
What Do Developer-Repaired Flaky Tests Tell Us About
the Effectiveness of Automated Flaky Test Detection?

Owain Parry¹, Gregory M. Kapfhammer², Michael Hilton³, Phil McMinn¹

¹University of Sheffield, UK
²Allegheny College, USA

³Carnegie Mellon University, USA

What is a flaky test?

● A test case that can pass and fail without any code changes.

● They disrupt continuous integration, cause of a loss of productivity, and limit the
efficiency of testing [Parry et. al. 2022, ICST].

● A recent survey found that nearly 60% of software developer respondents
encountered flaky tests on at least a monthly basis [Parry et. al. 2022, ICSE:SEIP].

+ =

What has been done about flaky tests?

● The research community has presented a multitude of automated detection
techniques.

● Many methodologies for evaluating such techniques do not accurately assess their
usefulness for developers.

● Some calculate recall against a baseline of flaky tests detected by automated
rerunning.

● Others simply present the number of detected flaky tests.

What did we do?

● We performed a study to demonstrate the value of a developer-based methodology for
evaluating automated detection techniques.

● It features a baseline of developer-repaired flaky tests that is more suitable for
assessing a technique’s usefulness for developers.

● The fact that developers allocated time to repair the flaky tests in this baseline implies
they were of interest.

Our research questions

RQ1: What is the recall of automated rerunning against our baseline?

RQ2: What causes the flaky tests in our baseline and how did developers
repair them?

Methodology: Baseline

● We searched for commits among the top-1,000 Python repositories on GitHub (by
number of stars) using the query: “flaky OR flakey OR flakiness OR
flakyness OR intermittent”.

● Upon finding matches, we checked the commit messages and code diffs to identify
each individual developer-repaired flaky test.

● We ended up with a baseline of 75 flakiness-repairing commits from 31
open-source Python projects.

Methodology: RQ1

● We developed our own automated rerunning framework called ShowFlakes.

● It can introduce four types of noise into the execution environment during reruns.

● For each of the 75 commits, we used ShowFlakes to rerun the developer-repaired
flaky tests at the state of the parent 1,000 times with no noise and 1,000 times with
noise.

● We considered a commit to be “detected” if ShowFlakes could detect at least one of
its developer-repaired commits.

Methodology: RQ2

● We manually classified the causes of the flakiness and the developer’s repairs in the
75 commits.

● For the causes, we used the same ten cause categories introduced by Luo et. al. in
their empirical study on flaky tests [Luo et. al. 2014, FSE].

● For the repairs, we followed a more exploratory approach to allow for a set of repair
categories to emerge.

Results: RQ1
Detected Commits

GitHub Repository Commits No Noise Noise

home-assistant/core 6 3 3

HypothesisWorks/hypothesis 6 1 2

pandas-dev/pandas 6 1 2

quantumlib/Cirq 5 1 2

apache/airflow 4 2 3

pytest-dev/pytest 4 - -

scipy/scipy 4 - 2

python-trio/trio 4 1 2

urllib3/urllib3 4 1 2

+22 others 32 6 12

Total 75 16 (21%) 30 (40%)

● Table shows, for how many of the 75
commits, could rerunning detect at
least one flaky test.

● Rerunning with noise performed
better than without noise, but still
only achieved a recall of 40%.

Results: RQ2
Cause Add Mock

Add/Adjust
Wait

Guarantee
Order

Isolate
State

Manage
Resource

Reduce
Random.

Reduce
Scope

Widen
Assertion Misc. Total

Async. Wait 1 6 - - - - - 2 - 9

Concurrency - 2 - - 2 - - 2 2 8

Floating Point - - - - - - - 3 - 3

I/O - - - - - - - - - -

Network 3 3 - - 1 - - - 1 8

Order Dependency - - - 2 - - 1 - - 3

Randomness - - - - - 6 - 4 1 11

Resource Leak - - - - 2 - 1 1 - 4

Time 5 - - - - - 1 1 2 9

Unordered Collection - - 3 - - - - - - 3

Miscellaneous 2 - 1 - 1 - - 6 7 17

Total 11 11 4 2 6 6 3 19 13 75

Implications

● We found that the recall of automated rerunning was low against our baseline.

● This suggests that, for developers, the usefulness of this technique is limited.

● For researchers, this implies that a baseline provided by automated rerunning would
be unsuitable for assessing developer usefulness.

● We found that automated rerunning with noise performed significantly better than
without.

● Therefore, if developers are going to use rerunning, we recommend doing so with
noise.

