# Regression Testing Techniques for Relational Database Applications

Gregory M. Kapfhammer†

Department of Computer Science Allegheny College http://www.cs.allegheny.edu/~gkapfham/

University of Ulm – January 23, 2012

<sup>†</sup> Joint with Mary Lou Soffa (University of Virginia) and Jonathan Miller Kauffman (Allegheny College)



Important Points

Introduction

#### Presenter Introduction: Gregory M. Kapfhammer



Kapfhammer Allegheny College

Introduction

•00

#### Software and Data are Everywhere

Program

Computer Server

Introduction

•00

#### Software and Data are Everywhere

Program

Program

Desktop Computer Computer Server

Introduction

•00

#### Software and Data are Everywhere

Program

**Program** 

**Program** 

Desktop Computer Computer Server

Mobile Computer

Introduction

•00

#### Software and Data are Everywhere

**Program** 

Program

Program

Desktop Computer Computer Server

Mobile Computer

**Program** 

Household **Appliance** 

•00

#### Software and Data are Everywhere

**Program** 

Program

Program

Desktop Computer Computer Server

Mobile Computer

**Program** 

**Program** 

Scientific Device

Household **Appliance** 

•00

#### Software and Data are Everywhere

**Program** 

Program

Program

Desktop Computer Computer Server

Mobile Computer

Program

Program

Program

Scientific Device

Household **Appliance** 

•00

# Software and Data are Everywhere

**Program** 

Program

Program

Desktop Computer Computer Server

Mobile Computer

**Program** 

Program

Program

Scientific Device

Household **Appliance** 

Software and Data Challenges

#### Software and Data are Everywhere

**Program** 

Program

Program

Desktop Computer Computer Server

Mobile Computer

Program

Program

Program

Scientific Device

Household **Appliance** 

•00

#### Software and Data are Everywhere

**Program** 

Program

Program

Desktop Computer Computer Server

Mobile Computer

**Program** 

Program

Program

Scientific Device

Household **Appliance** 

#### Software and Data are Everywhere

Program

Program

Program

Regression Testing

Desktop Computer Computer Server

Mobile Computer

**Program** 

Program

Program

Scientific Device

Household **Appliance** 

#### Software and Data are Everywhere

Program

Program

Program

Desktop Computer Computer Server

Mobile Computer

**Program** 

Program

Program

Scientific Device

Household **Appliance** 

Introduction

•00

#### Software and Data are Everywhere

Program

Program

Program

Desktop Computer Computer Server

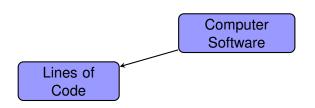
Mobile Computer

Program

Program

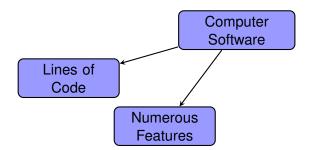
Program

Scientific Device


Household **Appliance** 

Software and Data Challenges

# Software Complexity and Data Enormity

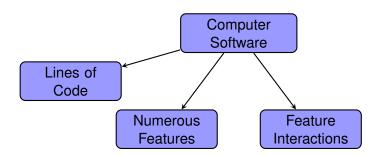

Computer Software

# Software Complexity and Data Enormity



Kapfhammer Allegheny College

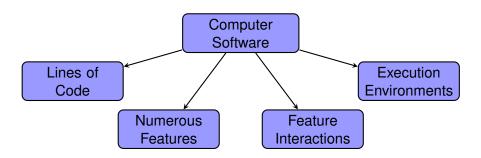
# Software Complexity and Data Enormity




Kapfhammer

Introduction

000

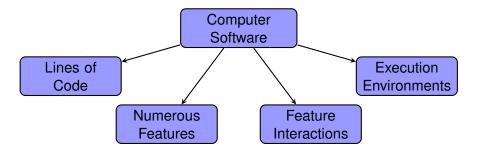

# Software Complexity and Data Enormity



Kapfhammer

000

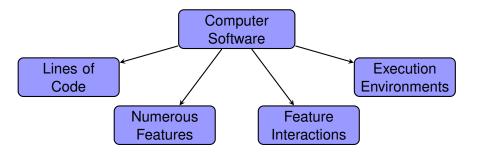
# Software Complexity and Data Enormity




Kapfhammer

000

#### Software Complexity and Data Enormity


Software entities are more complex for their size than perhaps any other human construct - Frederick P. Brooks, Jr.



Kapfhammer

#### Software Complexity and Data Enormity

Prediction: in 2011, 1.8 zettabytes (i.e., 1.8 trillion gigabytes) of data will be created - IDC Digital Universe Study



Kapfhammer

# Software and Data are Evolving

Program

Execution Environment

Introduction

000

# Software and Data are Evolving

Program

Execution Environment

Program

Execution Environment

Introduction

000

#### Software and Data are Evolving

Program

Execution Environment Program

Execution Environment

**Program Changed** because of the addition of a new feature or the correction of a defect

# Software and Data are Evolving

Program

Execution Environment

Introduction

000

# Software and Data are Evolving

Program

Execution Environment

Program

Execution Environment

Introduction

000

#### Software and Data are Evolving

Program

Execution Environment Program

Execution Environment

**Execution Environment Changed** due to modification of a kernel, device driver, or relational database

Introduction

000

#### An Interesting Defect Report

Database Server Crashes

Kapfhammer Allegheny College

Introduction

#### An Interesting Defect Report

Database Server Crashes

When you run a complex query against Microsoft SQL Server 2000, the SQL Server scheduler may stop responding. Additionally, you receive an error message that resembles the following: Date Time server Error: 17883 Severity: 1, State: 0 Date Time server Process 52:0 (94c) ...

