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The magic of myth and legend has come true in
our time. One types the correct incantation on

a keyboard, and a display screen comes to life,
showing things that never were nor could be.

N

[Frederick P. Brooks, Jr.]

[In reference to software!]
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| believe the hard part of building software to be

the specification, design, and testing of this con-
ceptual construct, not the labor of representing
it and testing the fidelity of the representation.

N

[Frederick P. Brooks, Jr.]

[What happens if the “incantation” is incorrect?]
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| believe the hard part of building software to be

the specification, design, and testing of this con-
ceptual construct, not the labor of representing
it and testing the fidelity of the representation.

N

[Frederick P. Brooks, Jr.]

[How do we efficiently and effectively test software?]
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| The test case fails and a defect is found! |
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® Determine whether current expression or statement is
affected by mutation

©® Apply mutation operators
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Mutation Analysis with MAJOR
Collecting and Using Mutation Coverage

public int eval (int x) {
int a=3, b=l, yi Mutants that are not ex-
ecuted cannot be killed

y = (M_NO==3)? a / x:
(M_NO==2)7? a + x:
(M_NO==1)? a - x:
E==;
y = b;
return y;
}
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Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage

public int eval (int x) {

. _ — . ( )
int a=3, b=1, y; Mutants that are not ex-
y = (MNO==3)? a / x: ____ecuted cannot be killed |
(M_NO==2)7? a + x:
(M_NO==1)? a - x: )

Determine covered
mutants with addi-

COVERED (1, 3))? . ) .
a o B ___tional instrumentation |

(M_NO==0 &&

y += Db;

return y;
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Mutation Analysis with MAJOR
Collecting and Using Mutation Coverage

public int eval (int x) {

: — — . 4 )
int a=3, b=l, yi Mutants that are not ex-
y = (MNO==3)? a / x: | ecuted cannot be killed |
(M_NO==2)7? a + x:
(M_NO==1)? a - x: - : N
(M_NO==0 s& Determlne.covere.d
e TIRETE _muta_nts with addll—
P | tional instrumentation
% += b; 4 . .
Only execute and investi-
return y; gate the covered mutants
} -
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Mutation Analysis with MAJOR
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list
BIN(+)<"org"> -> {-,*};
BIN(x)<"org"> -> {/,%};

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;

}

// Enable built-in operator AOR
AOR<"org">;

// Enable operator myOp
myOp<"java.lang.System@println">;
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};

// Define replacement list ]
BIN (+)<"org"> —> {—,+}; ]

Specify mutation

(BIN ) <rora™> = (7,51, | operators in detalil
// Define own operator
myOp {

BIN (&&) —-> 1istCOR;

BIN(||) —-> 1istCOR;

COR;

LVR;
}
// Enable built-in operator AOR
AOR<"org">;
// Enable operator myOp
myOp<"java.lang.System@println">;
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list

Specify mutation
operators in detalil

BIN (+)<"org"> -> {—, x};
BIN (%) <"org"> —> {/,%};

J

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;

Define own mutation )
operator groups

}
// Enable built-in operator AOR
AOR<"org">;

// Enable operator myOp
myOp<"java.lang.System@println">;
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list

Specify mutation

BIN (+) <"org"> —-> {-,+}; - .
operators in detalil

BIN (*)<"org"> —> {/,%};

J

// Define own operator

myOp {
— 1 . 4 N . N\
) o8 Pty Define own mutation
on, operator groups
LVR;

}
// Enable built-in operator AOR
AOR<"org">;

[ Enable operators for )
a specific package,
class, or method

l // Enable operator myOp

l
l
|
|
|
|
BIN(||) —> liStCOR; |
|
|
l
l
l
l

[ myOp<"java.lang.System@println">;
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Original
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© Embed and compile all mutants
® Run test suite on instrumented program
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Optimized Mutation Analysis Process

Original
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4

Compile Instrumented Execute Runtime of| _ |Prioritize | .| Reordered
mutants program test suite test cases test cases

Mutation
coverage

© Embed and compile all mutants
® Run test suite on instrumented program
@® Sort tests according to their runtime
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Mutation Analysis with MAJOR
Optimized Mutation Analysis Process
Original
test suite
Y y
Compile Instrumented Execute Runtime of| _ |Prioritize | Reordered Mutation
mutants program test suite test cases test cases test suite analysis

A A

Mutation
coverage

© Embed and compile all mutants

® Run test suite on instrumented program

@® Sort tests according to their runtime

@ Perform mutation analysis with reordered test suite
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Overhead for generating and compiling mutants is negligible
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Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original  instrumented
WCS  wCs+Cov
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90
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Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original  instrumented
WCS  WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
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Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original  instrumented
WCS  WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
e | Larger for CPU-bound applications
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Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original  instrumented
WCS  WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
Larger for CPU-bound applications ‘

Small for I/O-bound applications ‘
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Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original  instrumented
WCS  WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
Larger for CPU-bound applications ‘

Small for I/O-bound applications ‘

Even for large projects, applicable on commodity workstations
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e Mutation analysis is not feasible without coverage information
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e Mutation analysis is not feasible without coverage information

e Reordering the test suite significantly speeds up the process,

especially if runtimes of tests differ by orders of magnitude
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[Test improvement is only effective if mutation analysis is efficient!]

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects



Introduction Mutation Analysis

Empirical Evaluation Conclusion
[e]e] 000000 [e]e] oe
[o]e] 00000000 o] 000

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects



Introduction Mutation Analysis Empirical Evaluation
00 000000 0o

oo 00000000 o

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac-
ceptable time and space over-
heads and scales to large,
real-world programs

Kapfhammer

Conclusion

oe
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects



Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} 000000 (ele] oe
(e} 00000000 [e] [e]e]e}

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac- Usability: MAJOR’s inte-
ceptable time and space over- gration into the Java SE
heads and scales to large, compiler makes it a no-
real-world programs hassle, drop-in tool

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects



Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} 000000 (ele] oe
(e} 00000000 [e] [e]e]e}

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac- Usability: MAJOR’s inte-
ceptable time and space over- gration into the Java SE
heads and scales to large, compiler makes it a no-
real-world programs hassle, drop-in tool

[We will release MAJOR as free and open source software]
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Key Concepts and Features:

e Compiler-integrated solution

¢ Furnishes its own domain specific language

¢ Conditional mutation with the abstract syntax tree

¢ Collects and leverages mutation coverage information
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Conclusion

Conclusion
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Key Concepts and Features:

Compiler-integrated solution

Conditional mutation with the abstract syntax tree
Furnishes its own domain specific language

Collects and leverages mutation coverage information

Characteristics of MAJOR:

¢ Fast and scalable technique
¢ Configurable and extensible mutation tool
e Enables an optimized workflow for mutation analysis
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Conclusions and Future Work

Recently Published Papers

e René Just, Gregory M. Kapfhammer, and Franz
Schweiggert. Using conditional mutation to increase the
efficiency of mutation analysis. In Proceedings of the 6th
International Workshop on the Automation of Software Test,
Honolulu, Hawaii, May 2011.

e René Just, Franz Schweiggert, and Gregory M.
Kapfhammer. MAJOR: An efficient and extensible tool for
mutation analysis in a Java compiler. In Proceedings of the
26th IEEE/ACM International Conference on Automated
Software Engineering (Tool Paper), Lawrence, Kansas,
November 2011.
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