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Introduction: Software Testing
• Software testing 

• To detect and isolate defects while implementing 
software systems.

• Test case
• A set of input data and expected output results which 

are designed to exercise a specific software function 
or test requirement.
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Test requirement
Test case r1 r2 r3

t1 ● ●

t2 ●

t3 ●

t4 ●



Introduction: Test Suite
• It is difficult for a single test case to satisfy all 
of the specified test requirements. 

• A considerable number of test cases are usually 
generated and collected in a test suite.
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Test requirement
Test case r1 … r3000

t1 ●

t2 ●

：

t? ●



Introduction: Regression Testing
• In an attempt to ensure both the correctness of 
new code and its proper integration into the 
system, all test case in test suite T should be 
executed.
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Introduction: Test Suite Reduction
• To remove the redundant test cases while still 
ensuring that all test requirements are satisfied. 
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Test r1 r2 r3

t1 ● ●

t2 ●

t3 ●

t4 ●



Greedy Algorithm
• A commonly-used method for finding the near-
optimal solution to the test suite reduction 
problem.

• It repeatedly removes the test t that has the 
maximum Coverage(t) from T to RS until all of 
the requirements are covered. 

• Coverage(t) is the number of uncovered test 
requirements satisfied by test case t.
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Greedy-based Algorithms
• Many test suite reduction algorithms are 
developed based on Coverage metric.
• HGS algorithm proposed by Harrold et al. [4]
• GE and GRE proposed by Chen and Lau [10]
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Reduction Using Greedy Algorithm
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Test Cost r1 r2 r3 Coverage(t)

t1 6 ● ● 2
t2 2 ● 1
t3 1 ● 1
t4 3 ● 1

Greedy: RS= {t1, t2},   total cost = 8

Optimal solusion: RS={t2, t3, t4},   total cost = 6



Reduction with Ratio
• Ma et al. [11] and Smith and Kapfhammer [12] 
evaluated the test cases using

where Cost(t) represents the execution cost of 
the test case t.

• It aims to reduce the cost of running a test suite.
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Reduction with Ratio
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Test Cost r1 r2 r3 Ratio(t)

t1 6 ● ● 0.67
t2 2 ● 0.5
t3 1 ● 1
t4 3 ● 0.33



Reduction with Ratio
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Test Cost r1 r2 r3 Ratio(t)

t1 6 ● - 0.17
t2 2 - ● 0.5
t3 1 - -
t4 3 ● - 0.33



Reduction with Ratio
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Test Cost r1 r2 r3 Ratio(t)

t1 6 ● - - 0.17
t2 2 - - -
t3 1 - - -
t4 3 ● - - 0.33



Reduction with Ratio

14

Test Cost r1 r2 r3 Ratio(t)

t1 6 - - - 0
t2 2 - - - -
t3 1 - - - -
t4 3 - - - -

GreedyWithRatio : RS={t2, t3, t4},   total cost = 6



ReduceWithRatio Problems
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Test Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 • • • 0.75 

t2 7 • • • • 0.57 

t3 3 • • 0.67 

t4 4 • • 0.50 



Problem of ReduceWithRatio

16

Test Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 - - - -

t2 7 - - - • • 0.29 

t3 3 - - - • 0.33 

t4 4 - - - • 0.25 



Problem of ReduceWithRatio
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Test Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 - - - - -

t2 7 - - - • • - 0.29 

t3 3 - - - - -

t4 4 - - - - 0 



Problem of ReduceWithRatio
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Test Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 - - - - - - -

t2 7 - - - - - - -

t3 3 - - - - - - -

t4 4 - - - - - - 0 

GreedyWithRatio : RS={t1, t2, t3},   total cost = 14



Problem of ReduceWithRatio
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GreedyWithRatio : RS={t1, t2, t3},   total cost = 14

Test Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 • • • 0.75 

t2 7 • • • • 0.57 

t3 3 • • 0.67 

t4 4 • • 0.50 

t1 is 
replaceable

Optimal solution : RS={ t2, t3 },   total cost = 10



Reduction Using Irreplaceability
• Concept: 

• Evaluating a test case by identifying if it is 
replaceable.

