number of Authors

e Inappropriate * Method Length e Number of Fixes
Intimacy e Class Length

DPATERSON1@SHEFFIELD.AC.UK

Why Do We
Prioritize
Test Cases?

Regression testing can account for up to

80% of the total testing budget, and up to
50% of the cost of software maintenance

In some situations, it may not be possible to
re-run all test cases on a system

By prioritizing test cases, we aim to ensure
faults are detected in the smallest amount
of time irrespective of program changes

tn

tn—l

tn-2

th3

ts

t3

How Do We Prioritize Test Cases?

t2

t:

?

Version 1

Version 2

Version 3

Version 4

Version 5

Version 6

Version 7

Version 8

Version 9

Version n

Version n+1

DPATERSON1@SHEFFIELD.AC.UK

How Do We Prioritize Test Cases? |This Paper

“How many lines of “Has this test case “What s the
code are executed failed recently?” likelihood that this
by this test case?” code is faulty?”

public int abs(int x){

. o .
if (x >= 0 HWDPU{EFTU”?EETEH?ESEE- =T~
EomE BN NN NS B @8 &
[[0 &8 = B |8 |8 B
ﬁi Lo T
else B &8 8B " B|®| B @
B 8 | B8 B = | B B

CRERE] B |+ | B

}} T BB
| |

DPATERSON1@SHEFFIELD.AC.UK

Prediction

AL

Defect Prediction for Test Case Prioritization

ClassA ClassB ClassC ClassD

33% 10% 72% 3%

Defect Prediction for Test Case Prioritization

ClassC

72%

Defect Prediction for Test Case Prioritization

ClassC Test Cases that execute code in ClassC:

- TestClass.testOne

- TestClass.testSeventy

- OtherTestClass.testFive

- OtherTestClass.testThirteen

72% - TestClassThree.testl165

How do we order these test cases before placing them in the prioritized suite?

DPATERSON1@SHEFFIELD.AC.UK

Secondary Objectives

Test Cases that execute code in ClassC:

- TestClass.testOne

- TestClass.testSeventy

- OtherTestClass.testFive

- OtherTestClass.testThirteen
- TestClassThree.testl165

We can use one of the features described earlier (e.g. code
coverage) as a way of ordering the subset of test cases

DPATERSON1@SHEFFIELD.AC.UK

Secondary Objectives

Test Cases that execute code in ClassC: Lines Covered:
- TestClass.testOne 25
- TestClass.testSeventy 32
- OtherTestClass.testFive 144
- OtherTestClass.testThirteen 8
- TestClassThree.testl165 39

We can use one of the features described earlier (e.g. code
coverage) as a way of ordering the subset of test cases

DPATERSON1@SHEFFIELD.AC.UK

Secondary Objectives

Test Cases that execute code in ClassC: Lines Covered:
- OtherTestClass.testFive 144
- TestClassThree.test165 39
- TestClass.testSeventy 32
- TestClass.testOne 25
- OtherTestClass.testThirteen 8

We can use one of the features described earlier (e.g. code
coverage) as a way of ordering the subset of test cases

DPATERSON1@SHEFFIELD.AC.UK

Defect Prediction for Test Case Prioritization

ClassC Test Cases that execute code in ClassC:

- OtherTestClass.testFive
- TestClassThree.test1l65
- TestClass.testSeventy
- TestClass.testOne
o) - OtherTestClass.testThirteen
712%

Prioritized Test Suite:

DPATERSON1@SHEFFIELD.AC.UK

Defect Prediction for Test Case Prioritization

ClassC Test Cases that execute code in ClassC:

72%

Prioritized Test Suite:

- OtherTestClass.testFive

- TestClassThree.test165

- TestClass.testSeventy

- TestClass.testOne

- OtherTestClass.testThirteen

DPATERSON1@SHEFFIELD.AC.UK

Defect Prediction for Test Case Prioritization

ClassA Test Cases that execute code in ClassA: Lines Covered:
- ClassATest.testA 14
- ClassATest.testB 27
- ClassATest.testC 9

33%

Prioritized Test Suite:

- OtherTestClass.testFive

- TestClassThree.test165

- TestClass.testSeventy

- TestClass.testOne

- OtherTestClass.testThirteen

DPATERSON1@SHEFFIELD.AC.UK

Defect Prediction for Test Case Prioritization

ClassA Test Cases that execute code in ClassA: Lines Covered:
- ClassATest.testB 27
- ClassATest.testA 14
- ClassATest.testC 9