Kapfhammer Allegheny College

Introduction

000

#### An Interesting Defect Report

Input-Dependent **Defect** 

Kapfhammer Allegheny College

#### An Interesting Defect Report

Input-Dependent Defect

This problem occurs when one or more of the following conditions are true: The query contains a UNION clause or a UNIONALL clause that affects many columns. The query contains several JOIN statements. The query has a large estimated cost. **BUG 473858 (SQL Server 8.0)** 

Kapfhammer Allegheny College

#### Real-World Defective Database Application

The Risks Digest, Volume 22, Issue 64, 2003

Jeppesen reports airspace boundary problems

About 350 airspace boundaries contained in Jeppesen Nav-Data are incorrect, the FAA has warned. The error occurred at Jeppesen after a software upgrade when information was pulled from a database containing 20,000 airspace boundaries worldwide for the March NavData update, which takes effect March 20.

#### Real-World Defective Database Application

The Risks Digest, Volume 22, Issue 64, 2003

Jeppesen reports airspace boundary problems

About 350 airspace boundaries contained in Jeppesen Nav-Data are incorrect, the FAA has warned. The error occurred at Jeppesen after a software upgrade when information was pulled from a database containing 20,000 airspace boundaries worldwide for the March NavData update, which takes effect March 20.

Practically all use of databases occurs from within application programs [Silberschatz et al., 2006, pg. 311]

Relational Databases

#### Structured Query Language

The structured query language (SQL) is an established standard and a query and manipulation language for relational database management systems (RDBMS)

Relational Databases

#### Structured Query Language

The structured query language (SQL) is an established standard and a query and manipulation language for relational database management systems (RDBMS)

```
A schema is a collection of table definitions:

CREATE TABLE person (
id INT,
name VARCHAR(100) NOT NULL,
age INT(3),
PRIMARY KEY (id)
)
```

Relational Databases

#### Structured Query Language

The structured query language (SQL) is an established standard and a query and manipulation language for relational database management systems (RDBMS)

The data manipulation language supports several operations:

SELECT name FROM person WHERE age >= 30 AND age <= 40

Kapfhammer Allegheny College

### Structured Query Language

The structured query language (SQL) is an established standard and a query and manipulation language for relational database management systems (RDBMS)

The data manipulation language supports several operations:

UPDATE person SET name = Jan WHERE id = 2

### Structured Query Language

The structured query language (SQL) is an established standard and a query and manipulation language for relational database management systems (RDBMS)

The data manipulation language supports several operations:

```
INSERT INTO person (id, name, age) VALUES
                    (1, John, 38)
```

### Structured Query Language

The structured query language (SQL) is an established standard and a query and manipulation language for relational database management systems (RDBMS)

The data manipulation language supports several operations:

DELETE FROM person WHERE id = 2

#### Relational Database Tables



#### **Relational Database Tables**




Kapfhammer

#### Relational Database Tables



#### Relational Database Tables



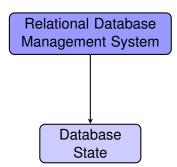
#### **Relational Database Tables**



Kapfhammer

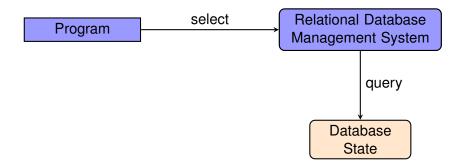
#### **Relational Database Tables**




Kapfhammer

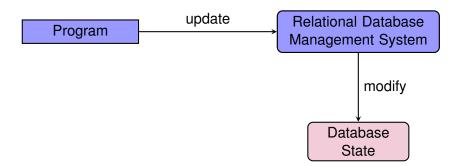
### **Database Applications**

Program


### **Database Applications**

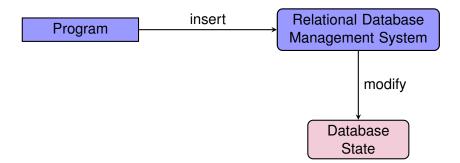
Program




#### **Database Applications**

Data Manipulation Language (DML) Statements

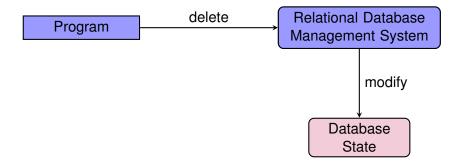



### **Database Applications**

#### Data Manipulation Language (DML) Statements

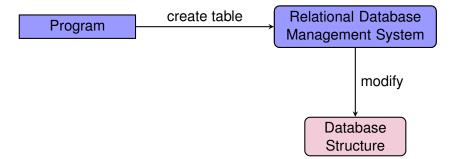


#### **Database Applications**


Data Manipulation Language (DML) Statements

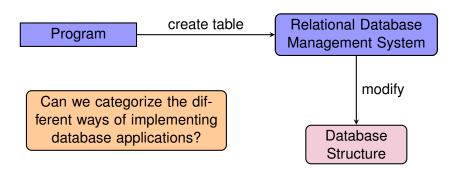


Kapfhammer


#### **Database Applications**

Data Manipulation Language (DML) Statements




### **Database Applications**

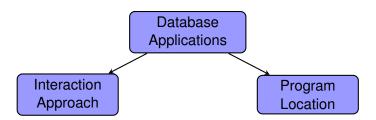
Data Definition Language (DDL) Statements