• We posit that t has a higher replaceability with 
respect to r in this case

• That is, t has a lower irreplaceability with respect to r. 
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Evaluating the Irreplaceability
• The irreplaceability of t with respect to the 
requirement R={r1, r2, r3, ..., rm} can be defined as  

where 
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Reduction with Irreplaceability
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Test Cost r1 r2 r3 r4 r5 r6 Irreplaceability(t)

t1 4 • • • 0.33

t2 7 • • • • 0.40

t3 3 • • 0.33

t4 4 • • 0.21



Reduction with Irreplaceability
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Test Cost r1 r2 r3 r4 r5 r6 Irreplaceability(t)

t1 4 • - - - - 0.13

t2 7 - - - - -

t3 3 • - - - - • 0.33

t4 4 - - - - • 0.13



Reduction with Irreplaceability
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GreedyWithIrreplaceability: RS= { t2, t3 },   total cost = 10

Test Cost r1 r2 r3 r4 r5 r6 Irreplaceability(t)

t1 4 - - - - - - 0

t2 7 - - - - - - -

t3 3 - - - - - - -

t4 4 - - - - - - 0

Optimal solution: RS={ t2, t3 },   total cost = 10
GreedyWithRatio: RS={t1, t2, t3},   total cost = 14



Experimental Data Set
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Program Test pool Test requirements
printtokens 4,130 140
printtokens2 4,115 138

replace 5,542 126
schedule 2,650 46

schedule2 2,710 72
tcas 1,608 16

totinfo 1,052 44

• The Siemens suite of programs from the SIR are 
frequently chosen benchmarks for evaluating test 
suite reduction methods [15].  



Experimental Setup
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Randomly pick n test cases 
(1≤ n ≤ 0.5×loc) from the test 
pool, and include them in T.

Can T satisfy 
all test 

requirements?

Include the test case t in T.

Randomly choose one more 
test case t. 

Can t satisfy 
any unsatisfied 
requirements?

No

Return T.

No

Yes

Yes



Evaluating the Reduction Capability
• Criterion

where
Cost(T): the cost required to execute the original test 
suite T;
Cost(RS): the cost associated with running the 
representative set RS.
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Experiment Result
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Test Suite
Program

Original RSGreedy RSWithRatio RSWithIrreplaceability
Cost* Cost* SCR Cost* SCR Cost* SCR

Printtokens 914.67 117.32 87.17% 115.04 87.42% 81.73 91.06%
printtokens2 717.84 58.29 91.88% 56.19 92.17% 48.53 93.24%

Replace 1068.90 88.28 91.74% 81.06 92.42% 76.06 92.88%
Schedule 493.77 18.71 96.21% 16.35 96.69% 15.32 96.90%
schedule2 651.82 40.14 93.84% 28.60 95.61% 26.80 95.89%

Tcas 219.39 23.74 89.18% 21.53 90.19% 20.74 90.55%
Totinfo 690.97 52.15 92.45% 26.43 96.17% 26.14 96.22%

• Both ReduceWithIrreplaceability and ReduceWithRatio
exhibit excellent cost reduction capabilities.

• The SCR scores of ReduceWithRatio are not as good as 
those of ReduceWithIrreplaceability. 

* The cost is measured in millisecond(ms).



Summary of Contribution
• Key motivators

• Most existing test suite reduction algorithms 
attempt to minimize the size of a regression test 
suite. 

• Reduction using Ratio metric does not always 
perform in a satisfactory manner.

• Method
• Evaluating a test case by identifying if it is 

replaceable.
• It repeatedly picks the test t that has the maximum 

Irreplaceability (t). 

29



Summary of Contribution
• Empirical studies reveals that

• Reduction using Irreplaceability is the best method 
for decreasing the cost of test suite execution.
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Future Work
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