33%

Prioritized Test Suite:

- OtherTestClass.testFive

- TestClassThree.test165

- TestClass.testSeventy

- TestClass.testOne

- OtherTestClass.testThirteen

DPATERSON1@SHEFFIELD.AC.UK

Defect Prediction for Test Case Prioritization

ClassA Test Cases that execute code in ClassA:

Prioritized Test Suite:

0 - OtherTestClass.testFive
33A) - TestClassThree.test165

- TestClass.testSeventy

- TestClass.testOne

- OtherTestClass.testThirteen
- ClassATest.testB

- ClassATest.testA

- ClassATest.testC

DPATERSON1@SHEFFIELD.AC.UK

Defect By repeating this process for all
Prediction for classes in the system, we

Test Case generate a fully prioritized test
Prioritization suite based on defect prediction

Empirical Evaluation

Empirical Evaluation

Defect Prediction: Schwalll

Uses version control information to produce defect prediction
scores comprised of weighted number of commits, authors,
and fixes related to afile

[1] - https://github.com/andrefreitas/schwa

DPATERSON1@SHEFFIELD.AC.UK

https://github.com/andrefreitas/schwa

Empirical Evaluation

Defect Prediction: Schwalll

Uses version control information to produce defect prediction
scores comprised of weighted number of commits, authors,
and fixes related to afile

Faults: DEFECTS4 J [2]

Repository containing 395 real faults collected across 6 open-
source Java projects

[1] - https://github.com/andrefreitas/schwa
[2] - https://github.com/rjust/defects4j

DPATERSON1@SHEFFIELD.AC.UK

https://github.com/andrefreitas/schwa
https://github.com/rjust/defects4j

Empirical Evaluation

Defect Prediction: Schwalll

Uses version control information to produce defect prediction
scores comprised of weighted number of commits, authors,

and fixes related to a file

Faults: DEFECTS4 J [2]
Repository containing 395 real faults collected across 6 open-
source Java projects

Test Prioritization: KANONIzO [3]

Test Case Prioritization tool built for Java Applications

[1] - https://github.com/andrefreitas/schwa
[2] - https://github.com/rjust/defects4j
[3] - https://github.com/kanonizo/kanonizo

DPATERSON1@SHEFFIELD.AC.UK

https://github.com/andrefreitas/schwa
https://github.com/rjust/defects4j
https://github.com/kanonizo/kanonizo

Discover the best
parameters for defect
prediction in order to

Compare our approach
against existing
coverage-based

predict faulty classes as approaches

soon as possible

Compare our approach
against existing
history-based
approaches

Research Objectives

DPATERSON1@SHEFFIELD.AC.UK

1.Revisions Weight
2.Authors Weight
3.Fixes Weight

4. Time Weight

Parameter
Tuning

Z RevisionsWeight + AuthorsWeight + FixesWeight = 1

Z RevisionsWeight + AuthorsWeight + FixesWeight = 1

Revisions Weight | Authors Weight | Fixes Weight
1.0 0.0 0.0 0.0

0.9 0.1 0.0 0.0

Parameter
Tuning |

0.0 0.0 1.0 0.9
0.0 0.0 1.0 1.0

726 Valid Configurations

- Select 5 bugs from each project at random
- For each bug/valid configuration
- Initialize Schwa with configuration and run

Parameter

Tu n | ng - Collect “true” faulty class from DEFECTS4)

- Calculate index of “true” faulty class
according to prediction

Parameter Tuning

Class Name Prediction

org.
org.
org.
org.
org.
.jfree.
jfree.
jfree.

org

org.
org.
.Jjfree.
jfree.
jfree.

org

org.
org.
.jfree.
jfree.

org

org.
org.
org.
org.
org.

jfree.
jfree.
jfree.
jfree.
jfree.

jfree.
jfree.
jfree.
jfree.

chart.
chart.
chart.
chart.
chart.
chart.
chart.
chart.
chart.

chart.
chart.
chart.
chart.

chart.

