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public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}
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• y = a - x;

• y = a + x;

• y = a / x;

• if(b < a)

• if(b != a)

• if(b == a)
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Fundamental Concepts

Understanding Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Unbiased
and powerful
method for
assessing

oracles and
input values
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Fundamental Concepts

Understanding Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Unbiased
and powerful
method for
assessing

oracles and
input values

Useful method
for fault seeding

during the
empirical study

of testing
techniques
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Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation
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Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
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Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants
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Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants
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Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs



Introduction Mutation Analysis Empirical Evaluation Conclusion

Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
Analysis
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Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests
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Fundamental Concepts

Mutation Analysis Challenges
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Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests Results

Individually Executing the
Mutants is Too Expensive
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Fundamental Concepts

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests Results

Individually Executing the
Mutants is Too Expensive

Prior
Solutions?
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Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis
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Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch
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Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer
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Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer

Sampling Selection
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Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter
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Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Distributed Weak Mutation
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Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Do Faster
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Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Do Faster

Compiler
Integrated

Bytecode
Transformation

Mutant
Schemata
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Fundamental Concepts

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Do Faster

Higher Order
Mutation

Jia and
Harman
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Mutation Analysis with MAJOR

Practical Mutation Analysis

Practical (adjective):

1 Of or concerned with the actual doing or use of something
rather than with theory and ideas

2 (of an idea, plan, or method) Likely to succeed or be
effective in real circumstances; feasible

3 Suitable for a particular purpose
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Mutation Analysis with MAJOR

Practical Mutation Analysis

Practical (adjective):

1 Of or concerned with the actual doing or use of something
rather than with theory and ideas

2 (of an idea, plan, or method) Likely to succeed or be
effective in real circumstances; feasible

3 Suitable for a particular purpose

What are the practical techniques that MAJOR employs for
improving the efficiency and usability of mutation analysis?
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Mutation Analysis with MAJOR

Conditional Mutation

Conditional Mutation
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Mutation Analysis with MAJOR

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block
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Conditional Mutation

Encapsulates all
mutants within
the same block

Can be inte-
grated within
the compiler
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Mutation Analysis with MAJOR

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block

Transforms the
abstract syntax

tree (AST)

Can be inte-
grated within
the compiler
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Mutation Analysis with MAJOR

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block

Transforms the
abstract syntax

tree (AST)

Stmt → Conditional Stmt
(if-then-else, switch)

Expr → Conditional Expr
(conditional operator ?:)

Can be inte-
grated within
the compiler
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Mutation Analysis with MAJOR

Transforming the AST

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

=⇒

=⇒
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Mutation Analysis with MAJOR

Transforming the AST

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

ASSIGN

IDENT

y

BINARY

∗

a x

=⇒

=⇒
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Mutation Analysis with MAJOR

Transforming the AST

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

ASSIGN

IDENT

y

BINARY

∗

a x

=⇒

=⇒
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Mutation Analysis with MAJOR

Transforming the AST

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

ASSIGN

IDENT

y

BINARY

∗

a x

=⇒

=⇒

ASSIGN

IDENT

y

COND-EXPR

THEN

BINARY

+

a x

COND

(M NO ==2)

ELSE

COND-EXPR

THEN

BINARY

-

a x

COND

(M NO ==1)

ELSE

BINARY

∗

a x
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Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators
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Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators
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Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators
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Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==1)? a - x :
a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators
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Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators
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Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators
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Mutation Analysis with MAJOR

Source Code View of Inserting Mutants
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

Mutants that are not ex-
ecuted cannot be killed

1 Define mutation operators MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current expression or statement is
affected by mutation

3 Apply mutation operators
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Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

Mutants that are not ex-
ecuted cannot be killed
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Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

(M_NO==0 &&

COVERED(1,3))?

a * x : a * x ;

y += b;

return y;
}

Mutants that are not ex-
ecuted cannot be killed

Determine covered
mutants with addi-

tional instrumentation
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Mutation Analysis with MAJOR

