Efficient and Effective Mutation Testing:
Supporting the Implementation of Quality
Software by Purposefully Inserting Defects

Gregory M. Kapfhammerf

Department of Computer Science

Allegheny College
http://www.cs.allegheny.edu/~gkapfham/

University of Delhi — May 2, 2012

T Joint with René Just and Franz Schweiggert (University of Ulm) and Jonathan Miller Kauffman (Allegheny College)

) ALLEGHENY COLLEGE

http://www.cs.allegheny.edu/~gkapfham/

Introduction

0
00

Important Points

Presenter Introduction: Gregory M. Kapfhammer

Kapfhammer

Mutation Analysis Empirical Evaluation
000000 00
00000000 o

@ poster preliminary measurement

] >\smwes evaluate towardsframeworks prioritizing

H prioritized comprehensive primitives
wansparenty & covering commercialofftheshelf memery
supported @)

studying

]
approach
o O Ehmn~COmponents
wrappers £ (O devices __information

exeumn@ mutationresource £
syminets heaps = Q framewyork
commuricaiion, O using

rioritizations

dynamlc
atal aseawa\e
‘condition:

Sidiona & methods java etedidng cremng o wpleS
areedy i O (D) wedata H adequacy EMPI irical % distgbuted

cots|

Ffﬂ::x';‘/cove rage pp|lC&t|OnS paths

operators 105 initial automatically gdatabase
compressing 2
neti te: regressmnk
geneticsulIte: e &
forward I g party g
ey | A suites”
i efficient chapter™, © campare
ﬁ:srt?gih%ré analysis effectlveness iy
DRSS cost regluiction
examination 2ic companson
dependatle SEc | Jlmeaware
environment free S © 35 = monitoring
ami S~ § @ javaspacebased
Gaiting rl O r I t I Z atl O n O = £ detecion
incorporating O)g Cimplementation
%<
problematic @ execution © £.2 invariant
wswewred § UNAerstandin Moo §'S techmiques
relgtional emoe:
S TS

c
databasecentric. MUIPIOLS generation ~ Dtransmission
duringsearchbased _INt@ractive intranode ~ searchbased

reports experimental handbook J2VaSPace

Conclusion

00
[e]o]e)

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

oe 000000 0o [ele}
oo 00000000 o 000
Important Points

Inspiration and Motivation

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
oe 000000 (ele]
(e} 00000000 [e]

Important Points

Inspiration and Motivation

The magic of myth and legend has come true in
our time. One types the correct incantation on

a keyboard, and a display screen comes to life,
showing things that never were nor could be.

N

[Frederick P. Brooks, Jr.]

[In reference to software!]

Kapfhammer

Conclusion
fole)
000

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

oe 000000 0o [ele}
oo 00000000 o 000
Important Points

Inspiration and Motivation

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
oe 000000 00 00
00 00000000 o 000

Important Points

Inspiration and Motivation

| believe the hard part of building software to be

the specification, design, and testing of this con-
ceptual construct, not the labor of representing
it and testing the fidelity of the representation.

N

[Frederick P. Brooks, Jr.]

[What happens if the “incantation” is incorrect?]

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
oe 000000 00 00
00 00000000 o 000

Important Points

Inspiration and Motivation

| believe the hard part of building software to be

the specification, design, and testing of this con-
ceptual construct, not the labor of representing
it and testing the fidelity of the representation.

N

[Frederick P. Brooks, Jr.]

[How do we efficiently and effectively test software?]

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 [e]e] [e]e]
e0 00000000 o] 000

Software Testing

What is a Test Case?

Method
Under Test

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 [e]e] [e]e]
e0 00000000 o] 000

Software Testing

What is a Test Case?

Test
Set Up

Method
Under Test

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
e0 00000000 o]

Software Testing

What is a Test Case?

Test
Set Up

Under Test

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
00 000000 00
®0 00000000 o

Software Testing

What is a Test Case?

Test
Set Up

Under Test

Test
Clean Up

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
00 000000 00
®0 00000000 o

Software Testing

What is a Test Case?

Test
Set Up

Crood—{ g oo
Under Test Oracle

Test
Clean Up

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 000000 (ele] (ele}
e0 00000000 [e] [e]e]e}

Software Testing

What is a Test Case?
Test
Set Up
Method Test
Under Test Oracle

Test
Clean Up

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 000000 (ele] (ele}
e0 00000000 [e] [e]e]e}

Software Testing

What is a Test Case?
Test
Set Up

@ Method Test
Under Test Oracle

[Test] Test

Clean Up Verdict

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 000000 (ele] (ele}
e0 00000000 [e] [e]e]e}

Software Testing

What is a Test Case?
Test
Set Up

@ Method @ Test
Under Test Oracle

[Test] Test

Clean Up Verdict

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 000000 (ele] (ele}
e0 00000000 [e] [e]e]e}

Software Testing

What is a Test Case?
Test
Set Up

@ Method Test
Under Test Oracle

[Test] Test

Clean Up Verdict

The test case passes and the code is correct!

