Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Gregory M. Kapfhammer[†]

Department of Computer Science Allegheny College http://www.cs.allegheny.edu/~gkapfham/

University of Sheffield - February 3, 2012

[†] Joint with René Just and Franz Schweiggert (University of Ulm) and Jonathan Miller Kauffman (Allegheny College)

Introduction ••• •••

Important Points

Mutation Analysis

Empirical Evaluation

Conclusion

Accessing the Presentation

Scan this QR Code with your smartphone!

... or, visit this Web site:

http://is.gd/rekiwo

... or, ask me for a USB drive!

Kapfhammer

Allegheny College

Introduction O O O

Important Points

Mutation Analysis

Empirical Evaluation

Conclusion

Presenter Introduction: Gregory M. Kapfhammer

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 •0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 •0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
● ●	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 •0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 •0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 ●0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 •0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 ●0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 •0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusior
00 00	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusio
00 •0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusio
00 •0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusio
00 •0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusio
00 •0	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0●	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0●	00000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Muta
00 0 0	000
Software Testing	

tion Analysis

Empirical Evaluation

What is a Test Suite?

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0•	00000 00000000	00	00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0•	00000	00	00 00
Software Testing			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 00	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0●	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0•	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0•	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

$$(T_1)$$
 (T_2) (T_3) (T_4) (T_5) (T_6) (T_7) (T_8) (T_9) (T_{10})

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0 0	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \ldots, T_9, T_{10} \rangle$$

$\begin{array}{c|c} \hline R_1 \\ \hline R_2 \\ \hline R_3 \\ \hline R_4 \\ \hline R_5 \\ \hline R_6 \\ \hline F_1 \\ \hline F_2 \\ \hline F_2 \\ \hline \end{array}$

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0•	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \ldots, T_9, T_{10} \rangle$$

$$(T_1)$$
 (T_2) (T_3) (T_4) (T_5) (T_6) (T_7) (T_8) (T_9) (T_{10})

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0 0	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \ldots, T_9, T_{10} \rangle$$

$$(T_1)$$
 (T_2) (T_3) (T_4) (T_5) (T_6) (T_7) (T_8) (T_9) (T_{10})

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0 0	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \ldots, T_9, T_{10} \rangle$$

Requirements $R = \{R_1, ..., R_6\}$, Features $F = \{F_1, ..., F_4\}$, Bug Fixes $B = \{B_1, B_2\}$

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0•	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \ldots, T_9, T_{10} \rangle$$

Requirements $R = \{R_1, ..., R_6\}$, Features $F = \{F_1, ..., F_4\}$, Bug Fixes $B = \{B_1, B_2\}$

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

Requirements $R = \{R_1, ..., R_6\}$, Features $F = \{F_1, ..., F_4\}$, Bug Fixes $B = \{B_1, B_2\}$

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0●	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

Requirements $R = \{R_1, ..., R_6\}$, Features $F = \{F_1, ..., F_4\}$, Bug Fixes $B = \{B_1, B_2\}$

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0 0	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \ldots, T_9, T_{10} \rangle$$

Requirements $R = \{R_1, ..., R_6\}$, Features $F = \{F_1, ..., F_4\}$, Bug Fixes $B = \{B_1, B_2\}$

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0●	00000	00	00
Software Testing			

Test Suite
$$T = \langle T_1, T_2, \ldots, T_9, T_{10} \rangle$$

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0•	00000	00	00
Software Testing			

Kapfhammer

Allegheny College
Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 0•	00000	00	00
Software Testing			

What is a Test Suite?

Kapfhammer

Allegheny College

Introduction	
00	
00	

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Mutation Operator

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion 00 00

Fundamental Concepts

Overview of Mutation Analysis

Mutation Operator Mutation Operator

Kapfhammer

Allegheny College

Introduction	Mutation Analysis
Fundamental Concepts	00000000

Empirical Evaluation

Conclusion

Overview of Mutation Analysis

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation oo o	Conclusion oo oo
Fundamental Concepts			
Overview of	Mutation Ar	nalysis	
Mutation Operator	Mutation Operator	Mutation Operator	Mutation Operator

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000	00	00
00	000000000	0	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	0000	00	00
00	00000000	0	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000 00000000	00	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis ●○○○○	Empirical Evaluation	Conclusion
Fundamental Concepts			
Overview of N	Nutation Ana	lysis	
Mutation Operator	Mutation Operator	Mutation Operator	Mutation Operator
)
		Methodic	ally
		inject sn syntacti	nall cal
		faults in the prog	nto ram
		under te	est

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
Fundamental Concepts	3		
Overview	of Mutation An	alysis	
Mutatio Operate	on Mutation Operator	Mutation Operator	Mutation Operator

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 00	00000 00000000	00	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000 00000000	00	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000 00000000	00	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000 00000000	00	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000 00000000	00	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000 00000000	00	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000 00000000	00	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000 00000000	00	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	•oooo	oo	
00	•ooooooo	o	
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000 00000000	00	00
Fundamental Concepts			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation oo o	Conclusion
Fundamental Concepts			

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Contributions of this Presentation

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Contributions of this Presentation

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Contributions of this Presentation

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Contributions of this Presentation

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Contributions of this Presentation

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Contributions of this Presentation

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Contributions of this Presentation

Kapfhammer

Allegheny College

Fundamental Concepts

Mutation Analysis

Empirical Evaluation

Conclusion

Contributions of this Presentation

Kapfhammer

Allegheny College

Fundamental Concepts

Mutation Analysis

Empirical Evaluation

Conclusion

Contributions of this Presentation

Efficient Technique - Fully Integrated into the Java 6 SE Compiler

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Understanding Mutation Analysis

```
public int eval(int x) {
    int a=3, b=1, v;
    v = a * x;
    v += b;
    return v;
public int max(int a, int b) {
   int max = a;
   if(b>a) {
      max=b;
   return max;
```

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Understanding Mutation Analysis

```
public int eval(int x) {
    int a=3, b=1, v;
    v = a * x;
    v += b;
    return v;
public int max(int a, int b) {
   int max = a;
   if(b>a) {
      max=b;
   return max;
```

Methodically inject small syntactical faults into the program under test

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Understanding Mutation Analysis

```
public int eval(int x) {
    int a=3, b=1, v;
    y = a * x;
    v += b;
    return v;
public int max(int a, int b) {
   int max = a;
   if(b>a) {
      max=b;
   return max;
```

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Understanding Mutation Analysis

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Understanding Mutation Analysis

```
public int eval(int x) {
    int a=3, b=1, y;
```

```
y = a * x;
```

if(b>a){ max=b;

return max;

```
y += b;
return y;
}
public int max(int a, int b){
int max = a;
```

Unbiased and powerful method for assessing oracles and input values

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Understanding Mutation Analysis

Kapfhammer

Allegheny College
Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant Generation

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

High Time Overhead for Generation

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

Kapfhammer

Allegheny College

Fundamental Concepts

Mutation Analysis

Empirical Evaluation

Conclusion

Prior Work in Mutation Analysis

Improving Mutation Analysis

Kapfhammer

Allegheny College

Introduction	
00	
00	

Fundamental Concepts

Mutation Analysis

Empirical Evaluation

Conclusion

Prior Work in Mutation Analysis

Kapfhammer

Allegheny College

roduction		
S		
)		

Fundamental Concepts

Mutation Analysis

Empirical Evaluation

Conclusion

Prior Work in Mutation Analysis

Kapfhammer

Allegheny College

ntroduction	Mutation Analysis oooo● oooooooo	Empirical Evaluation	Conclusion
undamental Concepts			

Kapfhammer

Allegheny College

troduction o o	Mutation Analysis oooo● oooooooo	Empirical Evaluation	Conclusion
undamental Concepts			

Kapfhammer

F

Allegheny College

troduction o o	Mutation Analysis oooo● oooooooo	Empirical Evaluation	Conclusion
undamental Concepts			

Kapfhammer

F

Allegheny College

troduction o	Mutation Analysis ○○○○● ○○○○○○○○	Empirical Evaluation	Conclusion
undamental Concepts			

Kapfhammer

Allegheny College

troduction o o	Mutation Analysis oooo● oooooooo	Empirical Evaluation	Conclusion
undamental Concepts			

Kapfhammer

F

Allegheny College

Introduction	
00	
00	

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Practical Mutation Analysis

Practical (adjective):
Of or concerned with the actual doing or use of something rather than with theory and ideas
 (of an idea, plan, or method) Likely to succeed or be effective in real circumstances; feasible
3 Suitable for a particular purpose

Kapfhammer

Allegheny College

Introduction	
00	
00	

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Practical Mutation Analysis

Practical (adjective):
Of or concerned with the actual doing or use of something rather than with theory and ideas
(of an idea, plan, or method) Likely to succeed or be effective in real circumstances; feasible
Suitable for a particular purpose

What are the practical techniques that MAJOR employs for improving the efficiency and usability of mutation analysis?

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Conditional Mutation

Conditional Mutation

Kapfhammer

Allegheny College

Mutation Analysis **Empirical Evaluation** 00000000

Mutation Analysis with MAJOR

Conditional Mutation

Kapfhammer

Alleghenv College

troduction o	Mutation Analysis	Empirical Evaluation	Conclusion
lutation Analysis with MAJOR			

Conditional Mutation

Kapfhammer

Allegheny College

Introduction Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Conditional Mutation

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Conditional Mutation

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000	00	00
Mutation Analysis with MAJOR			

```
public int eval(int x) {
    int a=3, b=1, y;
    y = a * x;
    y += b;
    return y;
}
```

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion	
00	00000	00	00	
Mutation Analysis with MA IOR	0000000		00	

```
public int eval(int x) {
    int a=3, b=1, y;
    v = a * x;
    v += b;
    return y;
           ∜
         ASSIGN
     IDENT BINARY
       v
            a
                  x
```

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000	00	00
Mutation Analysis with MAJOR		Č.	

```
public int eval(int x) {
    int a=3, b=1, y;
```


Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 00	00000	00	00
Mutation Analysis with MAJOR			

Kapfhammer

Allegheny College

Source Code View of Inserting Mutants

```
public int eval(int x) {
    int a=3, b=1, y;
    y = a * x;
    y += b;
    return y;
}
```

- Define mutation operators MOP(x * y) = {x y, x + y, x/y}
 Determine whether current expression or statement is affected by mutation
- 3 Apply mutation operators

Kapfhammer

Allegheny College

Source Code View of Inserting Mutants

```
public int eval(int x) {
    int a=3, b=1, y;
    y = a * x;
    y += b;
    return y;
}
```

Define mutation operators MOP(x * y) = {x - y, x + y, x/y}
 Determine whether current expression or statement is affected by mutation

3 Apply mutation operators

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

```
public int eval(int x) {
    int a=3, b=1, y;
    y = [a * x];
    y += b;
    return y;
}
```

- **1** Define mutation operators $MOP(x * y) = \{x y, x + y, x/y\}$
- 2 Determine whether current expression or statement is affected by mutation
 - 3 Apply mutation operators

Kapfhammer

Allegheny College

 Introduction
 Mutation Analysis
 Empirical Evaluation
 Concl

 00
 00000
 00
 00
 00

 Mutation Analysis with MAJOR
 Mutation Analysis with MAJOR
 00
 00

Source Code View of Inserting Mutants

```
public int eval(int x) {
    int a=3, b=1, y;
    y = (M_NO==1)? a - x:
        [a * x];
    y += b;
    return y;
}
```

- **1** Define mutation operators $MOP(x * y) = \{x y, x + y, x/y\}$
- 2 Determine whether current expression or statement is affected by mutation
- 3 Apply mutation operators

Kapfhammer

Allegheny College

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

```
public int eval(int x) {
    int a=3, b=1, y;
    y = (M_NO==2)? a + x:
        (M_NO==1)? a - x:
        [a * x];
    y += b;
    return y;
}
```

- **1** Define mutation operators $MOP(x * y) = \{x y, x + y, x/y\}$
- 2 Determine whether current expression or statement is affected by mutation
- 3 Apply mutation operators

Kapfhammer

Allegheny College
Mutation Analysis **Empirical Evaluation** 000000000 Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

```
public int eval(int x) {
    int a=3, b=1, v;
    v = (M NO = 3)? a / x:
        (M NO = 2)? a + x:
        (M NO==1)? a - x:
                    a * x;
    v += b;
    return v;
```

- **1** Define mutation operators $MOP(x * y) = \{x y, x + y, x/y\}$
- 2 Determine whether current expression or statement is affected by mutation
- 3 Apply mutation operators

Kapfhammer

Alleahenv Colleae

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

Mutants that are not executed cannot be killed

- **1** Define mutation operators $MOP(x * y) = \{x y, x + y, x/y\}$
- 2 Determine whether current expression or statement is affected by mutation
- 3 Apply mutation operators

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage

Mutants that are not executed cannot be killed

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage

Mutants that are not executed cannot be killed

Determine covered mutants with additional instrumentation

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000	00	00
Mutation Analysis with MAJOR			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000	00	00
00	000000000	0	00
Mutation Analysis with MAJOR			

Enhanced Standard Java Compiler

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 00	00000	00	00
Mutation Analysis with MAJOR			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00 00	00000	00	00
Mutation Analysis with MAJOR			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000	00	00
00	0000000000	0	00
Mutation Analysis with MAJOR			

Kapfhammer

Allegheny College

Introduction	Mutation Analysis	Empirical Evaluation	Conclusion
00	00000	00	00
Mutation Analysis with MAJOR			

Enhanced Standard Java Compiler

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Integration into the Java Compiler

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Integration into the Java Compiler

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Integration into the Java Compiler

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Integration into the Java Compiler

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

MAJOR's Domain Specific Language

```
// variable declaration
listCOR={&&, ||, ==, !=};
// Define replacement list
BIN(+)<"org"> -> {-,*};
BIN(*)<"org"> -> {/, %};
// Define own operator
myOp{
  BIN(&&) -> listCOR;
  BIN(||) -> listCOR;
  COR:
  LVR;
// Enable built-in operator AOR
AOR<"ora">;
// Enable operator myOp
myOp<"java.lang.System@println">;
```

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

MAJOR's Domain Specific Language

```
// variable declaration
```

```
listCOR={&&, ||, ==, !=};
```

// Define replacement list

BIN(+)<"org"> -> {-, *};

BIN(*)<"org"> -> {/,%};

```
// Define own operator
```

```
myOp{
```

```
BIN(&&) -> listCOR;
```

```
BIN(||) -> listCOR;
```

COR;

```
LVR;
```

```
}
// Enable built-in operator AOR
AOR<"org">;
// Enable operator myOp
mvOp<"java.lang.System@println">;
```

Specify mutation operators in detail

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

MAJOR's Domain Specific Language

// variable declaration

listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+) <"org"> -> {-, *};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

// Enable built-in operator AOR

AOR<"org">;

```
// Enable operator myOp
```

```
myOp<"java.lang.System@println">;
```

Kapfhammer

Specify mutation operators in detail

Define own mutation operator groups

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

MAJOR's Domain Specific Language

// variable declaration

listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+) <"org"> -> {-, *};

BIN(*) <"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Specify mutation operators in detail

