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What is a flaky test?

e A test case that can pass and fail without any code changes.

e They disrupt continuous integration, cause of a loss of productivity, and limit the
efficiency of testing [Parry et. al. 2022, ICST].

e A recent survey found that nearly 60% of software developer respondents
encountered flaky tests on at least a monthly basis [Parry et. al. 2022, ICSE:SEIP].




What has been done about flaky tests?

e The research community has presented a multitude of automated detection
techniques.

e Many methodologies for evaluating such techniques do not accurately assess their
usefulness for developers.

e Some calculate recall against a baseline of flaky tests detected by automated

rerunning.

e Others simply present the number of detected flaky tests.



What did we do?

e We performed a study to demonstrate the value of a developer-based methodology for
evaluating automated detection techniques.

e [t features a baseline of developer-repaired flaky tests that is more suitable for
assessing a technique’s usefulness for developers.

e The fact that developers allocated time to repair the flaky tests in this baseline implies

they were of interest.




Our research questions

RQ1: What is the recall of automated rerunning against our baseline?

RQ2: What causes the flaky tests in our baseline and how did developers
repair them?



Methodology: Baseline

e We searched for commits among the top-1,000 Python repositories on GitHub (by
number of stars) using the query: “flaky OR flakey OR flakiness OR
flakyness OR 1ntermittent”.

e Upon finding matches, we checked the commit messages and code diffs to identify
each individual developer-repaired flaky test.

e We ended up with a baseline of 75 flakiness-repairing commits from 31

Y,

GitHub

open-source Python projects.



Methodology: RQ1

e We developed our own automated rerunning framework called ShowFlakes.
e [t can introduce four types of noise into the execution environment during reruns.

e For each of the 75 commits, we used ShowFlakes to rerun the developer-repaired
flaky tests at the state of the parent 1,000 times with no noise and 1,000 times with
noise.

e We considered a commit to be “detected” if ShowFlakes could detect at least one of
its developer-repaired commits. R

[ pytest



Methodology: RQ2

e We manually classified the causes of the flakiness and the developer’s repairs in the
75 commits.

e For the causes, we used the same ten cause categories introduced by Luo et. al. in
their empirical study on flaky tests [Luo et. al. 2014, FSE].

e For the repairs, we followed a more exploratory approach to allow for a set of repair
categories to emerge.



Results: RQ1

Table shows, for how many of the 75
commits, could rerunning detect at
least one flaky test.

Rerunning with noise performed
better than without noise, but still
only achieved a recall of 40%.

GitHub Repository
home-assistant/core
Hypothesis Works/hypothesis
pandas-dev/pandas
quantumlib/Cirq
apache/airflow
pytest-dev/pytest
scipy/scipy
python-trio/trio
urllib3/urllib3

+22 others

Total

Commits

32

75

Detected Commits

No Noise
3

1

1
6

16 (21%)

Noise

3

2

12

30 (40%)



Results: RQ2

Cause

Async. Wait
Concurrency
Floating Point

/O

Network

Order Dependency
Randomness
Resource Leak
Time

Unordered Collection
Miscellaneous

Total

Add Mock

1

11

Add/Adjust Guarantee Isolate Manage Reduce Reduce Widen
Wait Order State  Resource  Random. Scope  Assertion

6 - - - - - 2

2 - - 2 - - P

- - - - - - 3

3 - - 1 - - -

- - 2 = = 1 -

- - - - 6 - 4

- - = 2 - 1 1

- - - - - 1 1

- 3 - - - - -

- 1 - 1 - - 6

1 4 2 6 6 3 19

Misc.

13

Total

17

75



Implications

e We found that the recall of automated rerunning was low against our baseline.
e This suggests that, for developers, the usefulness of this technique is limited.

e For researchers, this implies that a baseline provided by automated rerunning would
be unsuitable for assessing developer usefulness.

e We found that automated rerunning with noise performed significantly better than
without.

e Therefore, if developers are going to use rerunning, we recommend doing so with
noise.