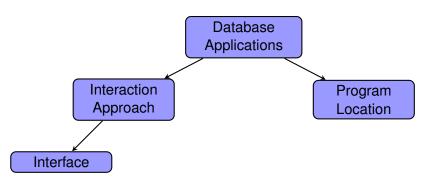
#### **Database Applications**

Data Definition Language (DDL) Statements



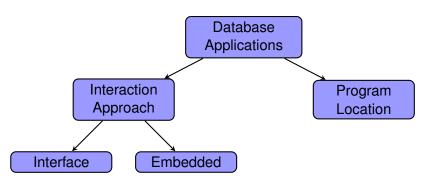

Kapfhammer

Database Applications

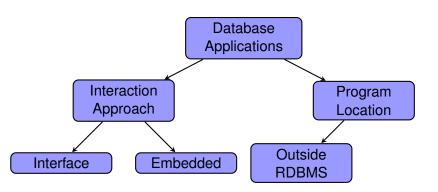

Kapfhammer Allegheny College

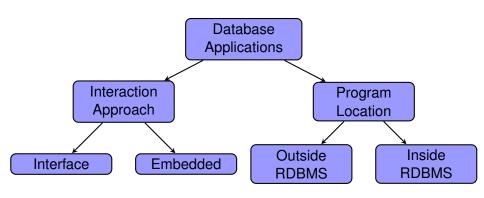
Database Applications

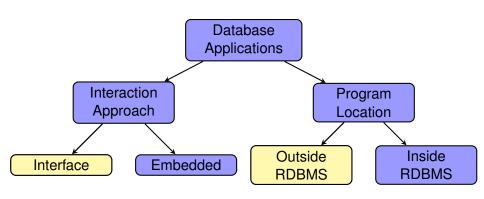
Interaction
Approach



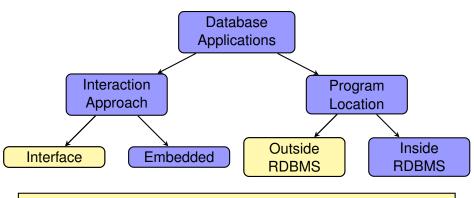

# **Categorizing Database Applications**





Kapfhammer Allegheny College

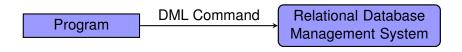

# **Categorizing Database Applications**



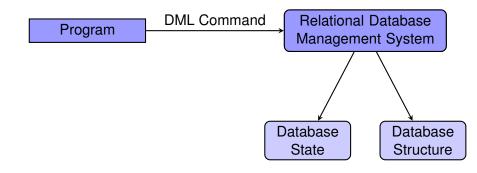

Kapfhammer Allegheny College







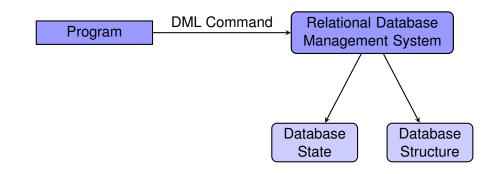

# **Categorizing Database Applications**




Java application that submits SQL strings to HSQLDB using JDBC

### **Evolution of Database Applications**

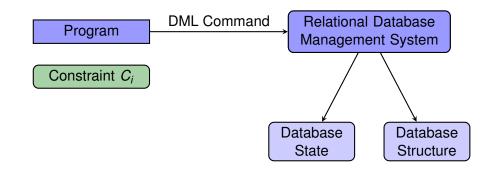



# **Evolution of Database Applications**



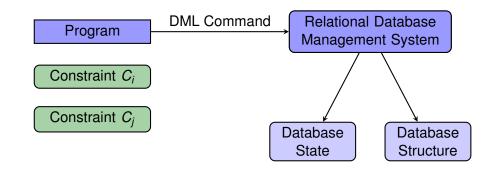
Kapfhammer

# **Evolution of Database Applications**


Only the database administrator can add new constraints to the schema!



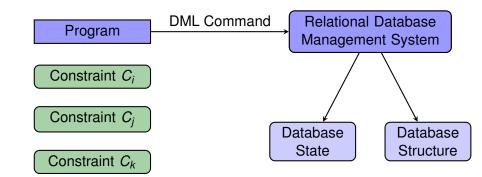
Kapfhammer


# **Evolution of Database Applications**

The programmers encode the constraints in the program's source code!



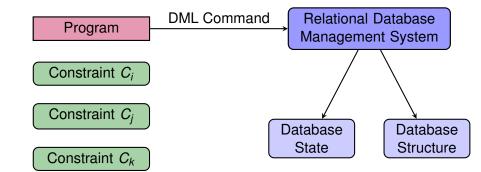
# **Evolution of Database Applications**


The programmers encode the constraints in the program's source code!



Kapfhammer

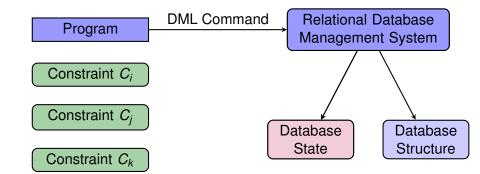
# **Evolution of Database Applications**


The programmers encode the constraints in the program's source code!



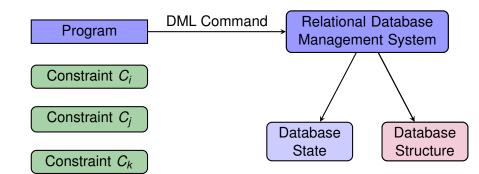
Kapfhammer

# **Evolution of Database Applications**


Programmers make other changes to the source code of the program



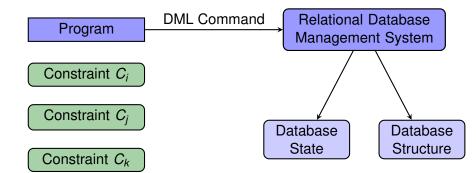
Kapfhammer


# **Evolution of Database Applications**

External programs can change the state of the relational database



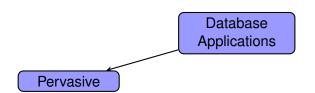
# **Evolution of Database Applications**


Database administrator can change the structure of the database

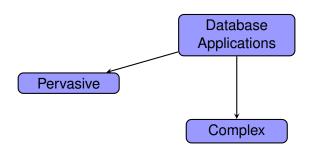


Kapfhammer

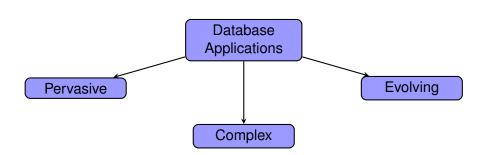
# **Evolution of Database Applications**


How can we test a rapidly changing database application?