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 000000 (ele] (ele}
e0 00000000 [e] [e]e]e}

Software Testing

What is a Test Case?
Test
Set Up

@ Method @ Test
Under Test Oracle

[Test] Test

Clean Up Verdict

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 000000 (ele] (ele}
e0 00000000 [e] [e]e]e}

Software Testing

What is a Test Case?
Test
Set Up

@ Method Test
Under Test Oracle

[Test] Test

Clean Up Verdict

| The test case fails and a defect is found! |

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 [e]e] [e]e]
oe 00000000 o] 000

Software Testing

What is a Test Suite?

() (=) (&) (&) () () () () (%) (o)

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 [e]e] [e]e]
oe 00000000 o] 000

Software Testing

What is a Test Suite?

Test Suite T = (T4, Ta, ..., To, T1o)

() (=) (&) (&) () () () () (%) (o)

Kapfhammer Allegheny College
Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
oe 00000000 o 000

Software Testing

What is a Test Suite?

Test Suite T = (T4, Ta, ..., To, T1o)

() (=) (&) (&) () () () () (%) (o)

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
oe 00000000 o 000

Software Testing

What is a Test Suite?

Test Suite T = (T4, Ta, ..., To, T1o)

() (=) (&) (&) () () () () (%) (o)

(AJ(A](A] (A

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
oe 00000000 o 000

Software Testing

What is a Test Suite?

Test Suite T = (T4, Ta, ..., To, T1o)

() (=) (&) (&) () () () () (%) (o)

(AJ (A (R) (A (As) (Re)

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 000000 00 fole}
oooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (%) (o)

(AJ(A](A)(A)(A) (R) (A1) ()

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 000000 00 fole}
oooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (%) (o)

(AJ (] (~)(A) (R:) (R) (B) (B) (B) (B

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 000000 00 fole}
oooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (%) (o)

(AJ (] () (A (R:) (R) (B) (B) (B) (B) (B0 (&)

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 000000 00 fole}
oooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (%) (o)

(AJ (] () (A (R:) (R) (B) (B) (B) (B) (B0 (&)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 000000 00 fole}
oooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

T (=) () (7s]) (7o) (7] (Te) (Te) (7o)

F) (%) (A] (8] (&)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College
Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
oe 00000000 o 000

Software Testing

What is a Test Suite?

Test Suite T = (T4, Ta, ..., To, T1o)

T T T3 T4 Ts Te [T7] [TS] [ng [Tm]

(AJ (] (R) (A (R:) (7) (B) (B) () (B (8D (B2

| Requirements R = {R;, ..., Rs}, Features F = {Fi,..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College
Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
oe 00000000 o 000

Software Testing

What is a Test Suite?

Test Suite T = (T4, Ta, ..., To, T1o)

T T T3 T4 Ts Te [T7] [TS] [ng [Tm]

(AJ (] () (A (R:) (R) (A] () (B) (B) (BD) (&

| Requirements R = {R;, ..., Rs}, Features F = {Fi,..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College
Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 000000 00 fole}
oooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (%) (o)

(AJ (] () (A (R:) (R) (B) (B) (B) (B) (B0 (&)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 000000 00
oooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (%) (o)

| How Good is Test Suite 77|

(AJ (] () (A (R:) (R) (B) (B) (B) (B) (B0 (&)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 000000 00
oooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (%) (o)

| How Good is Test Suite 77|

Coverage Analysis
(A (7)) (A] (R (7] (R) (A1) (2] (B (Fe) (B0 (B2)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 000000 00
oooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (%) (o)

| How Good is Test Suite 77|

Coverage Analysis Mutation Analysis
(A (7)) (A] (R (7] (R) (A1) (2] (B (Fe) (B0 (B2)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

if(a > 10)

if(a > 10)

Introduction Mutation Analysis
[e]e] 00000
[o]e] 00000000

Fundamental Concepts

Conceptual Faults

if(a > 10)

Implemented

Kapfhammer

Empirical Evaluation Conclusion
[e]e] [e]e]
o] 000

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis
[e]e] 00000
[o]e] 00000000

Fundamental Concepts

Conceptual Faults

if(a > 10)

Implemented

Kapfhammer

Empirical Evaluation Conclusion
[e]e] [e]e]
o] 000

(if(a >= 10))

[Potential Fault]

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis
[e]e] 00000
[o]e] 00000000

Fundamental Concepts

Conceptual Faults

if(a > 10)

(true] (false]

Kapfhammer

Empirical Evaluation Conclusion
[e]e] [e]e]
o] 000

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis
[e]e] 00000
[o]e] 00000000

