Evaluating Features for Machine Learning Detection of Order- and Non-Order-Dependent Flaky Tests

Owain Parry¹, Gregory M. Kapfhammer², Michael Hilton³, Phil McMinn¹

¹University of Sheffield, UK
²Allegheny College, USA
³Carnegie Mellon University, USA
What is a *flaky test*?

- A test case that can both pass or fail without changes to the code.
- An **unreliable signal** that may waste developers’ time.
- A category of flaky tests, known as *order-dependent (OD) tests*, depend on the test execution order.
- OD flaky tests can hinder the application of techniques such as test case prioritization.

What do developers think?

A survey [Eck et. al. 2019] of 109 developers asked, “How **problematic** are flaky tests for you?”.

![Pie chart showing survey results]

- Not a problem (4)
- A minor problem (19)
- A moderate problem (61)
- A serious problem (25)
How can we detect flaky tests? Rerunning

- A simple way to detect flaky tests is to repeatedly execute test suites.
- If the outcome of a test case is inconsistent across reruns then it is flaky.
- This can be combined with adjusting the test run order to catch OD flaky tests.
- This approach can be very slow for projects with long-running test suites!
Researchers have developed detection techniques based on machine learning models, trained using static features of test cases [Pinto et. al. 2020], [Bertolino et. al. 2021].

One recent study found that combining static features with dynamically-collected features can result in better performance at the cost of a single test suite run [Alshammari et. al. 2021].
What did we do?

- Prior research on features to encode a test case is limited and does not consider the detection of OD flaky tests, despite being prevalent in test suites [Lam et. al. 2019].
- We introduced *Flake16*, a new feature set for encoding test cases for flaky test detection.
- It offered a 13% *increase* in F1 score compared to a previous feature set when detecting *non-order-dependent (NOD)* flaky tests and a 17% *increase* when detecting OD flaky tests.
The Flake16 feature set

- Covered Lines
- Covered Changes
- Source Covered Lines
- Execution Time
- Test Lines of Code
-Assertions
- External Modules
- Cyclomatic Complexity
- Read Count
- Maintainability
- Write Count
- Halstead Volume
- Context Switches
- Max. Threads
- Max. Memory
- AST Depth

FlakeFlagger [Alshammari et. al. 2021]
Our empirical evaluation

- **RQ1.** Compared to the features used by FlakeFlagger, does the Flake16 feature set improve the performance of flaky test case detection with machine learning models?
- **RQ2.** Can machine learning models be applied to effectively detect order-dependent flaky test cases?
- **RQ3.** Which features of Flake16 are the most impactful?
Our dataset

- A total of 67,006 test cases from the test suites of 26 open-source Python projects hosted on GitHub.
- Our tooling executed each project’s test suite 2,500 times in its original order and 2,500 times in a shuffled order to label each test case as non-flaky, NOD flaky, or OD flaky.
- It also performed a single instrumented run of each test suite to collect feature data for each test case.
- We ended up with 145 NOD flaky tests and 1,012 OD flaky tests.
Model configurations

Target Label
- NOD Flaky
- OD Flaky

Feature Set
- FlakeFlagger
- Flake16

Preprocessing
- None
- Scaling
- PCA

Balancing
- Tomek Links
- Edited Nearest-neighbours (ENN)
- SMOTE
- SMOTE + Tomek
- SMOTE + ENN

Model
- Decision Tree
- Random Forest
- Extra Trees

= 216 Configs
Model training & testing

- *Stratified 10-fold cross validation* produces 10 folds, where 90% of the dataset is for training the model and 10% for testing.
- The class balance of each fold roughly follows that of the whole dataset.
- The testing portion of each fold is unique, so every test case gets a predicted label.

