Using Controlled Numbers of Real Faults and Mutants to
Empirically Evaluate Coverage-Based Test Case Prioritization

David Paterson Gregory Kapfhammer Gordon Fraser Phil McMinn
University of Sheffield Allegheny College University of Passau University of Sheffield

Workshop on Automation of Software Test
29th May 2018

dpaterson1@sheffield.ac.uk .

Test Case Prioritization

e Testing is required to ensure the correct functionality of software

e Larger software — more tests — longer running test suites

LS —

« [<IN~] [or
£ Mostvisted @) Gertog Stmned [} Facebock

@ Jenkins

Jenkins E-G Geode Geode-release #103 Test Results ENABLE AUTO REFRESH

Back to Project
4 Back to Projec History for Test Results

0, Status
“# Changes 9,000
- 45,000 |
‘ Console Output .
View as plain text 35,000
— o 30,000
. View Build Information 8
(. § =000
B History 20,000 -
D Polling Log 18000
10,000
(@) Open Blue Ocean 5000
Environment Variables °¥ @ = a2
\ : : : 3
4 Git Build Data i 2 s g
= =
[:J Test Result show count
‘ Build Description Duration Fail Skip Total
Previous Build
Geode-release #103 14 hr 0 741 18726
Geode-release #102 14 hr 1 741 18726
Geode-release #101 27 min 0 8 4357
Geode-release #100 14 hr 0 741 18713
Geode-release #30 9 hr 56 min 0 864 15720

Test Case Prioritization

e Testing is required to ensure the correct functionality of software

e Larger software -> more tests -> longer running test suites

Q s How can we reduce the time taken to identify new
s are found?

Find an ordering of test cases such that
faults are detected as early as possible
Test Case Prioritization

=
show count

Build Description Duration Fai

Geode-release #103 14 hr

[7] Test Resutt
Skip Total

741 18726
741 18726

48 Previous Build

il

0

Geode-release #102 14 hr 1
Geode-release #101 27 min 0 8 4357

0

0

Geode-release #100 14 hr 741 18713
Geode-release #30 9 hr 56 min 864 15720 .

Types of Fault

Real Artificial

Test Case Prioritization

Strategy A Strategy B
e 100 subjects e 100 subjects
e Evaluated on mutants e Evaluated on real faults
e Score=0.75 e Score=0.72

Which strategy performs the best?

Research Objectives

1. Compare prioritization strategies across fault types

2. Investigate the impact of multiple faults

B
B
I
I
OO G

L O 0
P 3

Evaluating Test Prioritization

Average Percentage of Faults Detected (APFD)

« % Faults Found vs % Test Suite executed

m

mn 2n

. APFD =1

« TCP aims to maximize APFD by minimizing TF,

Evaluating Test Prioritization

100

90

1 fault detected after 7 test cases (n=10)

7 1
APFD =1 — 1_O+ 2—O=0.35

50

40

% Faults Det

30
20 1 10 x100

=X ——=0.05
10 2 100 x 100

0 10 20 30 40 50 60 70 80 90 100

% Test Cases Executed

Evaluating Test Prioritization

100

90

1 fault detected after 1 test cases (n=20)

1 1
APFD =1 — %+ E_O'975

50

40

% Faults Det

30
20

10

0 10 20 30 40 50 60 70 80 90 100

% Test Cases Executed

Evaluating Test Prioritization

100

90

1 fault detected after 2 test cases
2nd fault detected after 8 test cases (n=10)

APFD =1 — ——+ — = 0.55

2+8 1

20

% Faults Det

50

40

30

20

10

0 10 20 30 40 50 60 70 80 90 100

% Test Cases Executed

Test Case Prioritization

.

bt |ttt ottty ty ty
vesion1 [| X |4 4 4 4 4 4 4 4
version2 [| X |Ed 4 B4 M| X 4 &4 &4 o
version3 B | X |Ed| X |Ed| X (Ed B4 B4 B4 |-+

Test Case Prioritization

oty t, ot ot oty b, by tg ty
veson1 [444 HE X 4 44
veson2 [[A M X & X 4 M4 M o=
vesons B B X A M X Ed X &)

Techniques

Coverage-Based

History-Based

Cluster-Based

public int abs(int x){
if (x >= 0) {

} else {

testOne

testTwo

testThree

testFour

testFive

28/05/2018
27/05/2018
26/05/2018
25/05/2018
24/05/2018

23/05/2018

22/05/2018

.
CIusterE .
L .)

