Practical Techniques for Improving the
Efficiency and Usability of Mutation Analysis
for Java Programs

Gregory M. Kapfhammerf

Department of Computer Science

Allegheny College
http://www.cs.allegheny.edu/~gkapfham/

University of Sheffield — February 3, 2012

T Joint with René Just and Franz Schweiggert (University of Ulm) and Jonathan Miller Kauffman (Allegheny College)

) ALLEGHENY COLLEGE

http://www.cs.allegheny.edu/~gkapfham/

Introduction Mutation Analysis Empirical Evaluation Conclusion
®0 00000 00 fole}
00 000000000 o 00

Important Points

Accessing the Presentation

Scan this QR Code with your smartphone!
... or, visit this Web site:
http://is.gd/rekiwo

... or, ask me for a USB drive!

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

http://is.gd/rekiwo

Introduction

oe
00

Important Points

Presenter Introduction: Gregory M. Kapfhammer

Kapfhammer

Mutation Analysis Empirical Evaluation
00000 oo
000000000 o

@ poster preliminary measurement
g >\Slud\es evaluate towardsframeworks prioritizing
H prioritized comprehensive primitives
wansparenty & covering commercialofftheshelf memery
supported @)

§ studying

]
approach
g O ldem,fy,nggu.components
wrappers - & (© devices _information

execunné mutationresource £
syminets heaps = Q framework
communicaton O using

rioritizations

dynamlc
alabaseawave
‘condition:

Sidiona & methods java etedidng cremng g uleS
areedy i O Q roe data H adequacy EMP irical % distgbuted

cots|

Ffﬂ::x‘;vcove rage pp|lC&t|OnS paths

operators 105 initial automatically gdatabase
Compressing ?
neti te: regressmnk
geneticsulIte: e &
forward I g party g
.evaluating § swtes
t efficient chapter “ campare
ﬁ:srt?gih%ré analysis effectlveness iy
EORLES cost regluiction
examination a = Comparlson
dependatie SEc | Jlmeaware
environment free S © 35 =t monitoring
ami S~ § @ javaspacebased
Gaiting rl O r I t I Z atl O n O = £ detecion
incorporating O)g Cimplementation
D g
problematic @ execution © ﬁ 2 invariant
wsrcwred § UNAErstanding gistional Temoie &3 tecnaues
S TS

databasecentric. MUIPIOLS generation ~ Dtransmission
duringsearchbased “INtEractive jinanode searchbased
reports experimental handbook /2VasPace

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Conclusion
0o
oo

Allegheny College

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
e0 000000000 o] [e]e]

Software Testing

What is a Test Case?

Method
Under Test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
e0 000000000 o] [e]e]

Software Testing

What is a Test Case?

Test
Set Up

Under Test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
®0 000000000 o 00

Software Testing

What is a Test Case?

Test
Set Up

Under Test

Test
Clean Up

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 00000 (ele] (ele}
e0 000000000 [e] (e}

Software Testing

What is a Test Case?
Test
Set Up
Method Test
Under Test Oracle

Test
Clean Up

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 00000 (ele] (ele}
e0 000000000 [e] (e}

Software Testing

What is a Test Case?
Test
Set Up
Method Test
Under Test Oracle

Test
Clean Up

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 00000 (ele] (ele}
e0 000000000 [e] (e}

Software Testing

What is a Test Case?
Test
Set Up

@ Method Test
Under Test Oracle

[Test] Test

Clean Up Verdict

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 00000 (ele] (ele}
e0 000000000 [e] (e}

Software Testing

What is a Test Case?
Test
Set Up

@ Method @ Test
Under Test Oracle

[Test] Test

Clean Up Verdict

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 00000 (ele] (ele}
e0 000000000 [e] (e}

Software Testing

What is a Test Case?
Test
Set Up

@ Method Test
Under Test Oracle

[Test] Test

Clean Up Verdict

The test case passes and the code is correct!

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 00000 (ele] (ele}
e0 000000000 [e] (e}

Software Testing

What is a Test Case?
Test
Set Up

@ Method @ Test
Under Test Oracle

[Test] Test

Clean Up Verdict

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e]e} 00000 (ele] (ele}
e0 000000000 [e] (e}

Software Testing

What is a Test Case?
Test
Set Up

@ Method Test
Under Test Oracle

[Test] Test

Clean Up Verdict

| The test case fails and a defect is found! |

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
oe 000000000 o] [e]e]

Software Testing

What is a Test Suite?