Fundamental Concepts

Conceptual Faults

if(a > 10)

(true] (false]

Kapfhammer

Empirical Evaluation Conclusion
[e]e] [e]e]
o] 000

(if(a >= 10))

(true) (false)

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Conceptual Faults

(G >=10)

(true] (false] (true) (false)

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Conceptual Faults

(G >=10)

(true] (false) (true) (false)

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Conceptual Faults

if(a > 10) (if(a >= 10))

(true] (false] (true) (false)

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Conceptual Faults

if(a > 10) (if(a >= 10))

(true] (false] (true] (false)

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Conceptual Faults

if(a > 10) (if(a >= 10))

(true] (false] (true) (false)

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Conceptual Faults

if(a > 10) (if(a >= 10))

(true] (false) (true] (false)

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©00000 00 fole}
00 00000000 o 000

Fundamental Concepts

Conceptual Faults

(&) 10

o)
[

(G >=10)

\

(true] (falsej (true] (false)

[Can the tests differentiate between implemented and potential fault?]

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©00000 00 fole}
00 00000000 o 000

Fundamental Concepts

Conceptual Faults

(G >=10)

(true] (false) (true] (false)

[If yes, then the tests are adequate!]

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©00000 00 fole}
00 00000000 o 000

Fundamental Concepts

Conceptual Faults

(&) 10

o)
[

(G >=10)

(true] (falsej (true] (false)

[If no, then the tests must be improved!]

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©00000 00 fole}
00 00000000 o 000

Fundamental Concepts

Conceptual Faults

(&) 10

if(a > 10) (if(a >= 10))
(true] (falsej (true] (false)

[Purposefully insert faults in order to implement quality software !]

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation
Operator Operator
Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®0000 00 fole}
00 00000000 o 000

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®0000 00 fole}
00 00000000 o 000

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®0000 00 fole}
00 00000000 o 000

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

C D

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} O®@0000 (ele] (ele}
(e} 00000000 [e] [e]e]e}

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

C D

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} O®@0000 (ele] (ele}
(e} 00000000 [e] [e]e]e}

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

C D

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®0000 00 fole}
00 00000000 o 000

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

C D

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®0000 00 fole}
00 00000000 o 000

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

C D

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

(- 1 1 (— [The test suite |
cannot kill the
—1 — —1 1 mutant — either
a test suite
1 1 —1 — weakness or
an equivalent
Em 1 [[T ____mutant!

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0e0000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Conclusion

(ele}
[e]e]e}

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

— — — — ([Repeat this
process for
all of the
test cases
and mutants
— calculate
mutation score
| when finished |

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00e000 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Contributions of this Presentation

Efficient
Mutation
Analysis

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00e000 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges

Mutation
Analysis

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00e000 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges

Mutation

Analysis

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00e000 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges

Mutation

Analysis

| Conditional Mutation |

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 008000 00 fole}
00 00000000 o 000

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges

Mutation

Analysis

| Conditional Mutation |

Syntax Tree
Transformation

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 008000 00 fole}
00 00000000 o 000

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges

Mutation

Analysis

| Conditional Mutation |

Syntax Tree
Transformation

Expressions
and Statements

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 008000 00 fole}
00 00000000 o 000

Fundamental Concepts

Contributions of this Presentation

Mutation
Analysis Solutions

Efficient

| Conditional Mutation |

Syntax Tree Compiler
Transformation Integrated

Expressions
and Statements

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 008000 00 fole}
00 00000000 o 000

Fundamental Concepts

Contributions of this Presentation

{ Comprehensive] 53‘::2:] Challenges
Empirical Stud .
> y Analysis

| Conditional Mutation |

Syntax Tree Compiler
Transformation Integrated

Expressions
and Statements

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 0o fole)
oo 00000000 o 000

Fundamental Concepts

Contributions of this Presentation

[Efficient Technique - Fully Integrated into the Java 6 SE Compiler]

Comprehensive Efficient Challenges
iri Mutation
Empirical Study

Analysis

| Conditional Mutation |

Syntax Tree Compiler
Transformation Integrated

Expressions
and Statements

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis
[e]e]
[o]e]

Empirical Evaluation
000800 [e]e]
00000000 o]

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {
int a=3, b=1, vy;

y =ax x;

y +=b;
return y;
}

public int max(int a, int D) {
int max = a;

if (b>a) {

max=b;

return max;

}

Kapfhammer

Conclusion
[e]e]
000

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000800 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {
int a=3, b=1, vy;

y = a * Xj
y += Db; Methodically
return y; inject small

} syntactical

public int max(int a, int D) { faults into

int max = a;
the program
if (b>a) { | under test
max=b;

return max;