: ':~:' AR
AT -:.

Evaluation

RQ1: How does the effectiveness of test case prioritization compare between a single
real fault and a single mutant?

LI

RQ2: How does the effectiveness of test case prioritization compare between single
faults and multiple faults?

x %

Subjects

« Defects4J: Large repository containing 357 real faults from 5 open-source repositories [1]

Project GitHub Number of Bugs KLOC Tests
JFreeChart https://github.com/jfree/jfreechart 26 96 2,205
Closure Compiler https://qgithub.com/google/closure-compiler 133 90 7927
Apache Commons Lang https://github.com/apache/commons-lang 65 85 3,602
Apache Commons Math https://github.com/apache/commons-math 106 28 4,130
Joda Time https://github.com/JodaOrg/joda-time 27 22 2,245

» Contains developer written test suites

» Provides 2 versions of every subject — one buggy and one fixed

[1] https://github.com/rjust/defects4
[2] https://homes.cs.washington.edu/~mernst/pubs/bug-database-issta2014.pdfj

https://github.com/rjust/defects4j
https://github.com/rjust/defects4j
https://github.com/jfree/jfreechart
https://github.com/google/closure-compiler
https://github.com/apache/commons-lang
https://github.com/apache/commons-math
https://github.com/JodaOrg/joda-time

Experimental Process

Eefects4j—¢[Fixed Version Major

Progra
Apply Patch o g "k
h?uggy Vgr‘siork
Apply Patch
2 testTwo - 2 test378
Program Kanonizo
e P4
n testN n test201

testl/8

Wilcoxon U-Test measures likelihood that 2 samples originate from the same
distribution p
- Significant differences occur often when samples are large

Vargha-Delaney effect size calculates the magnitude of differences 4,, — the
practical difference between two samples

1€0- 160- 0
§ re § e § Ho- § o
120 20 20 120
100 100 100

SAMPLE] SAMPLEZ SAMPLEI SAMPLEZ SAMPLEI SAMPLEZ SAMPLE] SAMPLEZ
GROUP GROUP GROUP GROUP

p = 0.5544
Significant = X
A{,=0.5007
Effect Size = None

p =2.2e-16
Significant =
A{, =0.4075059

Effect Size = Small

p=22e16
Significant =
A,, = 0.3250598

Effect Size = Medium

Significant =
A, =0.005826003
Effect Size = Large

Comparisons

RQ1

RQ2

Strategy 1 Strategy 2 Fault Type 1 Fault Type 2 Strategy 1 Strategy2 Faults 1 Faults 2 Faults 3

A A Real Mutant A A 1 5 10

A B Real Real A B 1 real 5real 10 real

A B Mutant Mutant A B 1 mutant 5 mutant 10 mutant

Results

RQ1: Real Faults vs Mutants

» APFD is significantly higher for mutants than real faults in all but one case

« On average, over 10% additional test cases were required to find the real faults

Project Real Mutant Test Cases | Difference

Chart 703.4 498.5 1826.0 11.2%
Lang 818.9 611.4 1960.8 10.6%
Math 1461.7 815.8 3566.9 18.1%
Time 1341.9 683.4 3929.1 16.8%

« For real faults, 3 out of 16 project/strategy combinations significantly improve over the
baseline, compared to 10 out of 16 improvements for mutants

Test Case Prioritization is much more

effective for mutants than real faults

RQ2: Single faults vs Multiple Faults

« Variance in APFD scores significantly reduces as more faults are introduced

1.OO-

0.75-

o
& 0.50-
<

0.25 '

0.00-

5
NUM FAULTS

FAULT TYPE BBl ruTanT B3 REAL

 |n 37/40 cases, median APFD decreased as more faults are introduced
- APFD punishes test suites that are not able to find all faults