## Regression Testing to the Rescue

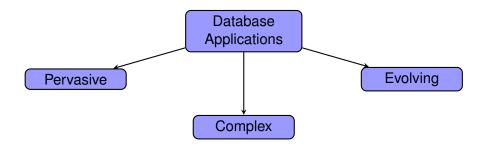
Database **Applications** 


# Regression Testing to the Rescue



# Regression Testing to the Rescue




## Regression Testing to the Rescue

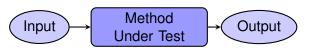


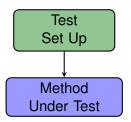
Regression Testing •00000000

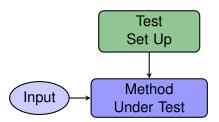
## Regression Testing to the Rescue

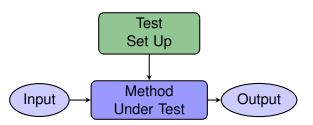
**Regression Testing** supports the efficient construction of database software that is complex and rapidly evolving

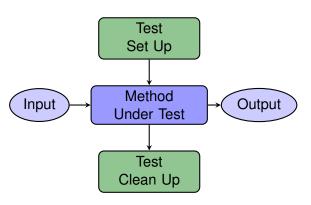


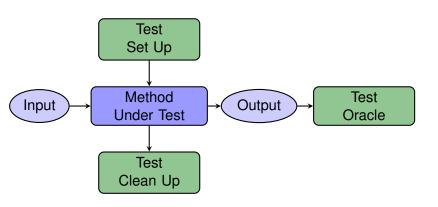

Important Techniques

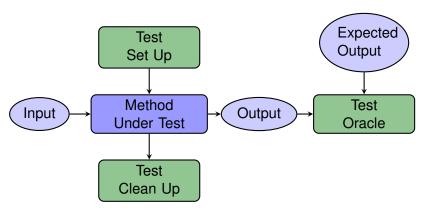

## What is a Test Case?

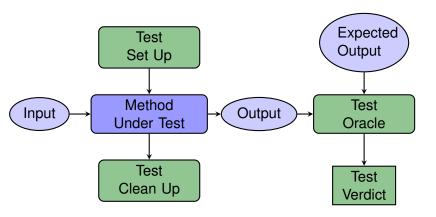

Method **Under Test** 

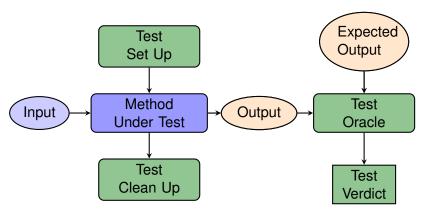

## What is a Test Case?



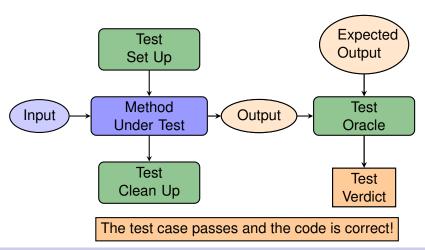



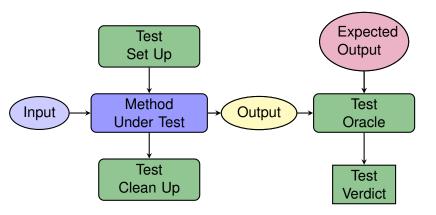



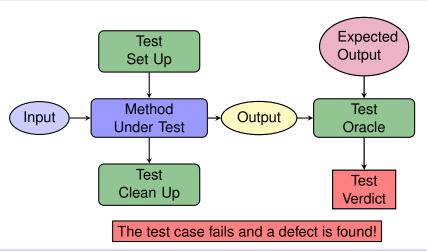






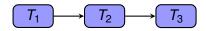


## What is a Test Case?

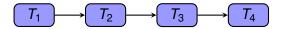


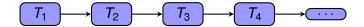
Kapfhammer

Allegheny College







## What is a Test Suite?




Important Techniques

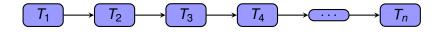






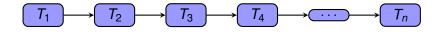


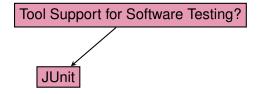
## What is a Test Suite?



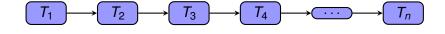

Organize the Test Cases into a Test Suite

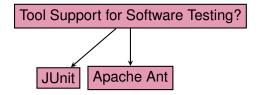



## What is a Test Suite?


Organize the Test Cases into a Test Suite

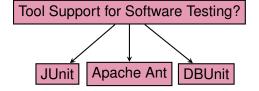



Tool Support for Software Testing?


Organize the Test Cases into a Test Suite





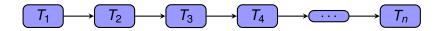

Organize the Test Cases into a Test Suite





Organize the Test Cases into a Test Suite





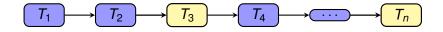

## Test Suite Management

Organize the Test Cases into a Test Suite



## Test Suite Management

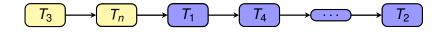


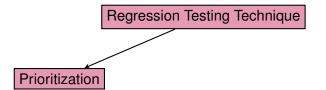

Regression Testing 000000000

Regression Testing Technique

Important Techniques

## Test Suite Management

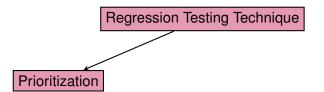

What if Some Test Cases are More Effective?




Regression Testing Technique

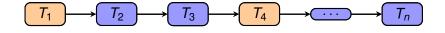
## Test Suite Management

What if Some Test Cases are More Effective?





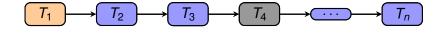

## Test Suite Management

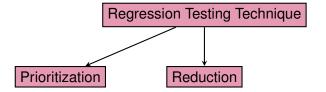

What if Some Test Cases are More Effective?