}

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000800 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {
int a=3, b=1, vy;

y = a * x;

y +=b;
return y;
}

public int max(int a, int D) {
int max = a;

if (b>a) {

max=b;

return max;
}

Kapfhammer

Conclusion
[e]e]
000

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000800 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {
int a=3, b=1, vy;

Yy = a - X;
y = ax x; - ey = a t+ x;
Y = b ey = a / x;
return y;
}
public int max(int a, int D) {
int max = a; 0if(b<a)
if (b>a) { _— e if(b != a)
max=b; e if (b == a)

return max;

}

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000800 [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {
int a=3, b=1, vy;

y =a x x;

y +=b;
return y;

}

public int max(int a, int D) {
int max = a;

if (b>a) {

max=b;

return max;

}

Kapfhammer

Unbiased
and powerful
method for
assessing
oracles and
input values

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {

int a=3, b=1, vy;
y = a * x;
y +=b;

return y;

}

public int max(int a, int D) {
int max = a;

if (b>a) {

max=b;

}

return max;

}

Kapfhammer

Unbiased
and powerful
method for
assessing
oracles and
input values

(Useful method)
for fault seeding
during the
empirical study
of testing
techniques

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0000e0 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0000e0 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Mutation Analysis Challenges

l':
Mutation ||| [Mutant
Operators |{ | Generation

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 0000e0 [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Mutation Analysis Challenges

Program

l':
Mutation ||| [Mutant
Operators |{ | Generation

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Mutation Analysis Challenges

Program

e ——

Mutation ||| [Mutant]_,ll

Operators |{ | Generation

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SubStan’[lal Num'
ber of Mutants

e ——

Mutation ||| [Mutant]_,ll

Operators |{ | Generation

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SubStan’[lal Num'
ber of Mutants

e ——

Mutation ||| (~ Mutant]_,M_utantsﬂ

Operators |{ | Generation

High Time Over-
head for Generation

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SUbStan’[Ial Num'
ber of Mutants

e ——

Mutation ||| [Mutant @
Operators |{ | Generation

Mutation
Analysis

High Time Over-
head for Generation

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SUbStan’[Ial Num'
ber of Mutants

e ——

Mutation ||| [Mutant Iﬁ
Operators |{ | Generation .
T| Mutation
S Analysis

High Time Over-
head for Generation

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 0o fole)
oo 00000000 o 000

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SUbStan’[Ial Num'
ber of Mutants

l':
Mutation ||| [Mutant Iﬁ
Operators |{ | Generation .

————] Mutation

s P Jen

High Time Over-
head for Generation

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 0o fole)
oo 00000000 o 000

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SUbStan’[Ial Num'
ber of Mutants

l':
Mutation ||| [Mutant Iﬁ
Operators |{ | Generation .

————] Mutation

s P Jen

High Time Over- Individually Executing the
head for Generation Mutants is Too Expensive

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} O000e0 (ele] (ele}
(e} 00000000 [e] [e]e]e}

Fundamental Concepts

Mutation Analysis Challenges

Prior Often Yields a
Solutions? Program Substantial Num-

ber of Mutants

l':
Mutation ||| [Mutant Iﬁ
Operators |{ | Generation .

————] Mutation

s P Jen

High Time Over- Individually Executing the
head for Generation Mutants is Too Expensive

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000e [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000e [e]e] [e]e]
[o]e] 00000000 o] 000

Fundamental Concepts

Prior Work in Mutation Analysis

Offutt and

Improving Mutation Analysis
proving Viutati yst Untch

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000e [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

/

Do Fewer |

Kapfhammer

Conclusion

(ele}
[e]e]e}

Offutt and
Untch

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000e [e]e]
[o]e] 00000000 o]

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

/

| Do Fewer |
Sampling | Selection |

Kapfhammer

Conclusion

(ele}
[e]e]e}

|

Offutt and
Untch

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

S

Do Fewer | | Do Smarter |

Untch

[Offutt and]

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

S

Do Fewer | | Do Smarter |

/

| Distributed | | Weak Mutation |

Untch

[Offutt and]

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

T

Do Fewer | | Do Smarter |

Untch

[Offutt and]

| Do Faster |

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

Untch

[Offutt and]

Do Fewer | | Do Smarter |
| Do Faster |
Compiler Bytecode Mutant
Integrated Transformation Schemata
Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

T

Do Fewer | | Do Smarter |

Untch

[Offutt and]

| Do Faster |

Jia and Higher Order
Harman Mutation

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
[o]e] 00000000 o]

Mutation Analysis with MAJOR

Conditional Mutation

| Conditional Mutation

Kapfhammer

Conclusion
[e]e]
000

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
[o]e] 00000000 o]

Mutation Analysis with MAJOR

Conditional Mutation

| Conditional Mutation

Encapsulates all
mutants within
the same block

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis
[e]e] 000000
[o]e] 00000000

Mutation Analysis with MAJOR

Conditional Mutation

Empirical Evaluation

(ele]
[e]

| Conditional Mutation |

—

Encapsulates all
mutants within
the same block

Kapfhammer

S

Conclusion

(ele}
[e]e]e}

Can be inte-
grated within
the compiler

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis

(e} 000000
(e} ®0000000

Mutation Analysis with MAJOR

Conditional Mutation

Empirical Evaluation Conclusion
0o fole)
o 000

| Conditional Mutation |

Encapsulates all
mutants within
the same block

Transforms the
abstract syntax
tree (AST)

Can be inte-
grated within
the compiler

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis
[e]e] 000000
[o]e] 00000000

Mutation Analysis with MAJOR

Conditional Mutation

Empirical Evaluation
0o
o

| Conditional Mutation |

Conclusion
fole)
000

Encapsulates all
mutants within
the same block

Transforms the
abstract syntax
tree (AST)

Can be inte-
grated within
the compiler

e

~

Stmt — Conditional Stmt
(if-then-else, switch)

Expr — Conditional Expr
(conditional operator ?:)

Kapfhammer

Allegheny College
Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

public int eval (int x) {
int a=3, b=1, vy;

y = axx;

y +=Db;
return y;

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
oo 0®000000 o

Mutation Analysis with MAJOR

Transforming the AST

public int eval (int x) {
int a=3, b=1l, vy;

y += Db
return y;

4

ASSIGN

IDENT BINARY

| |
y *

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e]

(e} 000000 (ele]
[e]e} 0@000000 o e]e]e}

Mutation Analysis with MAJOR

Transforming the AST

public int eval (int x) {
int a=3, b=1l, vy;

y += Db
return y;

4

ASSIGN

IDENT [BINARY

| |
y *

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis
[e]e] 000000
[o]e] 0e000000

Mutation Analysis with MAJOR

Transforming the AST

public int eval (int x) {
int a=3, b=1l, vy;

== | —

y += Db
return y;

4

Kapfhammer

ASSIGN
IDENT | BINARY
| | —
y *
S
a X

Empirical Evaluation Conclusion

00 00
o 000
ASSIGN

PN

IDENT COND-EXPR

PN

THEN COND ELSE
BH\ARY (M N == COND EXPR
|
+
S
a X THEN COND EL@E

BH\ARY (MJ\IO ==1) BINARY
| |

- *

/\ N

a X a X

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
[o]e] 00e00000 o]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1, vy;

y = axx;

y += Db;
return y;

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
[o]e] 00e00000 o]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1, vy;

y = axx;

y += Db;
return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
[o]e] 00e00000 o]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1, vy;

y = X

y += Db;
return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}
® Determine whether current expression or statement is

affected by mutation

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
[o]e] 00e00000 o]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1, vy;

y = (M.NO==1)? a - x:
(e = xl;
y += Db

return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}
® Determine whether current expression or statement is

affected by mutation
©® Apply mutation operators

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
[o]e] 00e00000 o]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1, vy;

y = (M_NO==2)? a + x:
(M_NO==1)? a - x:
E==

y += Db;

return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}
® Determine whether current expression or statement is

affected by mutation
©® Apply mutation operators

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
[o]e] 00e00000 o]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1, vy;

y = (M_NO==3)? a / x:
(M_NO==2)7? a + x:
(M_NO==1)? a - x

E==

y +=b;
return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}
® Determine whether current expression or statement is

affected by mutation
©® Apply mutation operators

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 [e]e] [e]e]
[o]e] 00e00000 o] 000

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {

int a=3, b=l, vi Mutants that are not ex-
y = (MNO==3)? a / x: ecuted cannot be killed
(M_NO==2)7? a + x:
(M_NO==1)? a - X
==
y +=b;

return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}

® Determine whether current expression or statement is
affected by mutation

©® Apply mutation operators

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} 000000 (ele] (ele}
(e} 00080000 [e] [e]e]e}

Mutation Analysis with MAJOR
Collecting and Using Mutation Coverage

public int eval (int x) {
int a=3, b=l, yi Mutants that are not ex-
ecuted cannot be killed

y = (M_NO==3)? a / x:
(M_NO==2)7? a + x:
(M_NO==1)? a - x:
E==;
y = b;
return y;
}
Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 [e]e] [e]e]
000

[o]e] 00080000 o]
Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage

public int eval (int x) {

. _ — . ()
int a=3, b=1, y; Mutants that are not ex-
y = (MNO==3)? a / x: ____ecuted cannot be killed |
(M_NO==2)7? a + x:
(M_NO==1)? a - x:)

Determine covered
mutants with addi-

COVERED (1, 3))? .) .
a o B ___tional instrumentation |

(M_NO==0 &&

y += Db;

return y;

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} 000000 (ele] (ele}
(e} 00080000 [e] [e]e]e}

Mutation Analysis with MAJOR
Collecting and Using Mutation Coverage

public int eval (int x) {

: — — . 4)
int a=3, b=l, yi Mutants that are not ex-
y = (MNO==3)? a / x: | ecuted cannot be killed |
(M_NO==2)7? a + x:
(M_NO==1)? a - x: - : N
(M_NO==0 s& Determlne.covere.d
e TIRETE _muta_nts with addll—
P | tional instrumentation
% += b; 4 . .
Only execute and investi-
return y; gate the covered mutants
} -
Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis
[e]e]
[o]e]

Mutation Analysis with MAJOR

MAJOR’s Compiler

Empirical Evaluation
000000 0o
00008000 o

MAJOR’s
Compiler

Enhanced the Standard
Java Compiler

Kapfhammer

Conclusion
fole}
000

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis
[e]e]
[o]e]

Mutation Analysis with MAJOR

MAJOR’s Compiler

Empirical Evaluation
000000 0o
00008000 o

Source Files [MAJOR's
L Compiler

Enhanced the Standard
Java Compiler

Kapfhammer

Conclusion
fole}
000

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction

(e}
(e}

Mutation Analysis Empirical Evaluation

000000
0O000@000

Mutation Analysis with MAJOR

MAJOR’s Compiler

Common
Compiler Options

Source Files

Kapfhammer

[MAJOR's
L Compiler

Enhanced the Standard

Java Compiler]

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Mutation Analysis with MAJOR

MAJOR’s Compiler

Common Domain Specific
Compiler Options Language

-- N/

Source Files (MAJOR’s
| Compiler

Enhanced the Standard
Java Compiler

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Mutation Analysis with MAJOR

MAJOR’s Compiler

Common Domain Specific
Compiler Options Language

.. ~ .

Source Files (MAJOR'’s } Bytecode with

. Embedded
|
I L Compiler Mutants
Enhanced the Standard
Java Compiler
Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis

Empirical Evaluation Conclusion
00 000000 0o fole)
oo 00000000 o

000
Mutation Analysis with MAJOR

Integration into the Java Compiler

Compiler

Parse — Attribute — Flow —® Lower —»

Generate

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis

Empirical Evaluation Conclusion
00 000000 0o fole)
oo 00000000 o

000
Mutation Analysis with MAJOR

Integration into the Java Compiler

Compiler

Parse — Attribute — Flow —® Lower —»

Conditionalj

Mutation

Generate

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation

Conclusion
00 000000 00 fole}
00 00000000 o 000

Mutation Analysis with MAJOR

Integration into the Java Compiler

Compiler

Parse [— Attribute — Flow —® Lower —® Generate

Conditionalj

Mutation
| <<use >>
Configuration
Compiler Domain specific
options language

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000000 o 000

Mutation Analysis with MAJOR

Integration into the Java Compiler

Compiler

Parse [— Attribute — Flow —® Lower —® Generate

Condjtionalj

Mutation

| <<use >>
|

Configuration Driver

Compiler Domain specific Mutant Mutation
options language identifier coverage

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 [e]e] [e]e]
[o]e] 000000e0 o] 000

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list
BIN(+)<"org"> -> {-,*};
BIN(x)<"org"> -> {/,%};

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;

}

// Enable built-in operator AOR
AOR<"org">;

// Enable operator myOp
myOp<"java.lang.System@println">;

Kapfhammer Allegheny College
Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 [e]e] [e]e]
[o]e] 00000080 o] 000

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};

// Define replacement list]
BIN (+)<"org"> —> {—,+};]

Specify mutation

(BIN) <rora™> = (7,51, | operators in detalil
// Define own operator
myOp {

BIN (&&) —-> 1istCOR;

BIN(||) —-> 1istCOR;

COR;

LVR;
}
// Enable built-in operator AOR
AOR<"org">;
// Enable operator myOp
myOp<"java.lang.System@println">;

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 fole}
00 00000080 o 000

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list

Specify mutation
operators in detalil

BIN (+)<"org"> -> {—, x};
BIN (%) <"org"> —> {/,%};

J

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;

Define own mutation)
operator groups

}
// Enable built-in operator AOR
AOR<"org">;

// Enable operator myOp
myOp<"java.lang.System@println">;

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 0o fole)
oo 00000080 o 000

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list

Specify mutation

BIN (+) <"org"> —-> {-,+}; - .
operators in detalil

BIN (*)<"org"> —> {/,%};

J

// Define own operator

myOp {
— 1 . 4 N . N\
) o8 Pty Define own mutation
on, operator groups
LVR;

}
// Enable built-in operator AOR
AOR<"org">;

[Enable operators for)
a specific package,
class, or method

l // Enable operator myOp

l
l
|
|
|
|
BIN(||) —> liStCOR; |
|
|
l
l
l
l

[myOp<"java.lang.System@println">;