<table>
<thead>
<tr>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>test_foo</td>
</tr>
<tr>
<td>NON-FLAKY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fold 1</td>
<td></td>
</tr>
<tr>
<td>test_foo</td>
<td>test_bar</td>
</tr>
<tr>
<td>NON-FLAKY</td>
<td>FLAKY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predicted Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>test_foo</td>
</tr>
<tr>
<td>True-negative</td>
</tr>
</tbody>
</table>
Results: RQ1 & RQ2

<table>
<thead>
<tr>
<th>Flakelgger</th>
<th>Flake16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preprocessing:</td>
<td></td>
</tr>
<tr>
<td>NOD Flaky</td>
<td></td>
</tr>
<tr>
<td>Balancing:</td>
<td>Tomek Links</td>
</tr>
<tr>
<td>Model:</td>
<td>Extra Trees</td>
</tr>
<tr>
<td>Precision:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>Recall:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.33</td>
</tr>
<tr>
<td>F1 Score:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.46</td>
</tr>
</tbody>
</table>

Preprocessing: None			
Preprocessing: Scaling			
Balancing: SMOTE + Tomek			
Model:	Extra Trees		
Precision:		**Precision:**	0.50
	0.50		
Recall:		**Recall:**	0.60
	0.44		
F1 Score:		**F1 Score:**	0.55
	0.47		

- **Precision** = \(\frac{\text{true positives}}{\text{true positives} + \text{false positives}} \)
- **Recall** = \(\frac{\text{true positives}}{\text{true positives} + \text{false negatives}} \)
- **F1 score** = \(\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \)
Feature impact

- To understand the impact of each feature on the model’s output for a given data point, we used the *Shapely Additive Explanations (SHAP)* technique.

- In our context, a data point is a test case and the model output is the estimated probability that the test case is flaky.

![Feature Impact Diagram](image-url)

- Feature 1
- Feature 2: -0.26
- Feature 3: $+0.18$
- Feature 4: -0.11
- Feature 5: -0.04

$E[f(x)]$ and $f(x)$ are the expected value and the actual value of the model output, respectively.
Feature impact

- We calculated the matrix of SHAP matrix for the best model configuration for detecting NOD flaky tests and the best configuration for OD flaky tests.

- To quantify the importance of each feature for both classification problems, we calculated the mean absolute value of each column in the matrix, corresponding to each feature.

<table>
<thead>
<tr>
<th>Test case</th>
<th>Feature 1</th>
<th>Feature 2</th>
<th>Feature 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>test_foo</td>
<td>-0.030</td>
<td>0.089</td>
<td>0.061</td>
</tr>
<tr>
<td>test_bar</td>
<td>-0.036</td>
<td>0.031</td>
<td>0.094</td>
</tr>
<tr>
<td>test_baz</td>
<td>0.052</td>
<td>0.003</td>
<td>-0.033</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature 1</th>
<th>Feature 2</th>
<th>Feature 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.039</td>
<td>0.041</td>
<td>0.063</td>
</tr>
</tbody>
</table>
Results: RQ3

Max. Threads 0.064
AST Depth 0.046
Covered Changes 0.042
Write Count 0.040
Execution Time 0.036
Read Count 0.034
Source Covered Lines 0.034
Covered Lines 0.033
Test Lines of Code 0.032
Context Switches 0.032
Max. Memory 0.026
Cyclomatic Complexity 0.025
Maintainability 0.023
Assertions 0.020
Halstead Volume 0.016
External Modules 0.012

Write Count 0.082
Read Count 0.080
Assertions 0.047
Max. Memory 0.044
Covered Changes 0.038
Covered Lines 0.036
Source Covered Lines 0.035
Context Switches 0.035
Execution Time 0.033
Test Lines of Code 0.032
Max. Threads 0.020
Cyclomatic Complexity 0.016
AST Depth 0.013
Halstead Volume 0.013
Maintainability 0.012
External Modules 0.010
Summary

- **RQ1**: The Flake16 feature set offered a 13% increase in overall F1 score when detecting NOD flaky tests and a 17% increase when detecting OD flaky tests.

- **RQ2**: The performance of the best OD configuration was broadly similar to that of the best NOD configuration.

- **RQ3**: The most impactful feature for detecting NOD flaky tests was Max. Threads. For detecting OD flaky tests, Write Count the most impactful.