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public int eval (int x) {

int a=3, b=1l, vy;
y = a * x;
y +=b;

return y;

}

public int max(int a, int D) {
int max = a;

if (b>a) {

max=b;

}

return max;

}
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and powerful
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oracles and
input values
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Practical Mutation Analysis

Conclusion
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(Practical (adjective):

rather than with theory and ideas

effective in real circumstances; feasible
L ® Suitable for a particular purpose

© Of or concerned with the actual doing or use of something

® (of an idea, plan, or method) Likely to succeed or be

What are the practical techniques that MAJOR employs for
improving the efficiency and usability of mutation analysis?

J
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Encapsulates all
mutants within
the same block

Transforms the
abstract syntax
tree (AST)

Can be inte-
grated within
the compiler

e

~

Stmt — Conditional Stmt
(if-then-else, switch)

Expr — Conditional Expr
(conditional operator ?:)
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Transforming the AST

public int eval (int x) {
int a=3, b=1, vy;

== | —

y += Db;
return y;

4

Kapfhammer
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y *
S
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Empirical Evaluation Conclusion
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PN

IDENT COND-EXPR
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THEN COND ELSE
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Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1l, vy;

y = axx;

y += Db;
return y;
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Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1l, vy;

y = axx;

y += Db;
return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}
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public int eval (int x) {
int a=3, b=1l, vy;

vy = X

y += Db;
return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}
® Determine whether current expression or statement is
affected by mutation
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public int eval (int x) {
int a=3, b=1l, vy;

y = (M.NO==1)? a - x:
(e = x];
y += Db

return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}
® Determine whether current expression or statement is
affected by mutation

©® Apply mutation operators
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©® Apply mutation operators
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return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}

® Determine whether current expression or statement is
affected by mutation
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Source Code View of Inserting Mutants

public int eval (int x) {

int a=3, b=1, vi Mutants that are not ex-
y = (MNO==3)? a / x: ecuted cannot be killed
(M_NO==2)7? a + x:
(M_NO==1)? a - X
==
y +=b;

return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}

® Determine whether current expression or statement is
affected by mutation

©® Apply mutation operators
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Mutation Analysis with MAJOR
Collecting and Using Mutation Coverage

public int eval (int x) {
int a=3, b=l, yi Mutants that are not ex-
ecuted cannot be killed

y = (M_NO==3)? a / x:
(M_NO==2)7? a + x:
(M_NO==1)? a - x:
E==;
y += b;
return y;
}
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Collecting and Using Mutation Coverage

public int eval (int x) {

. _ — . ( )
int a=3, b=1, y; Mutants that are not ex-
y = (MNO==3)? a / x: ____ecuted cannot be killed |
(M_NO==2)7? a + x:
(M_NO==1)? a - x: )

Determine covered
mutants with addi-

COVERED (1, 3))? . ) .
2% Eo ___tional instrumentation |

(M_NO==0 &&

y += Db;

return y;
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Collecting and Using Mutation Coverage

public int eval (int x) {
int a=3, b=1l, vy;

y = (M_NO==3)? a / x:
(M_NO==2)7? a + x:
(M_NO==1)? a - x:

Conclusion
fole}
00

Mutants that are not ex-
ecuted cannot be killed

(M_NO==0 &&

COVERED (1, 3))?

axx : E2x)
y += Db;

return y;

Kapfhammer

Determine covered
mutants with addi-
tional instrumentation

Only execute and investi-
gate the covered mutants
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list
BIN(+)<"org"> -> {-,*};
BIN () <"org"> -> {/,%};

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;
Kapfhammer
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};

// Define replacement list ]
BIN (+)<"org"> —> {—,+}; ]

Specify mutation

(BN <rora™> = (/,51; | operators in detalil
// Define own operator
myOp {

BIN (&&) —-> 1istCOR;

BIN(||) —-> 1istCOR;

COR;

LVR;
}
// Enable built-in operator AOR
AOR<"org">;
// Enable operator myOp
myOp<"java.lang.System@println">;
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list

Specify mutation

BIN (+) <"org"> —> {-,+}; - .
operators in detalil

BIN (*)<"org"> —> {/,%};

J

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;
}
// Enable built-in operator AOR
AOR<"org">;

Define own mutation )
operator groups

// Enable operator myOp
myOp<"java.lang.System@println">;
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list

Specify mutation

BIN (+) <"org"> —> {-,+}; - .
operators in detalil

BIN (*)<"org"> —> {/,%};

J

// Define own operator

myOp {
— 1 . 4 N . N\
) o8 Pty Define own mutation
on, operator groups
LVR;

}
// Enable built-in operator AOR
AOR<"org">;

[ Enable operators for )
a specific package,
class, or method

l // Enable operator myOp

l
l
|
|
|
|
BIN(||) —> liStCOR; |
|
|
l
l
l
l

[ myOp<"java.lang.System@println">;
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© Embed and compile all mutants

® Run test suite on instrumented program

@® Sort tests according to their runtime

@ Perform mutation analysis with reordered test suite
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Overhead for generating and compiling mutants is negligible
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original instrumented original  instrumented
WCS  WCSs+Cov
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90
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e Runtime overhead is application dependent
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e Runtime overhead is application dependent
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Small for I/O-bound applications ‘
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Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original  instrumented
WCS  WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
Larger for CPU-bound applications ‘

Small for I/O-bound applications ‘

Even for large projects, applicable on commodity workstations
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e Mutation analysis is not feasible without coverage information

Kapfhammer
Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College



Mutation Analysis Empirical Evaluation Conclusion

Introduction
[e]e] 00000 [e]e] [e]e]
[o]e] 000000000 [ ] [e]e]

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis

180 s
P S
Y ———— |
160 4
wl ! A
|
g 120 "'
4 _/
E | T,/A‘L/ﬁ/
B 100 -
iV
I
1 |
NIy
3 60
/ optimized order (using coverage information) —=—
40 random order (using coverage information) -
original order (using coverage information) —<—
2 i order (without coverage information) —«— |
0 random order (without coverage information) —+—
original order (without coverage information) —v—
0 ) I
0 20 40 60 80 100

Runtime in seconds

e Mutation analysis is not feasible without coverage information

e Reordering the test suite significantly speeds up the process,

especially if runtimes of tests differ by orders of magnitude
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Reuvisiting Practical Mutation Analysis

Conclusion

[ ]
(e}

(Practical (adjective):

rather than with theory and ideas

effective in real circumstances; feasible
L ® Suitable for a particular purpose

© Of or concerned with the actual doing or use of something

® (of an idea, plan, or method) Likely to succeed or be

J

(S

[ The evidence suggests that MAJOR is “likely to succeed or be )
effective” in real-world software testing circumstances

J
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Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac- Usability: MAJOR’s inte-
ceptable time and space over- gration into the Java SE
heads and scales to large, compiler makes it a no-
real-world programs hassle, drop-in tool

[We will release MAJOR as free and open source software]
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Key Concepts and Features:

Compiler-integrated solution

Conditional mutation with the abstract syntax tree
Furnishes its own domain specific language

Collects and leverages mutation coverage information
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Conclusion

Conclusion
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Key Concepts and Features:

Compiler-integrated solution

Conditional mutation with the abstract syntax tree
Furnishes its own domain specific language

Collects and leverages mutation coverage information

Characteristics of MAJOR:

¢ Fast and scalable technique
¢ Configurable and extensible mutation tool
e Enables an optimized workflow for mutation analysis
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