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
[o]e] 0000000e o]

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

Compile Instrumented
mutants program

Conclusion

(ele}
[e]e]e}

© Embed and compile all mutants

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation

(e} 000000 (ele]
(e} O000000e [e]

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

Original
test suite

A J

Compile Instrumented Execute Runtime of
mutants program test suite test cases

Mutation
coverage

Conclusion
fole}
000

© Embed and compile all mutants
® Run test suite on instrumented program

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
[e]e] 000000 [e]e]
[o]e] 0000000e o]

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

Original
test suite

-

4

Compile Instrumented Execute Runtime of| _ |Prioritize | .| Reordered
mutants program test suite test cases test cases

Mutation
coverage

© Embed and compile all mutants
® Run test suite on instrumented program
@® Sort tests according to their runtime

Kapfhammer

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 [e]e] [e]e]
[o]e] 0000000e o] 000
Mutation Analysis with MAJOR
Optimized Mutation Analysis Process
Original
test suite
Y y
Compile Instrumented Execute Runtime of| _ |Prioritize | Reordered Mutation
mutants program test suite test cases test cases test suite analysis

A A

Mutation
coverage

© Embed and compile all mutants

® Run test suite on instrumented program

@® Sort tests according to their runtime

@ Perform mutation analysis with reordered test suite

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

00 000000 0 00
00 00000000 o 000
Compilation Efficiency
Mutant Generation and Compilation
12
11 S —
I —
10 — —
ok - I IS e — — — -
m ;/ﬁ'/
2
8 8
2 —
< I
s 5 i
g I B
I —
2 o —
5 I
2, I -
3
S / /
4y
/ apache ant *
3 J g
itext
/ java pathfinder
2 commons math = |
commons lang +
;) numer\csAi)
0 20000 40000 60000 80000 100000 120000 140000
Number of mutants
Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} 000000 L e} (ele}
(e} 00000000 [e] [e]e]e}

Compilation Efficiency

Mutant Generation and Compilation

12
11 —T—
K . _ B
'Bf—f,—a»_,,,-_,f‘i
0
38
2
g 8
3
m I
| I
£ 7
g B
5 6 o = T
; i —
g /'/>“" /
g s) -
8 o =
4

apache ant *

itext
java pathfinder
commons math ®
commons lang +
numer\csAi)

?\\

1 I
0 20000 40000 60000 80000 100000 120000 140000
Number of mutants

Overhead for generating and compiling mutants is negligible

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 oe [e]e]
[o]e] 00000000 o] 000

Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original instrumented
WCS wCs+Cov
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90
Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 oe [e]e]
[o]e] 00000000 o] 000

Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original instrumented
WCS WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 oe [e]e]
[o]e] 00000000 o] 000

Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original instrumented
WCS WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
e | Larger for CPU-bound applications

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 oe [e]e]
[o]e] 00000000 o] 000

Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original instrumented
WCS WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
Larger for CPU-bound applications ‘

Small for I/O-bound applications ‘

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 000000 oe [e]e]
[o]e] 00000000 o] 000

Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original instrumented
WCS WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
Larger for CPU-bound applications ‘

Small for I/O-bound applications ‘

Even for large projects, applicable on commodity workstations

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction

(e}
(e}

Mutation Analysis Efficiency

Mutation Analysis

000000

00000000

Empirical Evaluation

00
()

Evaluating and Improving Mutation Analysis

180

e

7

160

140

120

100

80

60

Number of killed mutants

40 {

20

|
J

-

-
i

/g

=

Kapfhammer

original order (without coverage information) —+—
) I

|
|
F ﬂ/
4
|
|
| /]V
4
| /
4
/ optimized order (using coverage information) —=—
random order (using coverage information) |
original order (using coverage information) —<—
i order (without coverage information) —«— |
random order (without coverage information) —+—
)

40 60 80

Runtime in seconds

100

Conclusion

(ele}
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Conclusion

Introduction Mutation Analysis
000000 [e]e] [e]e]
[] 000

(e}
(e} 00000000

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis
180 s o /

160 [l L P’%
IS]
/3 /J

] —

Empirical Evaluation

120

|
Wi
/)

60
/ optimized order (using coverage information;

Number of killed mutants

random order (using coverage information]

) —a—

40 H)

original order (using coverage information) —<—
/ i order (without coverage information) —«—

20 random order (without coverage information) —+— |

original order (yv'\lhoul coverage mt‘crmat\on) —_—

80 100

0
0 20 40 60
Runtime in seconds

e Mutation analysis is not feasible without coverage information

Allegheny College

Kapfhammer
Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Mutation Analysis Empirical Evaluation Conclusion