RQ2: Single faults vs Multiple Faults

« However, real faults and mutants still disagree on the effectiveness of TCP techniques

» For real faults, there is very rarely any practical difference when including more faults
- 17 of 40 comparisons are significant, of which 3 are Medium or Large effect size

« For mutants, increasing the number of faults makes the results clearer
- 35 of 40 comparisons are significant, of which 16 are Medium or Large effect size
- Effect size increases in all but one case for more faults

Using more faults lessens the effect of

randomness, but still does not make
mutants and real faults consistent

Real Faults vs Mutants

* Real faults are much more complex than mutants

for (final EventState state : eventsStates) {
state.stepAccepted(eventT, eventY);
isLastStep = isLastStep || state.stop();

}

// handle the first part of the step, up to the event

for (final StepHandler handler : stepHandlers) {
handler.handleStep (interpolator, isLastStep);

I

if (isLastStep) {
// the event asked to stop integraticon
System.arraycopy (eventyY, srcPos: 0, vy, destPos: 0, y.length);
return eventT;

I3

boolean needReset = false;
for (final EventState state : eventssStates) {

needReset = needReset || state.reset (eventT, eventY);
1

if (needrReset) {
// some event handler has triggered changes that
// invalidate the derivatives, we need to recompute them
System.arraycopy (eventyY, srcPos: 0, vy, destPost 0, y.length);
computeDerivatives (eventT, vy, yDot);
resetOccurred = true;

return eventT;

Real Faults vs Mutants

* Real faults are much more complex than mutants

currentEvent.stepAccepted (eventT, eventY);

isLastStep = currentEvent.stop();

// handle the first part of the step, up to the event
for (final StepHandler handler : stepHandlers)

8 lines of code deleted
9 lines of code added

ey

}

boolean needReset = currentEvent.reset (eventT, eventY);

if (needReset) {
// some event handler has triggered changes that
/7 invalidate the derivatives, we need to recompute them
System.arraycopy (eventyY, srcPos: 0, y, destPos: 0, y.length);
computeDerivatives (eventT, vy, yDot);
resetOccurred = true;
for (final EventState remaining : occuringEvents) {

remaining.stephAccepted (eventT, eventY);

}

return eventT;

Real Faults vs Mutants

» Real faults are much more complex than mutants
- On average, fixing a real fault added 1.98 lines and removed 7.2
- Fixing a mutant is always max +/- 1 line

boolean needsReset = |false;

* This results in more test cases detecting mutants
- On average, 3.18 test cases detected single real faults
- Meanwhile, 57.38 test cases detected single mutants

Test Case Prioritization

e Testing is required to ensure the correct functionality of software

e Larger software -> more tests -> longer running test suites

How can we reduce the time taken to identify new
s are found?

Find an ordering of test cases such that
faults are detected as early as possible
Test Case Prioritization

0] v

Py s

RQ1: Real Faults vs Mutants

e APFD is significantly higher for mutants than real faults in all but one case

« On average, over 10% additional test cases were required to find the real faults

Project Real Mutant Test Cases | Difference
Chart 703.4 498.5 1826.0 11.2%
Lang 818.9 611.4 1960.8 10.6%
Math 14617 8158 3566.9 18.1%
Time 13419 683.4 3929.1 16.8%

+ Forreal faults, 3 out of 16 project/strategy combinations significantly improve over the
baseline, compared to 10 out of 16 improvements for mutants

Tool:

https://github.com/kanonizo/kanonizo https://bitbucket.org/djpaterson/ast2018_data

Test Case Prioritization

Strategy A Strategy B
« 100 subjects « 100 subjects
+ Evaluated on mutants + Evaluated on real faults
« Score=0.75 « Score=0.72

Which strategy performs the best?

RQ2: Single faults vs Multiple Faults

* However, real faults and mutants still disagree on the effectiveness of TCP techniques

+ For real faults, there is very rarely any practical difference when including more faults
- 17 of 40 comparisons are significant, of which 3 are Medium or Large effect size

+ For mutants, increasing the number of faults makes the results clearer
- 35 of 40 comparisons are significant, of which 16 are Medium or Large effect size
- Effect size increases in all but one case for more faults

Data:

