
Automated Search For
“Good” Coverage Criteria

Phil McMinn
Mark Harman 

Gordon Fraser 
Gregory Kapfhammer

University of Sheffield
University College London
University of Sheffield  
Allegheny College

Position Paper

Coverage Criteria:  
The “OK”, The Bad  

and The Ugly

The “OK”
• Divide up system into things to test

• Useful to generate tests on if no
functional model exists

• Indicates what parts of the system
are and aren’t tested

The Bad

• Not based on anything to do with
faults, not even:

• Fault histories

• Fault taxonomies

• Common faults

The Ugly

• Studies disagree as to which
criteria are best

• Coverage or test suite size?

The Key Question  
of this Talk

Can we evolve “good”
coverage criteria?
Coverage criteria that are better
correlated with fault revelation?

Why This Might Work

• The best criterion might actually be a  
mix and match of aspects existing criteria

• For example “cover the top n longest d-u paths,
and then any remaining uncovered branches”

• Or…

Maybe this is One Big
Empirical Study using SBSE

… which aspects of which criteria and how much

less

less

less

more

more

more

branches

complex d-u chains

basis paths

What About Including Aspects Not
Incorporated into Existing Criteria

Non functional aspects
• For example timing behaviour, memory usage

• “Cover all branches using as much memory
as possible”

Fault histories
• “Maximize basis path coverage in classes with

the longest fault histories”

“Isn’t This Just  
Mutation Testing?”

Our criteria are more like generalised strategies

• Potentially more insightful to the nature of faults

• Cheaper to apply  
(coverage is generally easier to obtain than a 100% mutation
score)

Perhaps different strategies will work best for different
types of software, or different teams of software
developers

How This Might Work

Fault Database
Need examples of real faults

• Defects4J

• CoREBench

• … or, just use mutation

Fitness Function

“Goodness” is correlation between greater
coverage and greater fault revelation

• Needs test suites to establish

Generation of Test Suites

At least two possibilities

• Generate up front universe of test suites

• Generate specific test suites with the aim of
achieving specific coverage levels of the criteria
under evaluation (drawback: expensive)

Search Representation
GP Trees

OR

up to 50%
branch coverage memory usage

maximise

over 75%
basis path coverage

AND

Handling Bloat

GP techniques classically involve “bloat”

• Consequence: generated criteria may not be very
succinct

• Various techniques could be applied to simplify the
criteria, e.g. delta debugging

Overfitting
The evolved criteria may not generalise beyond
the systems studied and the faults seeded

• May not be a disadvantage:

• insights into classes of system

• faults made by particular developers

• … apply traditional techniques from machines learning
to combat overfitting.

Summary

Our Position: 
 SBSE can be used to automatically evolve  
 coverage criteria that are well correlated  
 with fault revelation  
 
Over to the audience:  
 Is it feasible that we could do this?