Test Suite T = (T4, Ta, ..., To, T1o)

() (=) (&) (&) () () () () (B) (o)

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
oe 000000000 o 00

Software Testing

What is a Test Suite?

Test Suite T = (T4, Ta, ..., To, T1o)

() (=) (&) (&) () () () () (B) (o)

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
oe 000000000 o 00

Software Testing

What is a Test Suite?

Test Suite T = (T4, Ta, ..., To, T1o)

() (=) (&) (&) () () () () (B) (o)

(AJ (A (] (A

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00 fole}
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (B) (o)

(AJ (A (R) (A (Rs) (Re)

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00 fole}
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (B) (o)

(AJ(A](A)(A)(A:) (R) (A1) ()

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00 fole}
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (B) (o)

(AJ (] (~)(A) (R:) (R) (B) (B) (B) (&)

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00 fole}
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (B) (o)

(AJ (] () (A (R:) (R) (B) (B) (B) (B) (B (&)

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00 fole}
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (B) (o)

(AJ (] () (A (R:) (R) (B) (B) (B) (B) (B (&)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00 fole}
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

T (=) () (7s]) (7o) (7] (Te) (Te) (7o)

F) (%) (A] (8] (&)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College
Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00 fole}
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

T T T3 T4 Ts Te [T7] [TS] [ng [Tm]

(AJ (] (R) (A (R:) (7) (B) (B) () (B (8D (B2

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00 fole}
ooooooooo

Software Testing

What is a Test Suite?

Test Suite T = T1 T2 Tg, T1o

T T T3 T4 [T7] [TS] [ng [Tm]

b

(A () (R (A) (Rs) (e (R)(A] (B (&

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College
Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00 fole}
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (B) (o)

(AJ (] () (A (R:) (R) (B) (B) (B) (B) (B (&)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (B) (o)

| How Good is Test Suite 77|

(AJ (] () (A (R:) (R) (B) (B) (B) (B) (B (&)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (B) (o)

| How Good is Test Suite 77|

Coverage Analysis
() () (A] (R (7] (B) (A1) (2] (Be) (Fe) (B0 (B2)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
co 00000 00
ooooooooo

Software Testing

What is a Test Suite?

TestSuite T = (T, To,, Tg, T1o)

() (=) (&) (&) () () () () (B) (o)

| How Good is Test Suite 77|

Coverage Analysis Mutation Analysis
() () (A] (R (7] (B) (A1) (2] (Be) (Fe) (B0 (B2)

| Requirements R = {R;, ..., Rs}, Features F = {F4, ..., F4}, Bug Fixes B = {B1, B>} |

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000 [e]e]
[o]e] 000000000 o]

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation
Operator Operator
Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Conclusion

(ele}
(e}

Allegheny College

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
sl:jndamental Concepts B : .
Overview of Mutation Analysis
Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} @0000 (ele] (ele}
(e} 000000000 [e] (e}

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

C D

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} @0000 (ele] (ele}
(e} 000000000 [e] (e}

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

C D

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} @0000 (ele] (ele}
(e} 000000000 [e] (e}

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

C D

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

Mutation Mutation Mutation Mutation
Operator Operator Operator Operator

C D

Methodically
inject small
syntactical
faults into

the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Inrodution Mutation Analysis Emprical Evaluation Conclusion
CA— 8 8
Overview of Mutation Analysis
[Mutation } { Mutation } { Mutation } [Mutation]
Operator Operator Operator Operator
C D

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

C D

Execute the
test suite after
enabling a
single mutant
in the program
under test

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

(- 1 1 (— [The test suite |
cannot kill the
—1 — —1 1 mutant — either
a test suite
1 1 —1 — weakness or
an equivalent
Em 1 [[T ____mutant!

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 ©0000 00 fole}
00 000000000 o 00

Fundamental Concepts

Overview of Mutation Analysis

[Test Case 7'1] [Test Case ng [Test Case ng [Test Case T4]

— — — — ([Repeat this
process for
all of the
test cases
and mutants
— calculate
mutation score
| when finished |

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] (o] Telele] [e]e] [e]e]
[o]e] 000000000 o] [e]e]

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges

Mutation
Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] (o] Telele] [e]e] [e]e]
[o]e] 000000000 o] [e]e]

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges

Mutation

Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®000 00 fole}
00 000000000 o 00

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges

Mutation

Analysis

| Conditional Mutation |

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®000 00 fole}
00 000000000 o 00

