
TaDa it’s Magic!
Predicting the Performance of
Programs through Automated

Doubling Experiments

Gregory M. Kapfhammer, Lancaster Wu, Enpu You
CodepaLOUsa 2021

Huh, what is this about?
Key Questions

Can a tool automatically predict a program’s performance? Is it possible to
automatically estimate the worst-case time complexity of a program?

Intended Audience

An adventuresome technology enthusiast who wants to explore how a new
approach to performance evaluation can make their programs faster!

Let's learn how to predict a function's performance!

Why focus on Python programming?
Prevalence of Python

Python is consistently ranked as one of the top programming languages for
web development, data science, machine learning, and general
programming

Importance of Performance

Programmers who create, say, serverless functions with AWS Lambda need
to carefully monitor and improve the performance of these functions

Challenging about performance evaluation in Python?

Analytical
Evaluation

Algorithm
Constructs
Growth

Experimental
Evaluation

Program
Benchmark
Study

What are the trade-offs of these two approaches?

Analytical
Provides a clear means by which to
compare programs
Does not depend on the hardware
or software configuration
Yet, often requires precise
mathematical reasoning skills

Experimental
Must generate inputs to the
program subject to experiments
Must repeatedly run a program and
collect performance data
Only generally accessible to
programmers if good tools exist

Analysis characterizes an algorithm as, say, O(n)

Experiments run program to collect performance
data

How to analytically
evaluate a program's
performance?

Commonly used growth functions

Study program's code constructs

"Fast" Order of Growth Functions

"Slow" Order of Growth Functions

Relationship between
growth function and
program's performance?

Slow growth functions → fast programs

Fast growth functions → slow programs

Analyzing the add_digits Function
def add_digits(digits: str) -> int:

 value = 0

 for digit in digits:

 value += int(digit)

 return value

sum_digits = add_digits("123")

print(sum_digits)

What is worst-case time complexity of
add_digits ?

Analyzing the factorial Function
def factorial(x: int) -> int:

 if x == 1:

 return 1

 else:

 return x*factorial(x-1)

factorial_value = factorial(3)

print(factorial_value)

What is worst-case time complexity of
factorial ?

Analyzing the is_subset Function
def is_subset(one: List, two: List) -> bool:

 for element_one in one:

 matched = False

 for element_two in two:

 if element_one == element_two:

 matched = True

 break

 if not matched:

 return False

 return True

What is worst-case time complexity of

Run an experiment to get
likely worst-case time
complexity of program?

Bespoke auto-doubling experiment tool

TaDa auto-doubling for a Python function

Doubling Experiment: Linear
Double the size of the program’s input

14.98 seconds 31.45 seconds

Doubling ratio is approximately 2
Likely worst-case time complexity is O(n)

Doubling Experiment: Quadratic
Double the size of the program’s input

12.63 seconds 51.48 seconds

Doubling ratio is approximately 4
Likely worst-case time complexity is O(n^2)

Doubling Experiment: Cubic
Double the size of the program’s input

11.23 seconds 89.72 seconds

Doubling ratio is approximately 8
Likely worst-case time complexity is O(n^3)

What are challenges with
running automated
doubling experiments?

Automatically generate inputs to the function

Determine when to stop running experiments

Establish a statistical confidence in the prediction

TaDa Runs a Doubling Experiment

Input is a Python function
and configuration options
Output is a data table and
a performance prediction

See Tada-Project/tada for
details

Analyzing the insertion_sort Function
def insertion_sort(lst: list[int]) -> list[int]:

 for i in range(1, len(lst)):

 value = lst[i]

 pos = i

 while pos > 0 and value < lst[pos - 1]:

 lst[pos] = lst[pos - 1]

 pos -= 1

 lst[pos] = value

 return lst

Can TaDa predict worst-case of
insertion_sort ?

Analyzing the bubble_sort Function
def bubble_sort(lst: list[int]) -> list[int]:

 for num in range(len(lst) - 1, 0, -1):

 for i in range(num):

 if lst[i] > lst[i + 1]:

 temp = lst[i]

 lst[i] = lst[i + 1]

 lst[i + 1] = temp

 return lst

Can TaDa predict worst-case of
bubble_sort ?

How to automatically
generate function inputs
during experiments?

Hypothesis: Property-based testing tool

JSON Schema: Describe format of input

Hypothesis and JSON Schema for Data
[{

 "type": "array",

 "items": {

 "type": "integer"

 },

 "uniqueItems": true,

 "maxItems": 0,

 "minItems": 0

}]

Describe structure to support automated data
generation

TaDa’s Automated Analysis of Insertion Sort
+---+

| insertion_sort: O(n) linear or O(nlogn) linearithmic |

+------+------------------------+------------------------+--------------------+

| Size | Mean | Median | Ratio |

+------+------------------------+------------------------+--------------------+

| 25 | 3.644364811706543e-06 | 3.498709533691405e-06 | 0 |

| 50 | 6.535123836263021e-06 | 6.483351989746092e-06 | 1.793213405878218 |

| 100 | 1.2902192108154296e-05 | 1.2540842590332028e-05 | 1.9742842571032526 |

| 200 | 2.5023900944010416e-05 | 2.4608139038085928e-05 | 1.9395077002608803 |

| 400 | 5.526396857910156e-05 | 5.3515207031250005e-05 | 2.2084473840729952 |

| 800 | 0.00011801120257161459 | 0.00011251379296875 | 2.1354094829925283 |

+------+------------------------+------------------------+--------------------+

Interpreting TaDa’s output:
Ran multiple threads for multiple input sizes
Doubled the input size and recorded time
Used ratio to correctly predict worst-case

TaDa’s Comparison of Sorting Functions
+---+

| bubble_sort: O(n^2) quadratic |

+------+------------------------+------------------------+--------------------+

| Size | Mean | Median | Ratio |

+------+------------------------+------------------------+--------------------+

| 25 | 2.8776128824869792e-05 | 2.846207250976562e-05 | 0 |

| 50 | 0.00010703222574869792 | 0.00010308191601562499 | 3.7194796562140504 |

| 100 | 0.0004109644687825521 | 0.00039437410449218743 | 3.8396330255474633 |

| 200 | 0.0015730586140625 | 0.0015326660937500002 | 3.8277241308051635 |

| 400 | 0.00632440301875 | 0.006229572156249999 | 4.020449690947576 |

| 800 | 0.029292134683333335 | 0.028519337000000006 | 4.631604690038055 |

+------+------------------------+------------------------+--------------------+

At the greatest common size 800:

Mean: insertion_sort is 99.60% faster than bubble_sort

Median: insertion_sort is 99.61% faster than bubble_sort

Correct worst-case predictions and empirical insights

Performance Evaluation
TaDa tool bridges the experimental and analytical!

Analytical study of performance is challenging

Experimental study requires data and tooling

TaDa runs doubling experiments and predicts

Tool Development with Python
TaDa makes it easy to run doubling experiments!

See Tada-Project/tada for
details

https://www.gregorykapfhammer.com/

gkapfham/codepalousa2021-presentation-tada

