
Reducing the Cost of Regression
Testing by Identifying

Irreplaceable Test Cases
Chu-Ti Lin, Dept. of Computer Sci. and Info. Eng., National Chiayi University, Taiwan
Kai-Wei Tang, Cloud System Software Institute, Institute for Information Industry, Taiwan
Cheng-Ding Chen, Dept. of Computer Sci. and Info. Eng., National Chiayi University, Taiwan
Gregory M. Kapfhammer, Dept. of Computer Science, Allegheny College, Meadville, PA

August 28, 2012
The Sixth International Conference on Genetic and Evolutionary Computing

Outline
• Introduction
• Related work
• Reducing the execution cost of a test suite
• Experimental analysis
• Conclusion

2

Introduction: Software Testing
• Software testing

• To detect and isolate defects while implementing
software systems.

• Test case
• A set of input data and expected output results which

are designed to exercise a specific software function
or test requirement.

3

Test requirement
Test case r1 r2 r3

t1 ● ●

t2 ●

t3 ●

t4 ●

Introduction: Test Suite
• It is difficult for a single test case to satisfy all
of the specified test requirements.

• A considerable number of test cases are usually
generated and collected in a test suite.

4

Test requirement
Test case r1 … r3000

t1 ●

t2 ●

：

t? ●

Introduction: Regression Testing
• In an attempt to ensure both the correctness of
new code and its proper integration into the
system, all test case in test suite T should be
executed.

5

Introduction: Test Suite Reduction
• To remove the redundant test cases while still
ensuring that all test requirements are satisfied.

6

Test r1 r2 r3

t1 ● ●

t2 ●

t3 ●

t4 ●

Greedy Algorithm
• A commonly-used method for finding the near-
optimal solution to the test suite reduction
problem.

• It repeatedly removes the test t that has the
maximum Coverage(t) from T to RS until all of
the requirements are covered.

• Coverage(t) is the number of uncovered test
requirements satisfied by test case t.

7

Greedy-based Algorithms
• Many test suite reduction algorithms are
developed based on Coverage metric.
• HGS algorithm proposed by Harrold et al. [4]
• GE and GRE proposed by Chen and Lau [10]

8

Reduction Using Greedy Algorithm

9

Test Cost r1 r2 r3 Coverage(t)

t1 6 ● ● 2
t2 2 ● 1
t3 1 ● 1
t4 3 ● 1

Greedy: RS= {t1, t2}, total cost = 8

Optimal solusion: RS={t2, t3, t4}, total cost = 6

Reduction with Ratio
• Ma et al. [11] and Smith and Kapfhammer [12]
evaluated the test cases using

where Cost(t) represents the execution cost of
the test case t.

• It aims to reduce the cost of running a test suite.

10

)(

)()(
tCost

tCoveragetRatio 

Reduction with Ratio

11

Test Cost r1 r2 r3 Ratio(t)

t1 6 ● ● 0.67
t2 2 ● 0.5
t3 1 ● 1
t4 3 ● 0.33

Reduction with Ratio

12

Test Cost r1 r2 r3 Ratio(t)

t1 6 ● - 0.17
t2 2 - ● 0.5
t3 1 - -
t4 3 ● - 0.33

Reduction with Ratio

13

Test Cost r1 r2 r3 Ratio(t)

t1 6 ● - - 0.17
t2 2 - - -
t3 1 - - -
t4 3 ● - - 0.33

Reduction with Ratio

14

Test Cost r1 r2 r3 Ratio(t)

t1 6 - - - 0
t2 2 - - - -
t3 1 - - - -
t4 3 - - - -

GreedyWithRatio : RS={t2, t3, t4}, total cost = 6

ReduceWithRatio Problems

15

Test Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 • • • 0.75

t2 7 • • • • 0.57

t3 3 • • 0.67

t4 4 • • 0.50

Problem of ReduceWithRatio

16

Test Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 - - - -

t2 7 - - - • • 0.29

t3 3 - - - • 0.33

t4 4 - - - • 0.25

Problem of ReduceWithRatio

17

Test Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 - - - - -

t2 7 - - - • • - 0.29

t3 3 - - - - -

t4 4 - - - - 0

Problem of ReduceWithRatio

18

Test Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 - - - - - - -

t2 7 - - - - - - -

t3 3 - - - - - - -

t4 4 - - - - - - 0

GreedyWithRatio : RS={t1, t2, t3}, total cost = 14

Problem of ReduceWithRatio

19

GreedyWithRatio : RS={t1, t2, t3}, total cost = 14

Test Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 • • • 0.75

t2 7 • • • • 0.57

t3 3 • • 0.67

t4 4 • • 0.50

t1 is
replaceable

Optimal solution : RS={ t2, t3 }, total cost = 10

Reduction Using Irreplaceability
• Concept:

• Evaluating a test case by identifying if it is
replaceable.