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges

Mutation

Analysis

| Conditional Mutation |

Syntax Tree
Transformation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®000 00 fole}
00 000000000 o 00

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges

Mutation

Analysis

| Conditional Mutation |

Syntax Tree
Transformation

Expressions
and Statements

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®000 00 fole}
00 000000000 o 00

Fundamental Concepts

Contributions of this Presentation

Efficient Challenges
Mutation

Analysis Solutions

| Conditional Mutation |

Syntax Tree Compiler
Transformation Integrated

Expressions
and Statements

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®000 00 fole}
00 000000000 o 00

Fundamental Concepts

Contributions of this Presentation

{ Comprehensive] 53‘::2:] Challenges
Empirical Stud .
> y Analysis

| Conditional Mutation |

Syntax Tree Compiler
Transformation Integrated

Expressions
and Statements

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0®000 0o fole)
oo 000000000 o oo

Fundamental Concepts

Contributions of this Presentation

[Efficient Technique - Fully Integrated into the Java 6 SE Compiler]

Comprehensive Efficient Challenges
iri Mutation
Empirical Study

Analysis

| Conditional Mutation |

Syntax Tree Compiler
Transformation Integrated

Expressions
and Statements

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis
[e]e]
[o]e]

Empirical Evaluation
00e00 [e]e]
000000000 o]

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {
int a=3, b=1l, vy;

y =ax x;

y +=b;
return y;
}

public int max(int a, int D) {

int max = a;

if (b>a) {

max=b;

return max;

}

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Conclusion
[e]e]
[e]e]

Allegheny College

Introduction Mutation Analysis

(e} [e]e] lole}

(e} 000000000

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {

int a=3, b=1l, vy;

y =ax x;

y +=b;
return y;

}

public int max (int a,
int max = a;

if (b>a) {

max=b;

return max;

}

Kapfhammer

int b) {

Empirical Evaluation Conclusion

(ele}
(e}

Methodically
inject small
syntactical
faults into
the program
under test

Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00e00 [e]e]
[o]e] 000000000 o]

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {
int a=3, b=1l, vy;

y = a * x;

y +=b;
return y;
}

public int max(int a, int D) {
int max = a;

if (b>a) {

max=b;

return max;
}

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Conclusion
[e]e]
[e]e]

Allegheny College

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00e00 [e]e] [e]e]
[o]e] 000000000 o] [e]e]

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {
int a=3, b=1l, vy;

Yy =a - %
y = a *x %x; — ey = a + X;
° = a / x;
y += b; . !
return y;
}
public int max(int a, int D) {
int max = a; 0if(b<a)
if (b>a) { _— e if(b != a)
} max=b; ° if(b == a)
return max;
}
Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00e00 [e]e] [e]e]
[o]e] 000000000 o] [e]e]

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {
int a=3, b=1l, vy;

y =a x x;

y +=b;
return y;

}

public int max(int a, int D) {
int max = a;

if (b>a) {

max=b;

return max;

}

Kapfhammer

Unbiased
and powerful
method for
assessing
oracles and
input values

Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00800 00 fole}
00 000000000 o 00

Fundamental Concepts

Understanding Mutation Analysis

public int eval (int x) {

int a=3, b=1l, vy;
y = a * x;
y +=b;

return y;

}

public int max(int a, int D) {
int max = a;

if (b>a) {

max=b;

}

return max;

}

Kapfhammer

Unbiased
and powerful
method for
assessing
oracles and
input values

(Useful method)
for fault seeding
during the
empirical study
of testing
techniques

Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] [e]e]e] o] [e]e] [e]e]
[o]e] 000000000 o] [e]e]

Fundamental Concepts

Mutation Analysis Challenges

l':
Mutation ||| [Mutant
Operators |{ | Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] [e]e]e] o] [e]e] [e]e]
[o]e] 000000000 o] [e]e]

Fundamental Concepts

Mutation Analysis Challenges

Program

l':
Mutation ||| [Mutant
Operators |{ | Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000000 o 00

Fundamental Concepts

Mutation Analysis Challenges

Program

e ——

Mutation ||| [Mutant]_,ll

Operators |{ | Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000000 o 00

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SubStan’[lal Num'
ber of Mutants

e ——

Mutation ||| [Mutant]_,ll

Operators |{ | Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000000 o 00

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SubStan’[lal Num'
ber of Mutants

e ——

Mutation ||| (~ Mutant]_,M_utantsﬂ

Operators |{ | Generation

High Time Over-
head for Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000000 o 00