## Test Suite Management

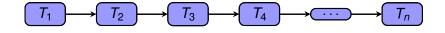

#### What if Some Test Cases are Redundant?

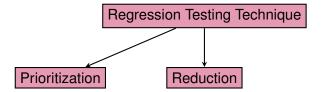





#### Test Suite Management

#### What if Some Test Cases are Redundant?

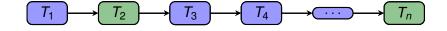


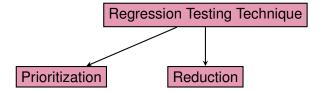




#### Test Suite Management

#### What if Some Test Cases are Redundant?

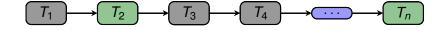
Regression Testing 000000000

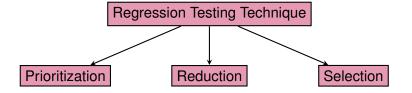



#### Test Suite Management

What if Only Certain Tests are Needed?

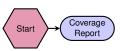

Regression Testing 000000000



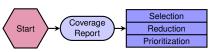



#### Test Suite Management

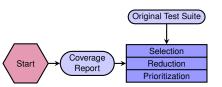
What if Only Certain Tests are Needed?

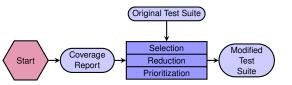


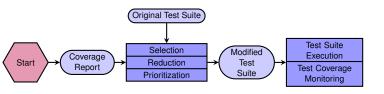


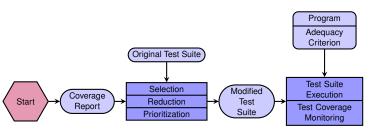


## Model of Regression Testing

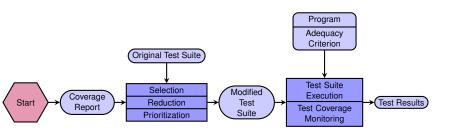


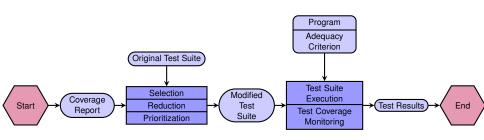

## Model of Regression Testing





### Model of Regression Testing

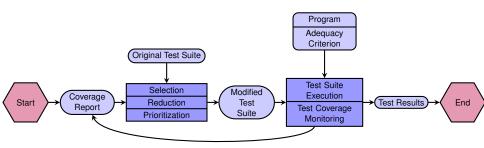




Kapfhammer



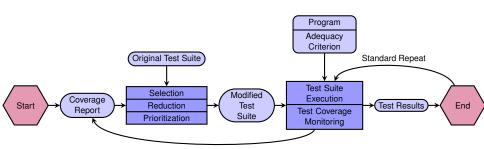




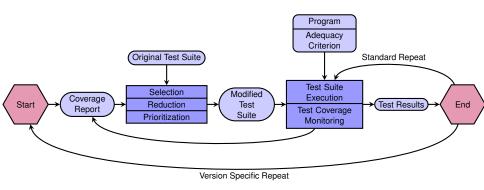






#### Model of Regression Testing

#### Use the Coverage Report During the Next Round of Regression Testing




## Model of Regression Testing

#### Use the Same Test Suite for the Next Round of Regression Testing



### Model of Regression Testing

#### Make a New Test Suite for the Next Round of Regression Testing



## Test Suite Adequacy



### Test Suite Adequacy



### Test Suite Adequacy



### Test Suite Adequacy



### Test Suite Adequacy



Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

$$R_1$$
  $R_2$ 

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

$$R_1$$
  $R_2$   $R_3$   $R_4$ 

### Test Suite Adequacy

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

 $T_1$   $T_2$   $T_3$   $T_4$   $T_5$   $T_6$   $T_7$   $T_8$   $T_9$   $T_{10}$ 

 $R_1$   $R_2$   $R_3$   $R_4$   $R_5$   $R_6$ 

### Test Suite Adequacy

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

 $T_1$   $T_2$   $T_3$   $T_4$   $T_5$   $T_6$   $T_7$   $T_8$   $T_9$   $T_{10}$ 

 $R_1$   $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$ 

### **Test Suite Adequacy**

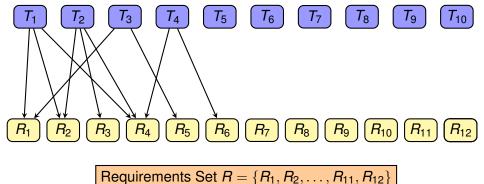
Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

 $T_1$   $T_2$   $T_3$   $T_4$   $T_5$   $T_6$   $T_7$   $T_8$   $T_9$   $T_{10}$ 

 $R_1$   $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$ 

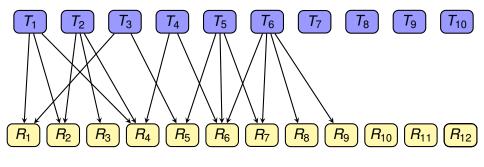
Kapfhammer

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

$$\begin{bmatrix} T_1 \end{bmatrix} \begin{bmatrix} T_2 \end{bmatrix} \begin{bmatrix} T_3 \end{bmatrix} \begin{bmatrix} T_4 \end{bmatrix} \begin{bmatrix} T_5 \end{bmatrix} \begin{bmatrix} T_6 \end{bmatrix} \begin{bmatrix} T_7 \end{bmatrix} \begin{bmatrix} T_8 \end{bmatrix} \begin{bmatrix} T_9 \end{bmatrix} \begin{bmatrix} T_{10} \end{bmatrix}$$

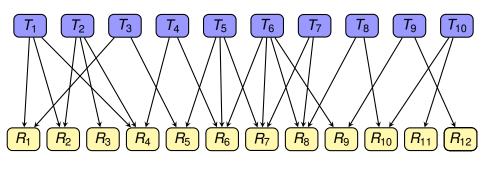
$$R_1$$
  $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 


Requirements Set 
$$R = \{R_1, R_2, ..., R_{11}, R_{12}\}$$

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



### Test Suite Adequacy


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Requirements Set  $R = \{R_1, R_2, ..., R_{11}, R_{12}\}$ 

### Test Suite Adequacy

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Requirements Set  $R = \{R_1, R_2, ..., R_{11}, R_{12}\}$ 