plot.XYPlot 99.98
ChartPanel 99.92
renderer.xy.AbstractXYItemRenderer 99.30
plot.CategoryPlot 99.20
renderer.AbstractRenderer 98.58
renderer.category.AbstractCategoryItemRenderer 98.02
renderer.category.BarRenderer 95.82
renderer.xy.XYBarRenderer 95.22
plot.Plot 94.75
data.time.TimeSeriesCollection 94.53
data.xy.XYSeriesCollection 94.48
plot.junit.XYPlotTests 94.35
renderer.category.StatisticalLineAndShapeRenderer 93.80
renderer.xy.XYItemRenderer 92.43
panel.RegionSelectionHandler 92.24
data.general.DatasetUtilities 92.11
axis.CategoryAxis 90.82
+1091 more..

org.jfree.data.time.junit.TimePeriodValuesTests.MySeriesChangelistener 9.30

DPATERSON1@SHEFFIELD.AC.UK

Parameter Tuning

Class Name Prediction

DEFECTS4) org.jfree.chart.plot.XYPlot 99.98
org.jfree.chart.ChartPanel 99.92
org.jfree.chart.renderer.xy.AbstractXYItemRenderer 99.30

org.jfree.chart.plot.CategoryPlot 99.20

org.jfree.chart.renderer.AbstractRenderer 98.58
org.jfree.chart.renderer.category.AbstractCategoryItemRenderer 98.02
org.jfree.chart.renderer.category.BarRenderer 95.82

org.jfree.chart.renderer.xy.XYBarRenderer 95.22

org.jfree.chart.plot.Plot 94.75

“True” Faulty Class org.jfree.data.time.TimeSeriesCollection 94.53
org.jfree.data.xy.XYSeriesCollection 94.48

org.jfree.chart.plot.junit.XYPlotTests 94.35
org.jfree.chart.renderer.category.StatisticallLineAndShapeRenderer 93.80

.jfree.chart.renderer.xy.XYItemRenderer 92.43

.jfree.chart.panel.RegionSelectionHandler e 92.24
.jfree.data.general.DatasetUtilities Position: 16 92.11

.jfree.chart.axis.CategoryAxis 90.82
org.jfree.data.general.DatasetUtilities +1091 more...
org.jfree.data.time.junit.TimePeriodValuesTests.MySeriesChangelListener 9.30

DPATERSON1@SHEFFIELD.AC.UK

Revisions are
important— best
results were

observed when Pa Faim ete I TU N I ng

revisions weight was
high

TOP 3: Revisions Weight | Authors Weight Fixes Weight
No single configuration significantly outperformed all others

Author Weight 0.1 0.3 0.4 49.26
should be low — this

indicatesthat the Fixes weight is similar
number of authors in both

BOTTOM be—2littleimpact_§ o6 0.3 1.0 88.07
0.7 0.2 1.0 e
The 3 worst results all
0.1 0.8 0.1 1.0

occurred when the
time range was 1 —this
indicatesthat newer

commits are more
importantto analyze

DPATERSON1@SHEFFIELD.AC.UK

Parameter Tuning

For 67.5% of the bugs,
the faulty class was

Chart 1 inside t?li;c:ei 10% of
Closure 1 31 77
Lang 9 11 26 39
Math 1 15 40 55
For 17 féults, Schwa ito 3 14 29 33
predicted the
correct faulty class 2 9 14 17
Total 17 87 200 267
Schwa can effectively predict the location
of real faults in DEFECTS4)

DPATERSON1@SHEFFIELD.AC.UK

1.Greedy
Parameter 2.Additional Greedy
Tuning 3.Random

4.Constraint Solver

Parameter Tuning

Chart Closure Lang Math Mockito Time
1.00

. . . I ! . : I :
For real bug prediction data,
the constraintsolveris the
best secondary objective *

DPATERSON1@SHEFFIELD.AC.UK

Parameter Tuning

Chart Closure Lang Math Mockito Time
1.00

For real bug prediction data,
the constraintsolveris the
best secondary objective *

‘] For perfect bug prediction
“ ““ ? data, most secondary
°| objectives are able to almost
R .L.L.L)

1.00
perfectly prioritize test cases

0.75
0.50

0.25

0.00 —

!

ca c& é‘ “’if\ & & ag é‘ ﬁg‘a@ & a@ & -J’