Define own mutation operator groups

Enable operators for a specific package, class, or method

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

Kapfhammer

Allegheny College

troduction Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

Kapfhammer

Allegheny College

roduction M

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

Kapfhammer

Allegheny College

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

- Embed and compile all mutants
- 2 Run test suite on instrumented program
- Sort tests according to their runtime
- 4 Perform mutation analysis with reordered test suite

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Compilation Efficiency

Mutant Generation and Compilation

Overhead for generating and compiling mutants is negligible

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Compilation Efficiency

Mutant Generation and Compilation

Overhead for generating and compiling mutants is negligible

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Compilation Efficiency

Time and Space Overhead

Application	Mutants	Runtime of test suite		Memory	consumption	
		original	instru	umented	original	instrumented
			WCS	WCS+COV		
aspectj	406,382	4.3	4.8	5.0	559	813
apache ant	60,258	331.0	335.0	346.0	237	293
jfreechart	68,782	15.0	18.0	23.0	220	303
itext	124,184	5.1	5.6	6.3	217	325
java pathfinder	37,331	17.0	22.0	29.0	182	217
commons math	67,895	67.0	83.0	98.0	153	225
commons lang	25,783	10.3	11.8	14.8	104	149
numerics4j	5,869	1.2	1.3	1.6	73	90

Runtime overhead is application dependent

- Larger for CPU-bound applications
- Small for I/O-bound applications

Even for large projects, applicable on commodity workstations

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Compilation Efficiency

Time and Space Overhead

Application	Mutants	Runti	Runtime of test suite		Memory	consumption
		original	instru	umented	original	instrumented
			WCS	WCS+COV		
aspectj	406,382	4.3	4.8	5.0	559	813
apache ant	60,258	331.0	335.0	346.0	237	293
jfreechart	68,782	15.0	18.0	23.0	220	303
itext	124,184	5.1	5.6	6.3	217	325
java pathfinder	37,331	17.0	22.0	29.0	182	217
commons math	67,895	67.0	83.0	98.0	153	225
commons lang	25,783	10.3	11.8	14.8	104	149
numerics4j	5,869	1.2	1.3	1.6	73	90

Runtime overhead is application dependent

- Larger for CPU-bound applications
- Small for I/O-bound applications

Even for large projects, applicable on commodity workstations

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Compilation Efficiency

Time and Space Overhead

Application	Mutants	Runtime of test suite		Memory	consumption	
		original	instru	umented	original	instrumented
			WCS	WCS+COV		
aspectj	406,382	4.3	4.8	5.0	559	813
apache ant	60,258	331.0	335.0	346.0	237	293
jfreechart	68,782	15.0	18.0	23.0	220	303
itext	124,184	5.1	5.6	6.3	217	325
java pathfinder	37,331	17.0	22.0	29.0	182	217
commons math	67,895	67.0	83.0	98.0	153	225
commons lang	25,783	10.3	11.8	14.8	104	149
numerics4j	5,869	1.2	1.3	1.6	73	90

Runtime overhead is application dependent

Larger for CPU-bound applications

Small for I/O-bound applications

Even for large projects, applicable on commodity workstations

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Compilation Efficiency

Time and Space Overhead

Application	Mutants	Runti	Runtime of test suite		Memory	consumption
		original	instru	umented	original	instrumented
			WCS	WCS+COV		
aspectj	406,382	4.3	4.8	5.0	559	813
apache ant	60,258	331.0	335.0	346.0	237	293
jfreechart	68,782	15.0	18.0	23.0	220	303
itext	124,184	5.1	5.6	6.3	217	325
java pathfinder	37,331	17.0	22.0	29.0	182	217
commons math	67,895	67.0	83.0	98.0	153	225
commons lang	25,783	10.3	11.8	14.8	104	149
numerics4j	5,869	1.2	1.3	1.6	73	90

