
Practical Techniques for Improving the
Efficiency and Usability of Mutation Analysis

for Java Programs

Gregory M. Kapfhammer†

Department of Computer Science
Allegheny College

http://www.cs.allegheny.edu/∼gkapfham/

University of Sheffield – February 3, 2012
†Joint with René Just and Franz Schweiggert (University of Ulm) and Jonathan Miller Kauffman (Allegheny College)

http://www.cs.allegheny.edu/~gkapfham/

Introduction Mutation Analysis Empirical Evaluation Conclusion

Important Points

Accessing the Presentation

Scan this QR Code with your smartphone!

... or, visit this Web site:

http://is.gd/rekiwo

... or, ask me for a USB drive!

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

http://is.gd/rekiwo

Introduction Mutation Analysis Empirical Evaluation Conclusion

Important Points

Presenter Introduction: Gregory M. Kapfhammer

te
st

testing

software
suites

prioritization

components

coverage
em

pi
ric

al
ly
regressionsuite
applications

evaluating

al
go

rit
hm

analysis

data

effectiveness

empirical

genetic

pe
rf

or
m

an
ce

understanding

using

approach
commercialofftheshelf

comparison

comprehensive

constrained
creation

databasecentric en
vi

ro
nm

en
ts

execution

fin
di

ng

framework

identifying

interactive

javamethods

multiplots

mutation

party

prioritized

reduction

relational

study

third

timeaware

towards

105

adequacy

ap
pr

oa
ch

es

array

automatically

building

call
challenges

chapter

communication

compare

compressing

co
m

pu
te

r

conditional

cost

cots

covering

creating

criteria

database

databaseaware

da
ta

ba
se

dr
iv

en

databases

declarative
dependable

detection

devices

distributed

distributing

duringsearchbased

dynamic

efficiency

efficient

en
gi

ne
er

in
g

environment

evaluate

examination

executing

experimental

family

flow

forward

frameworks

free

generation

greedy

gui

hamiltonian

handbook

heaps

implementation

im
pr

ov
e

incorporating

in
cr

ea
se

information

initial

intranode

invariant

javaspace

javaspacebased

kernel

knapsack

linux

measurement

memory

method

monitoring

operators

paths

poster

potential

preliminary

primitives

pr
io

rit
iz

at
io

ns

pr
io

rit
iz

er
s

prioritizing

problematic

receive

remote

reports

resource

resourceconstrained

results

role

runtime

science

searchbased

selection
solutions

solvers

space

studies

st
ud

yi
ngsupported

synthetic

techniques

transmission

transparently

trees

tuple

unstructured

wrappers

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Input

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Input Output

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Input

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Input Output

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Input Output

Test
Clean Up

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Input Output

Test
Clean Up

Test
Oracle

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Input Output

Test
Clean Up

Test
Oracle

Expected
Output

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Input Output

Test
Clean Up

Test
Oracle

Expected
Output

Test
Verdict

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Input Output

Test
Clean Up

Test
Oracle

Expected
Output

Test
Verdict

Expected
Output

Output

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Input Output

Test
Clean Up

Test
Oracle

Expected
Output

Test
Verdict

Expected
Output

Output

Test
Verdict

The test case passes and the code is correct!

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Input Output

Test
Clean Up

Test
Oracle

Expected
Output

Test
Verdict

Expected
Output

Output

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Case?

Method
Under Test

Test
Set Up

Input Output

Test
Clean Up

Test
Oracle

Expected
Output

Test
Verdict

Expected
Output

Output

Test
Verdict

The test case fails and a defect is found!

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2 F3 F4

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2 F3 F4 B1 B2

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2 F3 F4 B1 B2

Requirements R = {R1, . . . ,R6}, Features F = {F1, . . . ,F4}, Bug Fixes B = {B1,B2}

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2 F3 F4 B1 B2

Requirements R = {R1, . . . ,R6}, Features F = {F1, . . . ,F4}, Bug Fixes B = {B1,B2}

B2B2B2B2

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2 F3 F4 B1 B2

Requirements R = {R1, . . . ,R6}, Features F = {F1, . . . ,F4}, Bug Fixes B = {B1,B2}

B2B2B2B2B2B2

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2 F3 F4 B1 B2

Requirements R = {R1, . . . ,R6}, Features F = {F1, . . . ,F4}, Bug Fixes B = {B1,B2}

B2B2B2B2B2B2B2B2B2B2

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2 F3 F4 B1 B2

Requirements R = {R1, . . . ,R6}, Features F = {F1, . . . ,F4}, Bug Fixes B = {B1,B2}

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2 F3 F4 B1 B2

Requirements R = {R1, . . . ,R6}, Features F = {F1, . . . ,F4}, Bug Fixes B = {B1,B2}

How Good is Test Suite T ?