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SUbStan’[Ial Num'
ber of Mutants

e ——

Mutation ||| [Mutant @
Operators |{ | Generation

Mutation
Analysis

High Time Over-
head for Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000000 o 00

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SUbStan’[Ial Num'
ber of Mutants

e ——

Mutation ||| [Mutant Iﬁ
Operators |{ | Generation .
T| Mutation
S Analysis

High Time Over-
head for Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 0o fole)
oo 000000000 o oo

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SUbStan’[Ial Num'
ber of Mutants

l':
Mutation ||| [Mutant @
Operators |{ | Generation

————] Mutation

s P Jen

High Time Over-
head for Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 0o fole)
oo 000000000 o oo

Fundamental Concepts

Mutation Analysis Challenges

Often Yields a
Program SUbStan’[Ial Num'
ber of Mutants

l':
Mutation ||| [Mutant @
Operators |{ | Generation

————] Mutation

s P Jen

High Time Over- Individually Executing the
head for Generation Mutants is Too Expensive

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} [e]e]e] lo} (ele] (ele}
(e} 000000000 [e] (e}

Fundamental Concepts

Mutation Analysis Challenges

Prior Often Yields a
Solutions? Program Substantial Num-

ber of Mutants

l':
Mutation ||| [Mutant Iﬁ
Operators |{ | Generation .

————] Mutation

s P Jen

High Time Over- Individually Executing the
head for Generation Mutants is Too Expensive

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 0000e [e]e] [e]e]
[o]e] 000000000 o] [e]e]

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 0000e [e]e] [e]e]
[o]e] 000000000 o] [e]e]

Fundamental Concepts

Prior Work in Mutation Analysis

Offutt and

Improving Mutation Analysis
proving Viutati yst Untch

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 0000e [e]e] [e]e]
[o]e] 000000000 o] [e]e]

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

/

Do Fewer |

Untch

[Offutt and]

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0000@ 00 fole}
00 000000000 o 00

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

/

Untch

[Offutt and]

| Do Fewer |
Sampling | Selection |
Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0000@ 00 fole}
00 000000000 o 00

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

S

Do Fewer | | Do Smarter |

Untch

[Offutt and]

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0000@ 00 fole}
00 000000000 o 00

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

S

Do Fewer | | Do Smarter |

/

| Distributed | | Weak Mutation |

Untch

[Offutt and]

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0000@ 00 fole}
00 000000000 o 00

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

T

Do Fewer | | Do Smarter |

Untch

[Offutt and]

| Do Faster |

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0000@ 00 fole}
00 000000000 o 00

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

[Offutt and]

/ \ Untch
Do Fewer | | Do Smarter |
| Do Faster |
Compiler Bytecode Mutant
Integrated Transformation Schemata
Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 0000@ 00 fole}
00 000000000 o 00

Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis

T

Do Fewer | | Do Smarter |

Untch

[Offutt and]

| Do Faster |

Jia and Higher Order
Harman Mutation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
oo
o

00 00000 00
00 900000000 00

Mutation Analysis with MAJOR

Practical Mutation Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation

(e} 00000 (ele]
(e} ®00000000 [e]

Mutation Analysis with MAJOR

Practical Mutation Analysis

Conclusion
fole)
oo

(Practical (adjective):

rather than with theory and ideas

effective in real circumstances; feasible
L ® Suitable for a particular purpose

© Of or concerned with the actual doing or use of something

® (of an idea, plan, or method) Likely to succeed or be

What are the practical techniques that MAJOR employs for
improving the efficiency and usability of mutation analysis?

J

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000 [e]e]
[o]e] 0®0000000 o]

Mutation Analysis with MAJOR

Conditional Mutation

| Conditional Mutation

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Conclusion

(ele}
(e}

Allegheny College

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000 [e]e]
[o]e] 0®0000000 o]

Mutation Analysis with MAJOR

Conditional Mutation

| Conditional Mutation

Encapsulates all
mutants within
the same block

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Conclusion

(ele}
(e}

Allegheny College

Introduction Mutation Analysis
[e]e] 00000
[o]e] 0®0000000

Mutation Analysis with MAJOR

Conditional Mutation

Empirical Evaluation

(ele]
[e]

| Conditional Mutation |

—

Encapsulates all
mutants within
the same block

Kapfhammer

S

Conclusion

(ele}
(e}

Can be inte-
grated within
the compiler

Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis

(e} 00000
(e} O®@0000000

Mutation Analysis with MAJOR

Conditional Mutation

Empirical Evaluation Conclusion
0o fole)
o oo

| Conditional Mutation |

Encapsulates all
mutants within
the same block

Transforms the
abstract syntax
tree (AST)