#### **Test Suite Execution**



#### Test Suite Execution

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

#### Test Suite Execution

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

JUnit and DBUnit Test Automation Frameworks

#### Test Suite Execution

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

JUnit and DBUnit Test Automation Frameworks

Run Test Case

#### Test Suite Execution

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

JUnit and DBUnit Test Automation Frameworks

Passing Test Case:  $O_A = O_E$ 

#### Test Suite Execution

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

JUnit and DBUnit Test Automation Frameworks

#### Test Suite Execution

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

JUnit and DBUnit Test Automation Frameworks

#### Test Suite Execution

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

JUnit and DBUnit Test Automation Frameworks

Run Test Case

#### Test Suite Execution

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

JUnit and DBUnit Test Automation Frameworks

Failing Test Case:  $O_A \neq O_E$ 

#### Test Suite Execution

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

JUnit and DBUnit Test Automation Frameworks

Failing Test Case: 
$$O_A \neq O_E$$
Stop Running  $T$ 

#### Test Suite Execution

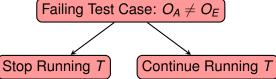
Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

JUnit and DBUnit Test Automation Frameworks

Failing Test Case: 
$$O_A \neq O_E$$
Stop Running  $T$ 

#### Test Suite Execution

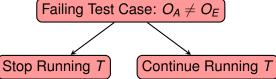
Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$


JUnit and DBUnit Test Automation Frameworks

Failing Test Case:  $O_A \neq O_E$ Stop Running T

#### Test Suite Execution

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$


JUnit and DBUnit Test Automation Frameworks



#### **Test Suite Execution**

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

JUnit and DBUnit Test Automation Frameworks



#### **Test Coverage Monitoring**



Kapfhammer Allegheny College

#### **Test Coverage Monitoring**

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

 $T_1$ 

 $T_2$ 

 $T_3$ 

 $T_4$ 

7

 $T_6$ 

 $T_7$ 

 $T_{\epsilon}$ 

 $T_9$ 

T<sub>10</sub>

#### Test Coverage Monitoring

Test Suite  $T = \langle T_1, T_2, ..., T_9, T_{10} \rangle$ 

JUnit and DBUnit Test Automation Frameworks Database-Aware Test Coverage Monitor Proteja Test Suite Manager

#### Test Coverage Monitoring

Test Suite  $T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$ 

JUnit and DBUnit Test Automation Frameworks Database-Aware Test Coverage Monitor Proteia Test Suite Manager

Run Test Case

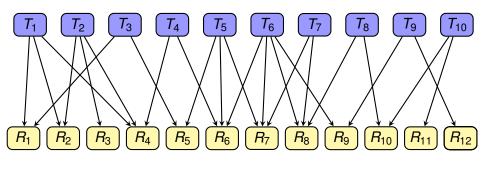
Collect Per-Test Case Coverage

#### Test Coverage Monitoring

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

## Test Coverage Monitoring

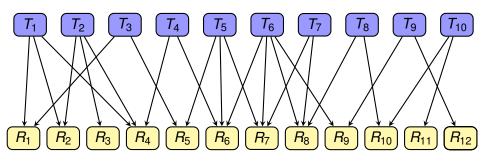
Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$


$$\begin{bmatrix} T_1 \end{bmatrix} \begin{bmatrix} T_2 \end{bmatrix} \begin{bmatrix} T_3 \end{bmatrix} \begin{bmatrix} T_4 \end{bmatrix} \begin{bmatrix} T_5 \end{bmatrix} \begin{bmatrix} T_6 \end{bmatrix} \begin{bmatrix} T_7 \end{bmatrix} \begin{bmatrix} T_8 \end{bmatrix} \begin{bmatrix} T_9 \end{bmatrix} \begin{bmatrix} T_{10} \end{bmatrix}$$

$$R_1$$
  $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

Requirements Set 
$$R = \{R_1, R_2, ..., R_{11}, R_{12}\}$$

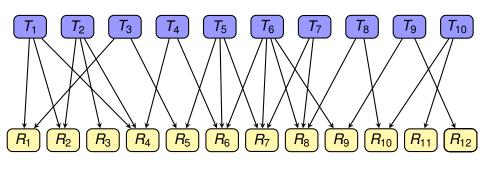
## Test Coverage Monitoring


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Requirements Set  $R = \{R_1, R_2, ..., R_{11}, R_{12}\}$ 

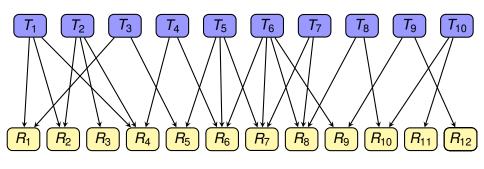
## Test Coverage Monitoring


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Requirements Set R for ... Statement Coverage

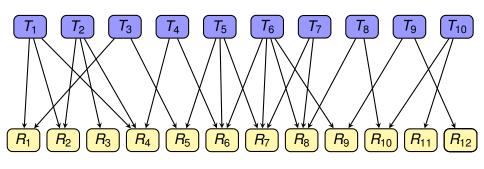
#### Test Coverage Monitoring


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Requirements Set *R* for ... Database Interaction Coverage

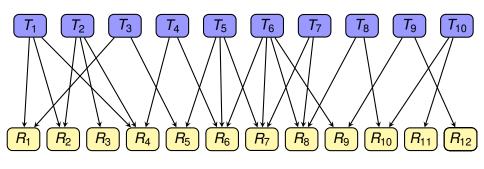
## Test Coverage Monitoring


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Requirements Set *R* for ... Database Table Coverage

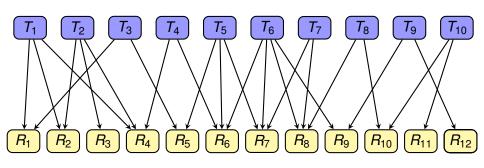
## Test Coverage Monitoring


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Requirements Set R for ... Database Record Coverage

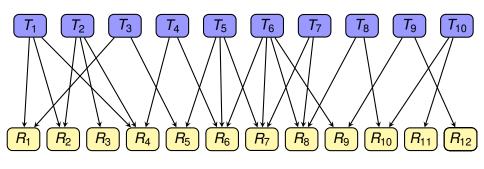
## Test Coverage Monitoring


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Requirements Set *R* for ... Database Attribute Coverage

