What Do Developer-Repaired Flaky Tests Tell Us About
the Effectiveness of Automated Flaky Test Detection?

Owain Parry!, Gregory M. Kapfhammer?, Michael Hilton?, Phil McMinn'

'University of Sheffield, UK
2Allegheny College, USA
3Carnegie Mellon University, USA

What is a flaky test?

e A test case that can pass and fail without any code changes.

e They disrupt continuous integration, cause of a loss of productivity, and limit the
efficiency of testing [Parry et. al. 2022, ICST].

e A recent survey found that nearly 60% of software developer respondents
encountered flaky tests on at least a monthly basis [Parry et. al. 2022, ICSE:SEIP].

What has been done about flaky tests?

e The research community has presented a multitude of automated detection
techniques.

e Many methodologies for evaluating such techniques do not accurately assess their
usefulness for developers.

e Some calculate recall against a baseline of flaky tests detected by automated

rerunning.

e Others simply present the number of detected flaky tests.

What did we do?

e We performed a study to demonstrate the value of a developer-based methodology for
evaluating automated detection techniques.

e [t features a baseline of developer-repaired flaky tests that is more suitable for
assessing a technique’s usefulness for developers.

e The fact that developers allocated time to repair the flaky tests in this baseline implies

they were of interest.

Our research questions

RQ1: What is the recall of automated rerunning against our baseline?

RQ2: What causes the flaky tests in our baseline and how did developers
repair them?

Methodology: Baseline

e We searched for commits among the top-1,000 Python repositories on GitHub (by
number of stars) using the query: “flaky OR flakey OR flakiness OR
flakyness OR 1ntermittent”.

e Upon finding matches, we checked the commit messages and code diffs to identify
each individual developer-repaired flaky test.

e We ended up with a baseline of 75 flakiness-repairing commits from 31

Y,

GitHub

open-source Python projects.

Methodology: RQ1

e We developed our own automated rerunning framework called ShowFlakes.
e [t can introduce four types of noise into the execution environment during reruns.

e For each of the 75 commits, we used ShowFlakes to rerun the developer-repaired
flaky tests at the state of the parent 1,000 times with no noise and 1,000 times with
noise.

e We considered a commit to be “detected” if ShowFlakes could detect at least one of
its developer-repaired commits. R

[pytest

Methodology: RQ2

e We manually classified the causes of the flakiness and the developer’s repairs in the
75 commits.

e For the causes, we used the same ten cause categories introduced by Luo et. al. in
their empirical study on flaky tests [Luo et. al. 2014, FSE].

e For the repairs, we followed a more exploratory approach to allow for a set of repair
categories to emerge.

Results: RQ1

Table shows, for how many of the 75
commits, could rerunning detect at
least one flaky test.

Rerunning with noise performed
better than without noise, but still
only achieved a recall of 40%.

GitHub Repository
home-assistant/core
Hypothesis Works/hypothesis
pandas-dev/pandas
quantumlib/Cirq
apache/airflow
pytest-dev/pytest
scipy/scipy
python-trio/trio
urllib3/urllib3

+22 others

Total

Commits

32

75

Detected Commits

No Noise
3

1

1
6

16 (21%)

Noise

3

2

12

30 (40%)

Results: RQ2

Cause

Async. Wait
Concurrency
Floating Point

/O

Network

Order Dependency
Randomness
Resource Leak
Time

Unordered Collection
Miscellaneous

Total

Add Mock

1

11

Add/Adjust Guarantee Isolate Manage Reduce Reduce Widen
Wait Order State Resource Random. Scope Assertion

6 - - - - - 2

2 - - 2 - - P

- - - - - - 3

3 - - 1 - - -

- - 2 = = 1 -

- - - - 6 - 4

- - = 2 - 1 1

- - - - - 1 1

- 3 - - - - -

- 1 - 1 - - 6

1 4 2 6 6 3 19

Misc.

13

Total

17

75

Implications

e We found that the recall of automated rerunning was low against our baseline.
e This suggests that, for developers, the usefulness of this technique is limited.

e For researchers, this implies that a baseline provided by automated rerunning would
be unsuitable for assessing developer usefulness.

e We found that automated rerunning with noise performed significantly better than
without.

e Therefore, if developers are going to use rerunning, we recommend doing so with
noise.