Can be inte-
grated within
the compiler

Kapfhammer

Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis
[e]e] 00000
[o]e] 0®0000000

Mutation Analysis with MAJOR

Conditional Mutation

Empirical Evaluation
0o
o

| Conditional Mutation |

Conclusion
fole)
oo

Encapsulates all
mutants within
the same block

Transforms the
abstract syntax
tree (AST)

Can be inte-
grated within
the compiler

e

~

Stmt — Conditional Stmt
(if-then-else, switch)

Expr — Conditional Expr
(conditional operator ?:)

Kapfhammer

Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

public int eval (int x) {
int a=3, b=1, vy;

y = axx;

y +=Db;
return y;

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000 [e]e]
oo 00®000000 o

Mutation Analysis with MAJOR

Transforming the AST

public int eval (int x) {
int a=3, b=1, vy;

y += Db;
return y;

4

ASSIGN

IDENT BINARY

| |
y *

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Conclusion

(ele}
(e}

Allegheny College

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000 [e]e]
oo 00®000000 o

Mutation Analysis with MAJOR

Transforming the AST

public int eval (int x) {
int a=3, b=1, vy;

y += Db;
return y;

4

ASSIGN

IDENT [BINARY

| |
y *

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Conclusion

(ele}
(e}

Allegheny College

Introduction Mutation Analysis
[e]e] 00000
[o]e] 00e000000

Mutation Analysis with MAJOR

Transforming the AST

public int eval (int x) {
int a=3, b=1, vy;

== | —

y += Db;
return y;

4

Kapfhammer

ASSIGN
IDENT | BINARY
| | —
y *
S
a X

Empirical Evaluation Conclusion

00 00
o 00
ASSIGN

PN

IDENT COND-EXPR

PN

THEN COND ELSE
BH\ARY (M N == COND EXPR
|
+
S
a X THEN COND EL@E

BII\ARY (MJ\IO ==1) BINARY
| |

- *

/\ N

a X a X

Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000 [e]e]
[o]e] 000800000 o]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1l, vy;

y = axx;

y += Db;
return y;

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Conclusion

(ele}
(e}

Allegheny College

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 000800000 o] [e]e]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1l, vy;

y = axx;

y += Db;
return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 000800000 o] [e]e]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1l, vy;

vy = X

y += Db;
return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}
® Determine whether current expression or statement is
affected by mutation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 000800000 o] [e]e]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1l, vy;

y = (M.NO==1)? a - x:
(e = x];
y += Db

return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}
® Determine whether current expression or statement is
affected by mutation

©® Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 000800000 o] [e]e]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1l, vy;

y = (M_NO==2)? a + x:
(M_NO==1)? a - x:
E==

y += Db;

return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}
® Determine whether current expression or statement is
affected by mutation

©® Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 000800000 o] [e]e]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {
int a=3, b=1l, vy;

y = (M_NO==3)? a / x:
(M_NO==2)7? a + x:
(M_NO==1)7? a - x

E==

y +=b;

return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}

® Determine whether current expression or statement is
affected by mutation

©® Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 000800000 o] [e]e]

Mutation Analysis with MAJOR

Source Code View of Inserting Mutants

public int eval (int x) {

int a=3, b=1, vi Mutants that are not ex-
y = (MNO==3)? a / x: ecuted cannot be killed
(M_NO==2)7? a + x:
(M_NO==1)? a - X
==
y +=b;

return y;

© Define mutation operators MoP(x xy) = {x — y,x + y,x/y}

® Determine whether current expression or statement is
affected by mutation

©® Apply mutation operators

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} 00000 (ele] (ele}
(e} 0O000@0000 [e] (e}

Mutation Analysis with MAJOR
Collecting and Using Mutation Coverage

public int eval (int x) {
int a=3, b=l, yi Mutants that are not ex-
ecuted cannot be killed

y = (M_NO==3)? a / x:
(M_NO==2)7? a + x:
(M_NO==1)? a - x:
E==;
y += b;
return y;
}
Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[e]e]

[o]e] 0000@e0000 o]
Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage

public int eval (int x) {

. _ — . ()
int a=3, b=1, y; Mutants that are not ex-
y = (MNO==3)? a / x: ____ecuted cannot be killed |
(M_NO==2)7? a + x:
(M_NO==1)? a - x:)

