
Evaluating Features for Machine Learning Detection of
Order- and Non-Order-Dependent Flaky Tests

Owain Parry¹, Gregory M. Kapfhammer², Michael Hilton³, Phil McMinn¹

¹University of Sheffield, UK
²Allegheny College, USA

³Carnegie Mellon University, USA

What is a flaky test? What do developers think?

● A test case that can both pass or fail
without changes to the code.

● An unreliable signal that may waste
developers’ time.

● A category of flaky tests, known as
order-dependent (OD) tests, depend on
the test execution order.

● OD flaky tests can hinder the application
of techniques such as test case
prioritization.

A survey [Eck et. al. 2019] of 109 developers
asked, “How problematic are flaky tests for
you?”.

How can we detect flaky tests? Rerunning

● A simple way to detect flaky tests is to repeatedly execute test suites.

● If the outcome of a test case is inconsistent across reruns then it is flaky.

● This can be combined with adjusting the test run order to catch OD flaky tests.

● This approach can be very slow for projects with long-running test suites!

test_foo
PASSED

test_bar
PASSED

test_baz
PASSED

test_foo
PASSED

test_bar
PASSED

test_baz
PASSED

test_foo
PASSED

test_bar
FAILED

test_baz
PASSED

Test run 1 Test run 2 Test run 3

Flaky

How can we detect flaky tests? Machine Learning

● Researchers have developed detection techniques based on machine learning models, trained
using static features of test cases [Pinto et. al. 2020], [Bertolino et. al. 2021].

● One recent study found that combining static features with dynamically-collected features can
result in better performance at the cost of a single test suite run [Alshammari et. al. 2021].

def test_foo:
 x = foo(1, 2)
 assert x > 3

Test case
Execution Time: 11.4s
Covered Lines: 208
...

Features

Model
Execute to collect… Feed into…

Flaky

Not flaky

What did we do?

● Prior research on features to encode a test case is limited and does not consider the
detection of OD flaky tests, despite being prevalent in test suites [Lam et. al. 2019].

● We introduced Flake16, a new feature set for encoding test cases for flaky test
detection.

● It offered a 13% increase in F1 score compared to a previous feature set when
detecting non-order-dependent (NOD) flaky tests and a 17% increase when detecting
OD flaky tests.

The Flake16 feature set

Covered Lines

Covered Changes

Source Covered Lines

Execution Time

Assertions

Test Lines of Code

External Modules

Covered Classes

Read Count

Write Count

Context Switches

Max. Threads Max. Memory

AST Depth

Halstead Volume

Cyclomatic Complexity

Maintainability

FlakeFlagger [Alshammari et. al. 2021]

Flake16

Our empirical evaluation

● RQ1. Compared to the features used by FlakeFlagger, does the Flake16
feature set improve the performance of flaky test case detection with machine
learning models?

● RQ2. Can machine learning models be applied to effectively detect
order-dependent flaky test cases?

● RQ3. Which features of Flake16 are the most impactful?

Our dataset

● A total of 67,006 test cases from the test suites of 26 open-source Python projects hosted on GitHub.

● Our tooling executed each project’s test suite 2,500 times in its original order and 2,500 times in a shuffled
order to label each test case as non-flaky, NOD flaky, or OD flaky.

● It also performed a single instrumented run of each test suite to collect feature data for each test case.

● We ended up with 145 NOD flaky tests and 1,012 OD flaky tests.

test_foo
PASSED

test_bar
PASSED

test_baz
PASSED

test_bar
PASSED

test_foo
FAILED

test_baz
PASSED

test_foo
PASSED

test_bar
FAILED

test_baz
PASSED

test_bar
PASSED

test_baz
PASSED

test_foo
FAILED

test_foo
PASSED

test_bar
PASSED

test_baz
PASSED

test_baz
PASSED

test_foo
PASSED

test_bar
PASSED

test_foo

test_bar

test_baz

OD flaky

NOD flaky

Non-flaky

Shuffled run 1 Shuffled run 2 Shuffled run 3

Original run 1 Original run 2 Original run 3

Model configurations

Target Label Feature Set Preprocessing

Balancing Model

NOD Flaky OD Flaky FlakeFlagger Flake16 None Scaling PCA

Tomek
Links

Edited Nearest-neighbours
(ENN)

SMOTE SMOTE
+ Tomek

SMOTE
+ ENN

Decision Tree Random Forest

Extra Trees

⨉ ⨉

⨉ ⨉ = 216 Configs

None

Model training & testing
● Stratified 10-fold cross validation produces

10 folds, where 90% of the dataset is for
training the model and 10% for testing.