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2 F3 F4 B1 B2

Requirements R = {R1, . . . ,R6}, Features F = {F1, . . . ,F4}, Bug Fixes B = {B1,B2}

How Good is Test Suite T ?

Coverage Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Software Testing

What is a Test Suite?

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Test Suite T = 〈T1,T2, . . . ,T9,T10〉

R1 R2 R3 R4 R5 R6 F1 F2 F3 F4 B1 B2

Requirements R = {R1, . . . ,R6}, Features F = {F1, . . . ,F4}, Bug Fixes B = {B1,B2}

How Good is Test Suite T ?

Coverage Analysis Mutation Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Mutation
Operator

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Mutation
Operator

Mutation
Operator

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Mutation
Operator

Mutation
Operator

Mutation
Operator

Mutation
Operator

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Mutation
Operator

Mutation
Operator

Mutation
Operator

Mutation
Operator

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Mutation
Operator

Mutation
Operator

Mutation
Operator

Mutation
Operator

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Mutation
Operator

Mutation
Operator

Mutation
Operator

Mutation
Operator

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Mutation
Operator

Mutation
Operator

Mutation
Operator

Mutation
Operator

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Mutation
Operator

Mutation
Operator

Mutation
Operator

Mutation
Operator

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Mutation
Operator

Mutation
Operator

Mutation
Operator

Mutation
Operator

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

The test suite
cannot kill the
mutant – either

a test suite
weakness or
an equivalent

mutant!

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Overview of Mutation Analysis

Test Case T1 Test Case T2 Test Case T3 Test Case T4

Execute the
test suite after

enabling a
single mutant
in the program

under test

Repeat this
process for
all of the

test cases
and mutants
– calculate

mutation score
when finished

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Contributions of this Presentation

Efficient
Mutation
Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Contributions of this Presentation

Efficient
Mutation
Analysis

Challenges

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Contributions of this Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Contributions of this Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Contributions of this Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Syntax Tree
Transformation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Contributions of this Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Syntax Tree
Transformation

Expressions
and Statements

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Contributions of this Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Syntax Tree
Transformation

Expressions
and Statements

Compiler
Integrated

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Contributions of this Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Syntax Tree
Transformation

Expressions
and Statements

Compiler
Integrated

Comprehensive
Empirical Study

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Contributions of this Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Syntax Tree
Transformation

Expressions
and Statements

Compiler
Integrated

Comprehensive
Empirical Study

Efficient Technique - Fully Integrated into the Java 6 SE Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Understanding Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Understanding Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Understanding Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Understanding Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

• y = a - x;

• y = a + x;

• y = a / x;

• if(b < a)

• if(b != a)

• if(b == a)

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Understanding Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Unbiased
and powerful
method for
assessing

oracles and
input values

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Understanding Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Unbiased
and powerful
method for
assessing

oracles and
input values

Useful method
for fault seeding

during the
empirical study

of testing
techniques

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests Results

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests Results

Individually Executing the
Mutants is Too Expensive

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests Results

Individually Executing the
Mutants is Too Expensive

Prior
Solutions?

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer

Sampling Selection

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Distributed Weak Mutation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Do Faster

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Do Faster

Compiler
Integrated

Bytecode
Transformation

Mutant
Schemata

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Do Faster

Higher Order
Mutation

Jia and
Harman

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Practical Mutation Analysis

Practical (adjective):

1 Of or concerned with the actual doing or use of something
rather than with theory and ideas

2 (of an idea, plan, or method) Likely to succeed or be
effective in real circumstances; feasible

3 Suitable for a particular purpose

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Practical Mutation Analysis

Practical (adjective):

1 Of or concerned with the actual doing or use of something
rather than with theory and ideas

2 (of an idea, plan, or method) Likely to succeed or be
effective in real circumstances; feasible

3 Suitable for a particular purpose

What are the practical techniques that MAJOR employs for
improving the efficiency and usability of mutation analysis?