## Test Coverage Monitoring


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Requirements Set *R* for ... Database Attribute-Value Coverage

## **Test Coverage Monitoring**

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



See [Kapfhammer and Soffa, ISEC 2008] for more details

## **Greedy Algorithms**



Kapfhammer Allegheny College

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

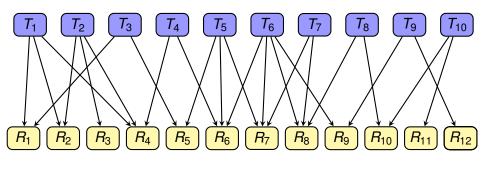
Kapfhammer

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

$$\begin{bmatrix} T_1 \end{bmatrix} \begin{bmatrix} T_2 \end{bmatrix} \begin{bmatrix} T_3 \end{bmatrix} \begin{bmatrix} T_4 \end{bmatrix} \begin{bmatrix} T_5 \end{bmatrix} \begin{bmatrix} T_6 \end{bmatrix} \begin{bmatrix} T_7 \end{bmatrix} \begin{bmatrix} T_8 \end{bmatrix} \begin{bmatrix} T_9 \end{bmatrix} \begin{bmatrix} T_{10} \end{bmatrix}$$

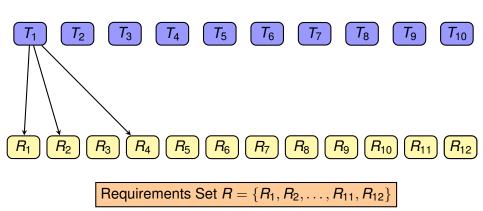
$$R_1$$
  $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

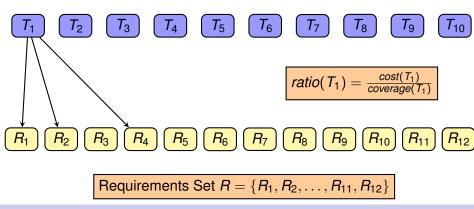

$$\begin{bmatrix} T_1 \end{bmatrix} \begin{bmatrix} T_2 \end{bmatrix} \begin{bmatrix} T_3 \end{bmatrix} \begin{bmatrix} T_4 \end{bmatrix} \begin{bmatrix} T_5 \end{bmatrix} \begin{bmatrix} T_6 \end{bmatrix} \begin{bmatrix} T_7 \end{bmatrix} \begin{bmatrix} T_8 \end{bmatrix} \begin{bmatrix} T_9 \end{bmatrix} \begin{bmatrix} T_{10} \end{bmatrix}$$

$$R_1$$
  $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

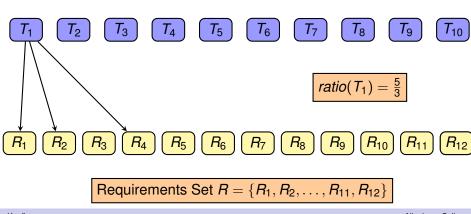
Requirements Set 
$$R = \{R_1, R_2, \dots, R_{11}, R_{12}\}$$


## Greedy Algorithms

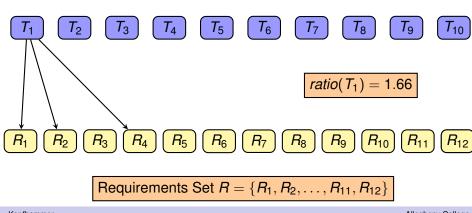
Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$




Requirements Set  $R = \{R_1, R_2, ..., R_{11}, R_{12}\}$ 


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$




Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$



Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

$$T_1$$
  $T_2$   $T_3$   $T_4$   $T_5$   $T_6$   $T_7$   $T_8$   $T_9$ 

$$R_1$$
  $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

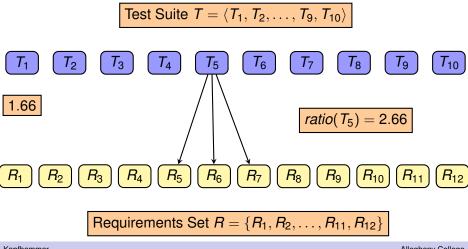
Requirements Set 
$$R = \{R_1, R_2, ..., R_{11}, R_{12}\}$$

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$
 $T_1$ 
 $T_2$ 
 $T_3$ 
 $T_4$ 
 $T_5$ 
 $T_6$ 
 $T_7$ 
 $T_8$ 
 $T_9$ 
 $T_{10}$ 

1.66

 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_9$ 
 $R_{10}$ 
 $R_{11}$ 
 $R_{12}$ 

Requirements Set  $R = \{R_1, R_2, \dots, R_{11}, R_{12}\}$ 


Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$
 $T_1$ 
 $T_2$ 
 $T_3$ 
 $T_4$ 
 $T_5$ 
 $T_6$ 
 $T_7$ 
 $T_8$ 
 $T_9$ 
 $T_{10}$ 

1.66

 $ratio(T_5) = \frac{cost(T_5)}{coverage(T_5)}$ 
 $R_1$ 
 $R_2$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_9$ 
 $R_{10}$ 
 $R_{11}$ 
 $R_{12}$ 

Requirements Set  $R = \{R_1, R_2, \dots, R_{11}, R_{12}\}$ 





Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

Requirements Set 
$$R = \{R_1, R_2, \dots, R_{11}, R_{12}\}$$

Test Suite 
$$T = \langle T_1, T_2, \dots, T_9, T_{10} \rangle$$

$$T_1$$
  $T_2$   $T_3$   $T_4$   $T_5$   $T_6$   $T_7$   $T_8$   $T_9$   $T_{10}$ 

$$R_1$$
  $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

Requirements Set 
$$R = \{R_1, R_2, ..., R_{11}, R_{12}\}$$

#### Greedy Algorithms

Test Suite 
$$T = \langle T_8, T_4, T_9, T_1, T_{10}, T_3, T_7, T_2, T_6, T_5 \rangle$$