● The class balance of each fold roughly
follows that of the whole dataset.

● The testing portion of each fold is unique,
so every test case gets a predicted label.

Dataset

test_foo
NON-FLAKY

test_bar
FLAKY

test_baz
NON-FLAKY

test_qux
FLAKY

Training Testing

Fold 1

test_qux
FLAKY

test_foo
NON-FLAKY

test_bar
FLAKY

test_baz
NON-FLAKY

Training Testing

Fold 2

test_baz
NON-FLAKY

test_qux
FLAKY

test_foo
NON-FLAKY

test_bar
FLAKY

Training Testing

Fold 3

test_bar
FLAKY

test_baz
NON-FLAKY

test_qux
FLAKY

test_foo
NON-FLAKY

Training Testing

Fold 4

test_foo
NON-FLAKY

test_bar
FLAKY

test_baz
NON-FLAKY

test_qux
FLAKY

Model

Model

Model

Model

Predicted Labels
test_foo
NON-FLAKY

test_bar
FLAKY

test_baz
FLAKY

test_qux
NON-FLAKY

True-
negative

True-
positive

False-
positive

False-
negative

FlakeFlagger Flake16

NOD Flaky

OD Flaky

Preprocessing: None
Balancing: Tomek Links
Model: Extra Trees
Precision: 0.75
Recall: 0.33
F1 Score: 0.46

Results: RQ1 & RQ2

Preprocessing: PCA
Balancing: SMOTE
Model: Extra Trees
Precision: 0.58
Recall: 0.48
F1 Score: 0.52

Preprocessing: None
Balancing: SMOTE+Tomek
Model: Extra Trees
Precision: 0.50
Recall: 0.44
F1 Score: 0.47

Preprocessing: Scaling
Balancing: SMOTE
Model: Random Forest
Precision: 0.50
Recall: 0.60
F1 Score: 0.55

Feature impact

● To understand the impact of each feature on the model’s output for a given data point, we used
the Shapely Additive Explanations (SHAP) technique.

● In our context, a data point is a test case and the model output is the estimated probability that
the test case is flaky.

0.0 1.00.5

Feature 1

Feature 2

Feature 3

Feature 4

E[𝑓(𝑥)]

Feature 5

𝑓(𝑥)

-0.04

-0.11

+0.18

-0.26

+0.53

Feature impact

● We calculated the matrix of SHAP matrix for the best model configuration for detecting NOD
flaky tests and the best configuration for OD flaky tests.

● To quantify the importance of each feature for both classification problems, we calculated the
mean absolute value of each column in the matrix, corresponding to each feature.

Test case Feature 1 Feature 2 Feature 3

test_foo -0.030 0.089 0.061

test_bar -0.036 0.031 0.094

test_baz 0.052 0.003 -0.033

Feature 1 Feature 2 Feature 3

0.039 0.041 0.063

Results: RQ3
Max. Threads

0.064
AST Depth

0.046
Covered Changes

0.042
Write Count

0.040
Execution Time

0.036
Read Count

0.034
Source Covered Lines

0.034
Covered Lines

0.033
Test Lines of Code

0.032
Context Switches

0.032
Max. Memory

0.026
Cyclomatic Complexity

0.025
Maintainability

0.023
Assertions

0.020
Halstead Volume

0.016
External Modules

0.012

Write Count
0.082

Read Count
0.080

Assertions
0.047

Max. Memory
0.044

Covered Changes
0.038

Covered Lines
0.036

Source Covered Lines
0.035

Context Switches
0.035

Execution Time
0.033

Test Lines of Code
0.023

Max. Threads
0.020

Cyclomatic Complexity
0.016

AST Depth
0.013

Halstead Volume
0.013

Maintainability
0.012

External Modules
0.010

NOD Flaky OD Flaky

Most impactful

Least impactful

Summary

● RQ1: The Flake16 feature set offered a 13% increase in overall F1 score
when detecting NOD flaky tests and a 17% increase when detecting OD
flaky tests.

● RQ2: The performance of the best OD configuration was broadly similar to
that of the best NOD configuration.

● RQ3: The most impactful feature for detecting NOD flaky tests was Max.
Threads. For detecting OD flaky tests, Write Count the most impactful.