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Conditional Mutation

Conditional Mutation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block

Can be inte-
grated within
the compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block

Transforms the
abstract syntax

tree (AST)

Can be inte-
grated within
the compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block

Transforms the
abstract syntax

tree (AST)

Stmt → Conditional Stmt
(if-then-else, switch)

Expr → Conditional Expr
(conditional operator ?:)

Can be inte-
grated within
the compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Transforming the AST

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

=⇒

=⇒

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Transforming the AST

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

ASSIGN

IDENT

y

BINARY

∗

a x

=⇒

=⇒

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Transforming the AST

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

ASSIGN

IDENT

y

BINARY

∗

a x

=⇒

=⇒

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Transforming the AST

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

ASSIGN

IDENT

y

BINARY

∗

a x

=⇒

=⇒

ASSIGN

IDENT

y

COND-EXPR

THEN

BINARY

+

a x

COND

(M NO ==2)

ELSE

COND-EXPR

THEN

BINARY

-

a x

COND

(M NO ==1)

ELSE

BINARY

∗

a x

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==1)? a - x :
a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

Mutants that are not ex-
ecuted cannot be killed

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

Mutants that are not ex-
ecuted cannot be killed

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

(M_NO==0 &&

COVERED(1,3))?

a * x : a * x ;

y += b;

return y;
}

Mutants that are not ex-
ecuted cannot be killed

Determine covered
mutants with addi-

tional instrumentation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

(M_NO==0 &&

COVERED(1,3))?

a * x : a * x ;

y += b;

return y;
}

Mutants that are not ex-
ecuted cannot be killed

Determine covered
mutants with addi-

tional instrumentation

Only execute and investi-
gate the covered mutants

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Common
Compiler Options

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Common
Compiler Options

Domain Specific
Language

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Common
Compiler Options

Domain Specific
Language

Bytecode with
Embedded

Mutants

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Integration into the Java Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Integration into the Java Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Integration into the Java Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Integration into the Java Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Specify mutation
operators in detail

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Specify mutation
operators in detail

Define own mutation
operator groups

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Specify mutation
operators in detail

Define own mutation
operator groups

Enable operators for
a specific package,

class, or method

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

1 Embed and compile all mutants
2 Run test suite on instrumented program
3 Sort tests according to their runtime
4 Perform mutation analysis with reordered test suite

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

1 Embed and compile all mutants
2 Run test suite on instrumented program
3 Sort tests according to their runtime
4 Perform mutation analysis with reordered test suite

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

1 Embed and compile all mutants
2 Run test suite on instrumented program
3 Sort tests according to their runtime
4 Perform mutation analysis with reordered test suite

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

1 Embed and compile all mutants
2 Run test suite on instrumented program
3 Sort tests according to their runtime
4 Perform mutation analysis with reordered test suite

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Compilation Efficiency

Mutant Generation and Compilation

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 20000 40000 60000 80000 100000 120000 140000

C
o

m
p

ile
r

ru
n

ti
m

e
 i
n

 s
e

c
o

n
d

s

Number of mutants

apache ant
jfreechart

itext
java pathfinder
commons math
commons lang

numerics4j

Overhead for generating and compiling mutants is negligible

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Compilation Efficiency

Mutant Generation and Compilation

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 20000 40000 60000 80000 100000 120000 140000