Determine covered
mutants with addi-

COVERED (1, 3))? .) .
2% Eo ___tional instrumentation |

(M_NO==0 &&

y += Db;

return y;

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis

(e} 00000
(e} 0O000@0000

Mutation Analysis with MAJOR

Empirical Evaluation
0o
o

Collecting and Using Mutation Coverage

public int eval (int x) {
int a=3, b=1l, vy;

y = (M_NO==3)? a / x:
(M_NO==2)7? a + x:
(M_NO==1)? a - x:

Conclusion
fole}
00

Mutants that are not ex-
ecuted cannot be killed

(M_NO==0 &&

COVERED (1, 3))?

axx : E2x)
y += Db;

return y;

Kapfhammer

Determine covered
mutants with addi-
tional instrumentation

Only execute and investi-
gate the covered mutants

Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 00000e000 o]

[e]e]
Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000000 o 00

Mutation Analysis with MAJOR

MAJOR’s Compiler

Source Files [MAJOR's
L Compiler

Enhanced Standard
Java Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000000 o 00

Mutation Analysis with MAJOR

MAJOR’s Compiler

Common
Compiler Options

—

Source Files [MAJOR's
L Compiler

Enhanced Standard
Java Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000000 o 00

Mutation Analysis with MAJOR

MAJOR’s Compiler

Common Domain Specific
Compiler Options Language

-- N/

Source Files (MAJOR’s
| Compiler

Enhanced Standard
Java Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000000 o 00

Mutation Analysis with MAJOR

MAJOR’s Compiler

Common Domain Specific
Compiler Options Language

.. ~ .

Source Files (MAJOR'’s } Bytecode with

. Embedded
|
I L Compiler Mutants
Enhanced Standard
Java Compiler
Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis

Empirical Evaluation Conclusion
00 00000 0o fole)
oo 00000000 o oo

Mutation Analysis with MAJOR

Integration into the Java Compiler

Compiler

Parse — Attribute — Flow —® Lower —»

Generate

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis

Empirical Evaluation Conclusion
00 00000 0o fole)
oo 00000000 o

[e]e]
Mutation Analysis with MAJOR

Integration into the Java Compiler

Compiler

Parse — Attribute — Flow —® Lower —»

Conditionalj

Mutation

Generate

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation

Conclusion
00 00000 00 fole}
00 000000800 o 00

Mutation Analysis with MAJOR

Integration into the Java Compiler

Compiler

Parse [— Attribute — Flow —® Lower —® Generate

Conditionalj

Mutation
| <<use >>
Configuration
Compiler Domain specific
options language

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000800 o 00

Mutation Analysis with MAJOR

Integration into the Java Compiler

Compiler

Parse [— Attribute — Flow —® Lower —® Generate

Condjtionalj

Mutation

| <<use >>
|

Configuration Driver

Compiler Domain specific Mutant Mutation
options language identifier coverage

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000 [e]e]
[o]e] 0000000080 o]

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list
BIN(+)<"org"> -> {-,*};
BIN () <"org"> -> {/,%};

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;
Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Conclusion
[e]e]
[e]e]

Allegheny College

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 000000080 o] [e]e]

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};

// Define replacement list]
BIN (+)<"org"> —> {—,+};]

Specify mutation

(BN <rora™> = (/,51; | operators in detalil
// Define own operator
myOp {

BIN (&&) —-> 1istCOR;

BIN(||) —-> 1istCOR;

COR;

LVR;
}
// Enable built-in operator AOR
AOR<"org">;
// Enable operator myOp
myOp<"java.lang.System@println">;

Kapfhammer Allegheny College
Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 00 fole}
00 000000080 o 00

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list

Specify mutation

BIN (+) <"org"> —> {-,+}; - .
operators in detalil

BIN (*)<"org"> —> {/,%};

J

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;
}
// Enable built-in operator AOR
AOR<"org">;

Define own mutation)
operator groups

// Enable operator myOp
myOp<"java.lang.System@println">;

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
00 00000 0o fole)
oo 000000000 o oo

Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list

Specify mutation

BIN (+) <"org"> —> {-,+}; - .
operators in detalil

BIN (*)<"org"> —> {/,%};

J

// Define own operator

myOp {
— 1 . 4 N . N\
) o8 Pty Define own mutation
on, operator groups
LVR;

}
// Enable built-in operator AOR
AOR<"org">;