Collecting and Using Mutation Coverage
public int eval(int x){

int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

(M_NO==0 &&

COVERED(1,3))?

a * x : a * x ;

y += b;

return y;
}

Mutants that are not ex-
ecuted cannot be killed

Determine covered
mutants with addi-

tional instrumentation

Only execute and investi-
gate the covered mutants
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Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler
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Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler
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Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files
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Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Common
Compiler Options
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Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Common
Compiler Options

Domain Specific
Language
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Mutation Analysis with MAJOR

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Common
Compiler Options

Domain Specific
Language

Bytecode with
Embedded

Mutants
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Mutation Analysis with MAJOR

Integration into the Java Compiler
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Mutation Analysis with MAJOR

Integration into the Java Compiler

Kapfhammer Allegheny College

Practical Techniques for Improving the Efficiency and Usability of Mutation Analysis for Java Programs



Introduction Mutation Analysis Empirical Evaluation Conclusion

Mutation Analysis with MAJOR

Integration into the Java Compiler
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Mutation Analysis with MAJOR

Integration into the Java Compiler
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Specify mutation
operators in detail
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Specify mutation
operators in detail

Define own mutation
operator groups
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Mutation Analysis with MAJOR

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Specify mutation
operators in detail

Define own mutation
operator groups

Enable operators for
a specific package,

class, or method
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Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

1 Embed and compile all mutants
2 Run test suite on instrumented program
3 Sort tests according to their runtime
4 Perform mutation analysis with reordered test suite
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2 Run test suite on instrumented program
3 Sort tests according to their runtime
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Mutation Analysis with MAJOR

Optimized Mutation Analysis Process

1 Embed and compile all mutants
2 Run test suite on instrumented program
3 Sort tests according to their runtime
4 Perform mutation analysis with reordered test suite
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Compilation Efficiency

Mutant Generation and Compilation
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Overhead for generating and compiling mutants is negligible
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Compilation Efficiency

Time and Space Overhead
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

• Runtime overhead is application dependent
• Larger for CPU-bound applications

• Small for I/O-bound applications

• Even for large projects, applicable on commodity workstations
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Evaluating and Improving Mutation Analysis
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• Mutation analysis is not feasible without coverage information
• Reordering the test suite significantly speeds up the process,

especially if runtimes of tests differ by orders of magnitude
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Retrospective

Revisiting Practical Mutation Analysis

Practical (adjective):

1 Of or concerned with the actual doing or use of something
rather than with theory and ideas

2 (of an idea, plan, or method) Likely to succeed or be
effective in real circumstances; feasible

3 Suitable for a particular purpose
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Retrospective

Revisiting Practical Mutation Analysis

Practical (adjective):

1 Of or concerned with the actual doing or use of something
rather than with theory and ideas

2 (of an idea, plan, or method) Likely to succeed or be
effective in real circumstances; feasible

3 Suitable for a particular purpose

The evidence suggests that MAJOR is “likely to succeed or be
effective” in real-world software testing circumstances
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Retrospective

Reviewing MAJOR’s Contributions
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Retrospective

Reviewing MAJOR’s Contributions

Mutation
Analysis

Efficiency: MAJOR has ac-
ceptable time and space over-
heads and scales to large,
real-world programs

Usability: MAJOR’s inte-
gration into the Java SE
compiler makes it a no-
hassle, drop-in tool

We will release MAJOR as free and open source software
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Conclusions and Future Work

Conclusion

Key Concepts and Features:

• Compiler-integrated solution
• Conditional mutation with the abstract syntax tree
• Furnishes its own domain specific language
• Collects and leverages mutation coverage information

Characteristics of MAJOR:

• Fast and scalable technique
• Configurable and extensible mutation tool
• Enables an optimized workflow for mutation analysis
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Thank you for your attention!
I welcome your questions and comments.

http://www.cs.allegheny.edu/~gkapfham/
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