%}5\ & & & 5‘\ & ,39 & &
s & & & & & & & & &
S F § F & & § & &

DPATERSON1@SHEFFIELD.AC.UK

Discover the best
parameters for defect
prediction in order to

Compare our approach
against existing
coverage-based

predict faulty classes as approaches

soon as possible

Compare our approach
against existing
history-based
approaches

Research Objectives

DPATERSON1@SHEFFIELD.AC.UK

Our Approach
vs Coverage-

Based

365 faults from DEFECTS4)

5 coverage-based strategies

Total 1,825 combinations of
fault/strategy

Our approach is best for 1,165
combinations

Significantly outperforms 4 of the 5
strategies

Our Approach vs Coverage-Based

Chart Closure Lang
In most cases, our
approach requires -* * ** + ++
the fewest test cases
to find faults Math Mockito Time
| t>°® S ‘2'6\ & ‘\6\ 5 06\ Q_ES\ & & é\\x\@ E}® S ES\ & & .xx
N o a_,‘z:b c; 0&\ a:‘z:b s N 0 c; 6:
@ Q_\O@Q'% o° & Q'_\OQ@Q"_\\ & ? Q'_\OQ@Q I
'25}8\\ c?(\e' @Q @b&\ c?(\e' @Q @b&\ C?(\Q' @0

DPATERSON1@SHEFFIELD.AC.UK

Discover the best
parameters for defect
prediction in order to

Compare our approach
against existing
coverage-based

predict faulty classes as approaches

soon as possible

Compare our approach
against existing
history-based
approaches

Research Objectives

DPATERSON1@SHEFFIELD.AC.UK

82 faults from DEFECTS4)

4 history-based strategies

Our Approach
vs History-

Total 328 combinations of fault/strategy
Based

Our approach is best for 209
combinations

Significantly outperforms 3 of the 4
strategies

Our Approach vs History-Based

Chart Closure Lang
1.00 .
0.75 i
0.50 . . ; 2
025
000 DN e N m—— -
Math Mockito Time
1.00
0.75 ﬁ
0.50
025
0.00 - —
o @ O Q '?.r __ SEERS (o) N
& Q$° (\@Q (&Qﬁb @5 & Q$° \0\;25‘ 6@0\@ %6\

DPATERSON1@SHEFFIELD.AC.UK

Our Approach vs History-Based

Project Avg. Commits % Occurrences Num Failures
Chart
Closure 178 82% 0%
Lang 159 87% 5%
Math 383 77% 6%
Mockito 105 65% 19%
Time 36 100% 0%

DPATERSON1@SHEFFIELD.AC.UK

ummary

In software development, our goal is
to minimize the impact of faults

Defect

If wee know that a fault exists, we can
v use foult locolization to pinpaint the

PrEd iction code unit responsible

If wee don’t know that a fault exists, we

can uze defect prediction to estimate

which code units are likely to be faulty

Tool: https://github.com/kanonizo/kanonizo

Discaver the best Camparne cur appraach Compare cur approach
parameters for defect aAgainst cusking against misting
preciction in crder o cowerage-based history-based
pnl:lctml‘b,n:hmuu approaches approaches
soom as possible

Research Objectives

Why Do We
Prioritize

Test Cases?

Cur Approach
w5 Histony-
Based

DPATERSON1@SHEFFIELD.AC.UK

Regression testing can account for up to

80% of the total testing budget, and up to
50% of the cost of software maintenance

In some situations, it may not be possible to
re-run all test cases om a system

By prioritizing test cases, we aim to ensure
faults are detected in the smallest amount
of time irrespective of program changes

82 faults from DEFCCTSE)

4 history-based strategies

Total 328 combinations of fault/strategy

Owr approach is best for 209
combinations

Lignificantly outperforms 3 of the 4
strategies

Data: https://bitbucket.org/josecampos/history-based-test-prioritization-data

Constraint Solver
M.
TC, 1 0 1

TC, 0 1 0
TC, 1 1 0

In order to cover L,, we must select either TC, or TC,
(TC; v TC3) A(TC, vV TC3) A (TCy)
Minimal set:

(TCy A TCy)
(TC; N TC3)

DPATERSON1@SHEFFIELD.AC.UK

Statistical Tests

For each of our experiments, we calculated:

- The Mann-Whitney U Test p-value in order to calculate the likelihood that our results were
observed as a result of chance

- The Vargha-Delaney effect size, to measure the magnitude of difference between results

- The ranking position of each configuration

DPATERSON1@SHEFFIELD.AC.UK