[Enable operators for)
a specific package,
class, or method

l // Enable operator myOp

l
l
|
|
|
|
BIN(||) —> liStCOR; |
|
|
l
l
l
l

[myOp<"java.lang.System@println">;

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000 [e]e]
[o]e] 00000000e o]

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

Compile Instrumented
mutants program

Conclusion

(ele}
(e}

© Embed and compile all mutants

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College

Introduction Mutation Analysis Empirical Evaluation
[e]e] 00000 [e]e]
[o]e] 00000000e o]

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process
Original
test suite
Compile Instrumented Execute Runtime of
mutants program test suite test cases
Mutation
coverage

-

Conclusion

(ele}
(e}

© Embed and compile all mutants
® Run test suite on instrumented program

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 00000000e o] [e]e]

Mutation Analysis with MAJOR

Optimized Mutation Analysis Process
Original

test suite

i

Compile Instrumented Execute Runtime of| _ |Prioritize | | Reordered
mutants program test suite test cases test cases test suite
Mutation

coverage

© Embed and compile all mutants
® Run test suite on instrumented program
@® Sort tests according to their runtime

-

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [e]e] [e]e]
[o]e] 00000000e o] [e]e]
Mutation Analysis with MAJOR
Optimized Mutation Analysis Process
Original
test suite
Y y
Compile Instrumented Execute Runtime of| _ |Prioritize | Reordered Mutation
mutants program test suite test cases test cases test suite analysis

A A

Mutation
coverage

© Embed and compile all mutants

® Run test suite on instrumented program

@® Sort tests according to their runtime

@ Perform mutation analysis with reordered test suite

Kapfhammer

Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 [le} [e]e]
[o]e] 000000000 o] [e]e]

Compilation Efficiency

Mutant Generation and Compilation

12
11 B S
10
9
w Lo ——o
2
8 8
o3 R
2 I
£ 5 - i
£ B —
R S— S
2 —
2 //
k) L
g s
S
8 L /
4y
/ apache ant *
3] g
itext
/ java pathfinder
2 commons math & 4
commons lang +
;) numer\csAi)
0 20000 40000 60000 80000 100000 120000 140000
Number of mutants
Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

(e} 00000 L e} (ele}
(e} 000000000 [e] (e}

Compilation Efficiency

Mutant Generation and Compilation

12
11 —T—
K . _ B
'Bf—f,—a»_,,,-_,f‘i
0
38
2
g 8
3
m I
| I
£ 7
g B
5 6 o = T
; i —
g /'/>“" /
g s) -
8 o =
4

apache ant *

itext
java pathfinder
commons math ®
commons lang +
numer\csAi)

?\\

1 I
0 20000 40000 60000 80000 100000 120000 140000
Number of mutants

Overhead for generating and compiling mutants is negligible

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 oe [e]e]
[o]e] 000000000 o] [e]e]

Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original instrumented
WCS WCSs+Cov
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90
Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 oe [e]e]
[o]e] 000000000 o] [e]e]

Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original instrumented
WCS WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 oe [e]e]
[o]e] 000000000 o] [e]e]

Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original instrumented
WCS WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
e | Larger for CPU-bound applications

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 oe [e]e]
[o]e] 000000000 o] [e]e]

Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original instrumented
WCS WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
Larger for CPU-bound applications ‘

Small for I/O-bound applications ‘

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[e]e] 00000 oe [e]e]
[o]e] 000000000 o] [e]e]

Compilation Efficiency

Time and Space Overhead

Application Mutants Runtime of test suite Memory consumption
original instrumented original instrumented
WCS WCS+COV
aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303
itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149
numerics4j 5,869 1.2 1.3 1.6 73 90

e Runtime overhead is application dependent
Larger for CPU-bound applications ‘

Small for I/O-bound applications ‘

Even for large projects, applicable on commodity workstations

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction

(e}
(e}

Mutation Analysis Efficiency

Mutation Analysis

00000

000000000

Empirical Evaluation

00
()

Evaluating and Improving Mutation Analysis

180 e — ./——FJ’—//' /
(7] A
|
|
140 f
g 120 "
4 _/
E | ?/’—l—/ﬂg
B 100 x
iV
o soff
§ /
|
§ 60 [
optimized order (using coverage information) —=—
40 random order (using coverage information)
original order (using coverage information) —<—
2 i order (without coverage information) —«—
0 random order (without coverage information) —+—
original order (without coverage information) —v—
0) I
60 80

