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What is a flaky test?                  What do developers think?

● A test case that can both pass or fail 
without changes to the code.

● An unreliable signal that may waste 
developers’ time.

● A category of flaky tests, known as 
order-dependent (OD) tests, depend on 
the test execution order.

● OD flaky tests can hinder the application 
of techniques such as test case 
prioritization.

A survey [Eck et. al. 2019] of 109 developers 
asked, “How problematic are flaky tests for 
you?”.



How can we detect flaky tests? Rerunning

● A simple way to detect flaky tests is to repeatedly execute test suites.

● If the outcome of a test case is inconsistent across reruns then it is flaky.

● This can be combined with adjusting the test run order to catch OD flaky tests.

● This approach can be very slow for projects with long-running test suites!
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How can we detect flaky tests? Machine Learning

● Researchers have developed detection techniques based on machine learning models, trained 
using static features of test cases [Pinto et. al. 2020], [Bertolino et. al. 2021].

● One recent study found that combining static features with dynamically-collected features can 
result in better performance at the cost of a single test suite run [Alshammari et. al. 2021].

def test_foo:
    x = foo(1, 2)
    assert x > 3
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What did we do?

● Prior research on features to encode a test case is limited and does not consider the 
detection of OD flaky tests, despite being prevalent in test suites [Lam et. al. 2019].

● We introduced Flake16, a new feature set for encoding test cases for flaky test 
detection.

● It offered a 13% increase in F1 score compared to a previous feature set when 
detecting non-order-dependent (NOD) flaky tests and a 17% increase when detecting 
OD flaky tests.



The Flake16 feature set
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Our empirical evaluation

● RQ1. Compared to the features used by FlakeFlagger, does the Flake16 
feature set improve the performance of flaky test case detection with machine 
learning models?

● RQ2. Can machine learning models be applied to effectively detect 
order-dependent flaky test cases?

● RQ3. Which features of Flake16 are the most impactful?



Our dataset

● A total of 67,006 test cases from the test suites of 26 open-source Python projects hosted on GitHub.

● Our tooling executed each project’s test suite 2,500 times in its original order and 2,500 times in a shuffled 
order to label each test case as non-flaky, NOD flaky, or OD flaky.

● It also performed a single instrumented run of each test suite to collect feature data for each test case.

● We ended up with 145 NOD flaky tests and 1,012 OD flaky tests.
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Model configurations

Target Label Feature Set Preprocessing

Balancing Model

NOD Flaky OD Flaky FlakeFlagger Flake16 None Scaling PCA

Tomek 
Links

Edited Nearest-neighbours 
(ENN)

SMOTE SMOTE 
+ Tomek

SMOTE 
+ ENN

Decision Tree Random Forest

Extra Trees

⨉ ⨉

⨉ ⨉ =  216 Configs

None



Model training & testing
● Stratified 10-fold cross validation produces 

10 folds, where 90% of the dataset is for 
training the model and 10% for testing.

● The class balance of each fold roughly 
follows that of the whole dataset.

● The testing portion of each fold is unique, 
so every test case gets a predicted label.
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FlakeFlagger Flake16

NOD Flaky

OD Flaky

Preprocessing:                   None
Balancing:              Tomek Links
Model:                     Extra Trees
Precision:                            0.75
Recall:                                 0.33
F1 Score:                            0.46

Results: RQ1 & RQ2

Preprocessing:                    PCA
Balancing:                     SMOTE
Model:                     Extra Trees
Precision:                            0.58
Recall:                                 0.48
F1 Score:                            0.52

Preprocessing:                   None
Balancing:        SMOTE+Tomek
Model:                     Extra Trees
Precision:                            0.50
Recall:                                 0.44
F1 Score:                            0.47

Preprocessing:                Scaling
Balancing:                     SMOTE
Model:               Random Forest
Precision:                            0.50
Recall:                                 0.60
F1 Score:                            0.55



Feature impact

● To understand the impact of each feature on the model’s output for a given data point, we used 
the Shapely Additive Explanations (SHAP) technique.

● In our context, a data point is a test case and the model output is the estimated probability that 
the test case is flaky.
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Feature impact

● We calculated the matrix of SHAP matrix for the best model configuration for detecting NOD 
flaky tests and the best configuration for OD flaky tests.

● To quantify the importance of each feature for both classification problems, we calculated the 
mean absolute value of each column in the matrix, corresponding to each feature.

Test case Feature 1 Feature 2 Feature 3

test_foo -0.030 0.089 0.061

test_bar -0.036 0.031 0.094

test_baz 0.052 0.003 -0.033

Feature 1 Feature 2 Feature 3

0.039 0.041 0.063



Results: RQ3
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Summary

● RQ1: The Flake16 feature set offered a 13% increase in overall F1 score 
when detecting NOD flaky tests and a 17% increase when detecting OD 
flaky tests.

● RQ2: The performance of the best OD configuration was broadly similar to 
that of the best NOD configuration.

● RQ3: The most impactful feature for detecting NOD flaky tests was Max. 
Threads. For detecting OD flaky tests, Write Count the most impactful.