Runtime overhead is application dependent

- Larger for CPU-bound applications
- Small for I/O-bound applications

Even for large projects, applicable on commodity workstations

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Compilation Efficiency

Time and Space Overhead

Application	Mutants	Runti	Runtime of test suite		Memory	consumption
		original	instru	umented	original	instrumented
			WCS	WCS+COV		
aspectj	406,382	4.3	4.8	5.0	559	813
apache ant	60,258	331.0	335.0	346.0	237	293
jfreechart	68,782	15.0	18.0	23.0	220	303
itext	124,184	5.1	5.6	6.3	217	325
java pathfinder	37,331	17.0	22.0	29.0	182	217
commons math	67,895	67.0	83.0	98.0	153	225
commons lang	25,783	10.3	11.8	14.8	104	149
numerics4j	5,869	1.2	1.3	1.6	73	90

Runtime overhead is application dependent

- Larger for CPU-bound applications
- Small for I/O-bound applications

• Even for large projects, applicable on commodity workstations

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis

- Mutation analysis is not feasible without coverage information
- Reordering the test suite significantly speeds up the process especially if runtimes of tests differ by orders of magnitude

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis

Mutation analysis is not feasible without coverage information

 Reordering the test suite significantly speeds up the process, especially if runtimes of tests differ by orders of magnitude

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis

- Mutation analysis is not feasible without coverage information
- Reordering the test suite significantly speeds up the process, especially if runtimes of tests differ by orders of magnitude

Kapfhammer

Allegheny College

Introduction
00
00

Retrospective

Mutation Analysis

Empirical Evaluation

Conclusion

Revisiting Practical Mutation Analysis

Practical (adjective):
Of or concerned with the actual doing or use of something rather than with theory and ideas
 (of an idea, plan, or method) Likely to succeed or be effective in real circumstances; feasible
3 Suitable for a particular purpose

Kapfhammer

Allegheny College

Introduction
00
00

Retrospective

Mutation Analysis

Empirical Evaluation

Conclusion

Revisiting Practical Mutation Analysis

Practical (adjective):
Of or concerned with the actual doing or use of something rather than with theory and ideas
(of an idea, plan, or method) Likely to succeed or be effective in real circumstances; feasible
3 Suitable for a particular purpose

The evidence suggests that MAJOR is "likely to succeed or be effective" in real-world software testing circumstances

Kapfhammer

Allegheny College

Retrospective

Mutation Analysis

Empirical Evaluation

Conclusion

Reviewing MAJOR's Contributions

Mutation Analysis

Kapfhammer

Allegheny College
Introduction 00

Retrospective

Mutation Analysis

Empirical Evaluation

Conclusion

Reviewing MAJOR's Contributions

Kapfhammer

Allegheny College

Introduction 00 00

Retrospective

Mutation Analysis

Empirical Evaluation

Conclusion

Reviewing MAJOR's Contributions

Kapfhammer

Allegheny College

Introduction 00 00

Retrospective

Mutation Analysis

Empirical Evaluation

Conclusion

Reviewing MAJOR's Contributions

We will release MAJOR as free and open source software

Kapfhammer

Allegheny College

Mutation Analysis

Empirical Evaluation

Conclusion ...

Conclusions and Future Work

Conclusion

Key Concepts and Features:

- Compiler-integrated solution
- Conditional mutation with the abstract syntax tree
- Furnishes its own domain specific language
- Collects and leverages mutation coverage information •

Kapfhammer

Alleghenv College

Mutation Analysis

Empirical Evaluation

Conclusion ...

Conclusions and Future Work

Conclusion

Key Concepts and Features:

- Compiler-integrated solution
- Conditional mutation with the abstract syntax tree
- Furnishes its own domain specific language
- Collects and leverages mutation coverage information

Characteristics of MAJOR:

- Fast and scalable technique
- Configurable and extensible mutation tool ٠
- Enables an optimized workflow for mutation analysis

Kapfhammer

Alleahenv Colleae

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Gregory M. Kapfhammer

Department of Computer Science Allegheny College http://www.cs.allegheny.edu/~gkapfham/

Thank you for your attention! I welcome your questions and comments.