C
o

m
p

ile
r

ru
n

ti
m

e
 i
n

 s
e

c
o

n
d

s

Number of mutants

apache ant
jfreechart

itext
java pathfinder
commons math
commons lang

numerics4j

Overhead for generating and compiling mutants is negligible

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Compilation Efficiency

Time and Space Overhead
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

• Runtime overhead is application dependent
• Larger for CPU-bound applications

• Small for I/O-bound applications

• Even for large projects, applicable on commodity workstations

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Compilation Efficiency

Time and Space Overhead
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

• Runtime overhead is application dependent
• Larger for CPU-bound applications

• Small for I/O-bound applications

• Even for large projects, applicable on commodity workstations

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Compilation Efficiency

Time and Space Overhead
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

• Runtime overhead is application dependent
• Larger for CPU-bound applications

• Small for I/O-bound applications

• Even for large projects, applicable on commodity workstations

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Compilation Efficiency

Time and Space Overhead
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

• Runtime overhead is application dependent
• Larger for CPU-bound applications

• Small for I/O-bound applications

• Even for large projects, applicable on commodity workstations

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Compilation Efficiency

Time and Space Overhead
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

• Runtime overhead is application dependent
• Larger for CPU-bound applications

• Small for I/O-bound applications

• Even for large projects, applicable on commodity workstations

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

N
u

m
b

e
r

o
f

k
ill

e
d

 m
u

ta
n

ts

Runtime in seconds

optimized order (using coverage information)

random order (using coverage information)

original order (using coverage information)

optimized order (without coverage information)

random order (without coverage information)

original order (without coverage information)

• Mutation analysis is not feasible without coverage information
• Reordering the test suite significantly speeds up the process,

especially if runtimes of tests differ by orders of magnitude
Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

N
u

m
b

e
r

o
f

k
ill

e
d

 m
u

ta
n

ts

Runtime in seconds

optimized order (using coverage information)

random order (using coverage information)

original order (using coverage information)

optimized order (without coverage information)

random order (without coverage information)

original order (without coverage information)

• Mutation analysis is not feasible without coverage information
• Reordering the test suite significantly speeds up the process,

especially if runtimes of tests differ by orders of magnitude
Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

N
u

m
b

e
r

o
f

k
ill

e
d

 m
u

ta
n

ts

Runtime in seconds

optimized order (using coverage information)

random order (using coverage information)

original order (using coverage information)

optimized order (without coverage information)

random order (without coverage information)

original order (without coverage information)

• Mutation analysis is not feasible without coverage information
• Reordering the test suite significantly speeds up the process,

especially if runtimes of tests differ by orders of magnitude
Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Retrospective

Revisiting Practical Mutation Analysis

Practical (adjective):

1 Of or concerned with the actual doing or use of something
rather than with theory and ideas

2 (of an idea, plan, or method) Likely to succeed or be
effective in real circumstances; feasible

3 Suitable for a particular purpose

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Retrospective

Revisiting Practical Mutation Analysis

Practical (adjective):

1 Of or concerned with the actual doing or use of something
rather than with theory and ideas

2 (of an idea, plan, or method) Likely to succeed or be
effective in real circumstances; feasible

3 Suitable for a particular purpose

The evidence suggests that MAJOR is “likely to succeed or be
effective” in real-world software testing circumstances

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac-
ceptable time and space over-
heads and scales to large,
real-world programs

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac-
ceptable time and space over-
heads and scales to large,
real-world programs

Usability: MAJOR’s inte-
gration into the Java SE
compiler makes it a no-
hassle, drop-in tool

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac-
ceptable time and space over-
heads and scales to large,
real-world programs

Usability: MAJOR’s inte-
gration into the Java SE
compiler makes it a no-
hassle, drop-in tool

We will release MAJOR as free and open source software

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Conclusions and Future Work

Conclusion

Key Concepts and Features:

• Compiler-integrated solution
• Conditional mutation with the abstract syntax tree
• Furnishes its own domain specific language
• Collects and leverages mutation coverage information

Characteristics of MAJOR:

• Fast and scalable technique
• Configurable and extensible mutation tool
• Enables an optimized workflow for mutation analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

Conclusions and Future Work

Conclusion

Key Concepts and Features:

• Compiler-integrated solution
• Conditional mutation with the abstract syntax tree
• Furnishes its own domain specific language
• Collects and leverages mutation coverage information

Characteristics of MAJOR:

• Fast and scalable technique
• Configurable and extensible mutation tool
• Enables an optimized workflow for mutation analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Practical Techniques for Improving the
Efficiency and Usability of Mutation Analysis

for Java Programs

Gregory M. Kapfhammer

Department of Computer Science
Allegheny College

http://www.cs.allegheny.edu/∼gkapfham/

Thank you for your attention!
I welcome your questions and comments.

http://www.cs.allegheny.edu/~gkapfham/

	Introduction
	Mutation Analysis
	Empirical Evaluation
	Conclusion