Introduction
[e]e] 000000 [e]e] [e]e]
[o]e] 00000000 [] 000

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis

180 s
P S
Y ———— |
160 4
wl ! A
|
g 120 "'
4 _/
E | T,/A‘L/ﬁ/
B 100 -
iV
N
51 |
NIy
3 60
/ optimized order (using coverage information) —=—
40 random order (using coverage information) -
original order (using coverage information) —<—
2 i order (without coverage information) —«— |
0 random order (without coverage information) —+—
original order (without coverage information) —+—
0) I
0 20 40 60 80 100

Runtime in seconds

e Mutation analysis is not feasible without coverage information

e Reordering the test suite significantly speeds up the process,

especially if runtimes of tests differ by orders of magnitude

Kapfhammer Allegheny College
Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

[e]e] 000000 [e]e] [1]
[o]e] 00000000 o] 000
Retrospective

Improving Test Suite Quality

Mutation -

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

[e]e] 000000 [e]e] [1]
[o]e] 00000000 o] 000
Retrospective

Improving Test Suite Quality

Mutation -

(Mutation Score]

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
00 000000 0o

oo 00000000 o

Retrospective

Improving Test Suite Quality

Mutation .

(Mutation Score]

Improve Tests

Kapfhammer

Conclusion

[]
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 000000 00 ®0
00 00000000 o 000

Retrospective

Improving Test Suite Quality

Mutation .

(Mutation Score]

Improve Tests

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
00 000000 0o

oo 00000000 o

Retrospective

Improving Test Suite Quality

Mutation :
(Mutation Score]

Improve Tests

Kapfhammer

Conclusion

[]
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
00 000000 0o

oo 00000000 o

Retrospective

Improving Test Suite Quality

Mutation :
(Mutation Score]

Improve Tests

Conclusion

[]
[e]e]e}

[Test improvement is only effective if mutation analysis is efficient!]

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis

Empirical Evaluation Conclusion
[e]e] 000000 [e]e] oe
[o]e] 00000000 o] 000

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
00 000000 0o

oo 00000000 o

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac-
ceptable time and space over-
heads and scales to large,
real-world programs

Kapfhammer

Conclusion

oe
[e]e]e}

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} 000000 (ele] oe
(e} 00000000 [e] [e]e]e}

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac- Usability: MAJOR’s inte-
ceptable time and space over- gration into the Java SE
heads and scales to large, compiler makes it a no-
real-world programs hassle, drop-in tool

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} 000000 (ele] oe
(e} 00000000 [e] [e]e]e}

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac- Usability: MAJOR’s inte-
ceptable time and space over- gration into the Java SE
heads and scales to large, compiler makes it a no-
real-world programs hassle, drop-in tool

[We will release MAJOR as free and open source software]

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
00 000000 0o
oo 00000000 o

Conclusions and Future Work

Conclusion

Conclusion

00
@00

Key Concepts and Features:

e Compiler-integrated solution

¢ Furnishes its own domain specific language

¢ Conditional mutation with the abstract syntax tree

¢ Collects and leverages mutation coverage information

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation
00 000000 00
oo 00000000 o

Conclusions and Future Work

Conclusion

Conclusion

00
@00

Key Concepts and Features:

Compiler-integrated solution

Conditional mutation with the abstract syntax tree
Furnishes its own domain specific language

Collects and leverages mutation coverage information

Characteristics of MAJOR:

¢ Fast and scalable technique
¢ Configurable and extensible mutation tool
e Enables an optimized workflow for mutation analysis

Kapfhammer

Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} 000000 (ele] 00
(e} 00000000 [e] oeo

Conclusions and Future Work

Recently Published Papers

e René Just, Gregory M. Kapfhammer, and Franz
Schweiggert. Using conditional mutation to increase the
efficiency of mutation analysis. In Proceedings of the 6th
International Workshop on the Automation of Software Test,
Honolulu, Hawaii, May 2011.

e René Just, Franz Schweiggert, and Gregory M.
Kapfhammer. MAJOR: An efficient and extensible tool for
mutation analysis in a Java compiler. In Proceedings of the
26th IEEE/ACM International Conference on Automated
Software Engineering (Tool Paper), Lawrence, Kansas,
November 2011.

Kapfhammer Allegheny College

Efficient and Effective Mutation Testing: Supporting the Implementation of Quality Software by Purposefully Inserting Defects

Efficient and Effective Mutation Testing:
Supporting the Implementation of Quality
Software by Purposefully Inserting Defects

Gregory M. Kapfhammer

Department of Computer Science

Allegheny College
http://www.cs.allegheny.edu/~gkapfham/

Thank you for your attention!
| welcome your questions and comments.

2 ALLEGHENY COLLEGE

http://www.cs.allegheny.edu/~gkapfham/

	Introduction
	Mutation Analysis
	Empirical Evaluation
	Conclusion