Kapfhammer

40

Runtime in seconds

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

100

Conclusion

(ele}
(e}

Allegheny College

Mutation Analysis Empirical Evaluation

Introduction
[e]e] 00000 [e]e]
[o]e] 000000000 []

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis

180 pe—

e

160

——

Conclusion

(ele}
(e}

140 |

120

— 71—
i

/3
4/

100

80 [
| /
A

60

Number of killed mutants
N
~
o
y

optimized order (using coverage information) —=—
random order (using coverage information)

original order (using coverage information) —<—

) ——

) —v—

40 f

order (without coverage information

random order (without coverage information|

original order (without coverage information,
) I

20

100

0
20 40 60 80

0
Runtime in seconds

e Mutation analysis is not feasible without coverage information

Kapfhammer
Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College

Mutation Analysis Empirical Evaluation Conclusion

Introduction
[e]e] 00000 [e]e] [e]e]
[o]e] 000000000 [] [e]e]

Mutation Analysis Efficiency

Evaluating and Improving Mutation Analysis

180 s
P S
Y ———— |
160 4
wl ! A
|
g 120 "'
4 _/
E | T,/A‘L/ﬁ/
B 100 -
iV
I
1 |
NIy
3 60
/ optimized order (using coverage information) —=—
40 random order (using coverage information) -
original order (using coverage information) —<—
2 i order (without coverage information) —«— |
0 random order (without coverage information) —+—
original order (without coverage information) —v—
0) I
0 20 40 60 80 100

Runtime in seconds

e Mutation analysis is not feasible without coverage information

e Reordering the test suite significantly speeds up the process,

especially if runtimes of tests differ by orders of magnitude
Kapfhammer Allegheny College
Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion
[3}
00

0o 00000 oo
oo 000000000 o
Retrospective

Revisiting Practical Mutation Analysis

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation
00 00000 0o

oo 000000000 o

Retrospective

Reuvisiting Practical Mutation Analysis

Conclusion

[]
(e}

(Practical (adjective):

rather than with theory and ideas

effective in real circumstances; feasible
L ® Suitable for a particular purpose

© Of or concerned with the actual doing or use of something

® (of an idea, plan, or method) Likely to succeed or be

J

(S

[The evidence suggests that MAJOR is “likely to succeed or be)
effective” in real-world software testing circumstances

J

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College

Introduction Mutation Analysis Empirical Evaluation Conclusion

[e]e] 00000 [e]e] oe
[o]e] 000000000 o] [e]e]
Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac-
ceptable time and space over-
heads and scales to large,
real-world programs

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

[e]e] 00000 [e]e] oe
[o]e] 000000000 o] [e]e]
Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac- Usability: MAJOR’s inte-
ceptable time and space over- gration into the Java SE
heads and scales to large, compiler makes it a no-
real-world programs hassle, drop-in tool

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction Mutation Analysis Empirical Evaluation Conclusion

[e]e] 00000 [e]e] oe
[o]e] 000000000 o] [e]e]
Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac- Usability: MAJOR’s inte-
ceptable time and space over- gration into the Java SE
heads and scales to large, compiler makes it a no-
real-world programs hassle, drop-in tool

[We will release MAJOR as free and open source software]

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Introduction

(e}
(e}

Mutation Analysis Empirical Evaluation
00000 0o
000000000 o

Conclusions and Future Work

Conclusion

Conclusion

00
o0

Key Concepts and Features:

Compiler-integrated solution

Conditional mutation with the abstract syntax tree
Furnishes its own domain specific language

Collects and leverages mutation coverage information

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College

Introduction Mutation Analysis Empirical Evaluation
00 00000 00
oo 000000000 o

Conclusions and Future Work

Conclusion

Conclusion

00
o0

Key Concepts and Features:

Compiler-integrated solution

Conditional mutation with the abstract syntax tree
Furnishes its own domain specific language

Collects and leverages mutation coverage information

Characteristics of MAJOR:

¢ Fast and scalable technique
¢ Configurable and extensible mutation tool
e Enables an optimized workflow for mutation analysis

Kapfhammer

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs

Allegheny College

Practical Techniques for Improving the
Efficiency and Usability of Mutation Analysis
for Java Programs

Gregory M. Kapfhammer

Department of Computer Science

Allegheny College
http://www.cs.allegheny.edu/~gkapfham/

Thank you for your attention!
| welcome your questions and comments.

ALLEGHENY COLLEGE

http://www.cs.allegheny.edu/~gkapfham/

	Introduction
	Mutation Analysis
	Empirical Evaluation
	Conclusion