• We posit that t has a higher replaceability with
respect to r in this case

• That is, t has a lower irreplaceability with respect to r.

20

Evaluating the Irreplaceability
• The irreplaceability of t with respect to the
requirement R={r1, r2, r3, ..., rm} can be defined as

where

21








i

i

i

i
rt

r

rt
rtonContributi

 satisfies if ,
satisfy that cases test ofnumber the

1
satisfy cannot if 0,

) ,(

)(

) ,(
)(1

tCost

rtonContributi
tbilityIrreplacea

m

i
i



Reduction with Irreplaceability

22

Test Cost r1 r2 r3 r4 r5 r6 Irreplaceability(t)

t1 4 • • • 0.33

t2 7 • • • • 0.40

t3 3 • • 0.33

t4 4 • • 0.21

Reduction with Irreplaceability

23

Test Cost r1 r2 r3 r4 r5 r6 Irreplaceability(t)

t1 4 • - - - - 0.13

t2 7 - - - - -

t3 3 • - - - - • 0.33

t4 4 - - - - • 0.13

Reduction with Irreplaceability

24

GreedyWithIrreplaceability: RS= { t2, t3 }, total cost = 10

Test Cost r1 r2 r3 r4 r5 r6 Irreplaceability(t)

t1 4 - - - - - - 0

t2 7 - - - - - - -

t3 3 - - - - - - -

t4 4 - - - - - - 0

Optimal solution: RS={ t2, t3 }, total cost = 10
GreedyWithRatio: RS={t1, t2, t3}, total cost = 14

Experimental Data Set

25

Program Test pool Test requirements
printtokens 4,130 140
printtokens2 4,115 138

replace 5,542 126
schedule 2,650 46

schedule2 2,710 72
tcas 1,608 16

totinfo 1,052 44

• The Siemens suite of programs from the SIR are
frequently chosen benchmarks for evaluating test
suite reduction methods [15].

Experimental Setup

26

Randomly pick n test cases
(1≤ n ≤ 0.5×loc) from the test
pool, and include them in T.

Can T satisfy
all test

requirements?

Include the test case t in T.

Randomly choose one more
test case t.

Can t satisfy
any unsatisfied
requirements?

No

Return T.

No

Yes

Yes

Evaluating the Reduction Capability
• Criterion

where
Cost(T): the cost required to execute the original test
suite T;
Cost(RS): the cost associated with running the
representative set RS.

27

%100
)(

)()() ,SCR(



TCost

RSCostTCostRST

Experiment Result

28

Test Suite
Program

Original RSGreedy RSWithRatio RSWithIrreplaceability
Cost* Cost* SCR Cost* SCR Cost* SCR

Printtokens 914.67 117.32 87.17% 115.04 87.42% 81.73 91.06%
printtokens2 717.84 58.29 91.88% 56.19 92.17% 48.53 93.24%

Replace 1068.90 88.28 91.74% 81.06 92.42% 76.06 92.88%
Schedule 493.77 18.71 96.21% 16.35 96.69% 15.32 96.90%
schedule2 651.82 40.14 93.84% 28.60 95.61% 26.80 95.89%

Tcas 219.39 23.74 89.18% 21.53 90.19% 20.74 90.55%
Totinfo 690.97 52.15 92.45% 26.43 96.17% 26.14 96.22%

• Both ReduceWithIrreplaceability and ReduceWithRatio
exhibit excellent cost reduction capabilities.

• The SCR scores of ReduceWithRatio are not as good as
those of ReduceWithIrreplaceability.

* The cost is measured in millisecond(ms).

Summary of Contribution
• Key motivators

• Most existing test suite reduction algorithms
attempt to minimize the size of a regression test
suite.

• Reduction using Ratio metric does not always
perform in a satisfactory manner.

• Method
• Evaluating a test case by identifying if it is

replaceable.
• It repeatedly picks the test t that has the maximum

Irreplaceability (t).

29

Summary of Contribution
• Empirical studies reveals that

• Reduction using Irreplaceability is the best method
for decreasing the cost of test suite execution.

30

Future Work

31