1 2 3 5 2 4 4 6 10 8

$$T_8$$
  $T_4$   $T_9$   $T_1$   $T_{10}$   $T_3$   $T_7$   $T_2$   $T_6$   $T_5$ 
 $R_1$   $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

Requirements Set  $R = \{R_1, R_2, \dots, R_{11}, R_{12}\}$ 

# **Greedy Algorithms**

Requirements Set  $R = \{R_1, R_2, ..., R_{11}, R_{12}\}$ 

Kapfhammer

Allegheny College

### **Greedy Algorithms**



$$R_1$$
  $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

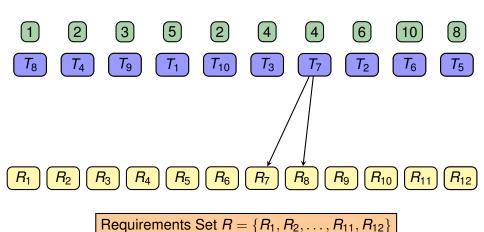
#### **Greedy Algorithms**

5

19

#### **Greedy Algorithms**

$$T_8$$
  $T_4$   $T_9$   $T_1$   $T_{10}$   $T_3$   $T_7$   $T_2$   $T_6$   $T_5$ 


$$R_1$$
  $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

#### **Greedy Algorithms**

1 2 3 5 2 4 4 6 10 8

 $T_8$   $T_4$   $T_9$   $T_1$   $T_{10}$   $T_3$   $T_7$   $T_2$   $T_6$   $T_5$ 

 $R_1$   $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 



#### **Greedy Algorithms**

1 2 3 5 2 4 4 6 10 8

 $\begin{bmatrix} T_8 \end{bmatrix} \begin{bmatrix} T_4 \end{bmatrix} \begin{bmatrix} T_9 \end{bmatrix} \begin{bmatrix} T_1 \end{bmatrix} \begin{bmatrix} T_{10} \end{bmatrix} \begin{bmatrix} T_3 \end{bmatrix} \begin{bmatrix} T_7 \end{bmatrix} \begin{bmatrix} T_2 \end{bmatrix} \begin{bmatrix} T_6 \end{bmatrix} \begin{bmatrix} T_5 \end{bmatrix}$ 

 $R_1$   $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

#### **Greedy Algorithms**

1 2 3 5 2 4 4 6 10 8

 $[T_8]$   $[T_4]$   $[T_9]$   $[T_1]$   $[T_{10}]$   $[T_3]$   $[T_7]$   $[T_2]$   $[T_6]$   $[T_5]$ 

 $R_1$   $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

#### **Greedy Algorithms**

1 2 3 5 2 4 4 6 10 8

 $[T_8]$   $[T_4]$   $[T_9]$   $[T_1]$   $[T_{10}]$   $[T_3]$   $[T_7]$   $[T_2]$   $[T_6]$   $[T_5]$ 


 $R_1$   $R_2$   $R_3$   $R_4$   $R_5$   $R_6$   $R_7$   $R_8$   $R_9$   $R_{10}$   $R_{11}$   $R_{12}$ 

#### Greedy Algorithms

Test Suite 
$$T = \langle T_8, T_4, T_9, T_1, T_{10}, T_3, T_7 \rangle$$

#### **Greedy Algorithms**

Test Suite 
$$T = \langle T_8, T_4, T_9, T_1, T_{10}, T_3, T_7 \rangle$$



**Empirical Results** 

#### Empirical Results - Test Suite Reduction

| Program           | Rel.      | Attr.        | Rec.         | Attr. Val.   | All          |
|-------------------|-----------|--------------|--------------|--------------|--------------|
| RM (13)           | (7, .46)  | (7, .46)     | (10, .30)    | (9, .31)     | (8.25, .37)  |
| FF (16)           | (7, .56)  | (7, .56)     | (11, .31)    | (11, .31)    | (9, .44)     |
| PI (15)           | (6, .60)  | (6, .60)     | (8, .70)     | (7, .53)     | (6.75, .55)  |
| ST (25)           | (5, .80)  | (5, .76)     | (11, .56)    | (10, .60)    | (7.75, .690) |
| TM (27)           | (14, .48) | (14, .48)    | (15, .45)    | (14, .48)    | (14.25, .47) |
| GB <b>(51)</b>    | (33, .35) | (33, .35)    | (33, .35)    | (32, .37)    | (32.75, .36) |
| <b>All</b> (24.5) | (12, .51) | (12.17, .50) | (14.67, .40) | (13.83, .44) |              |

- Reduction values range from .30 to .80
- Reduction level varies depending on interaction granularity
- How will the reduction of a test suite impact defect detection?

**Empirical Results** 

#### Empirical Results - Test Suite Reduction

| Program           | Rel.      | Attr.        | Rec.         | Attr. Val.   | All          |
|-------------------|-----------|--------------|--------------|--------------|--------------|
| RM (13)           | (7, .46)  | (7, .46)     | (10, .30)    | (9, .31)     | (8.25, .37)  |
| FF (16)           | (7, .56)  | (7, .56)     | (11, .31)    | (11, .31)    | (9, .44)     |
| PI (15)           | (6, .60)  | (6, .60)     | (8, .70)     | (7, .53)     | (6.75, .55)  |
| ST (25)           | (5, .80)  | (5, .76)     | (11, .56)    | (10, .60)    | (7.75, .690) |
| TM (27)           | (14, .48) | (14, .48)    | (15, .45)    | (14, .48)    | (14.25, .47) |
| GB (51)           | (33, .35) | (33, .35)    | (33, .35)    | (32, .37)    | (32.75, .36) |
| <b>All</b> (24.5) | (12, .51) | (12.17, .50) | (14.67, .40) | (13.83, .44) |              |

- Reduction values range from .30 to .80
- Reduction level varies depending on interaction granularity
- How will the reduction of a test suite impact defect detection?

Final Remarks

#### Conclusion

#### Conclusion

- Databases are widely used in real-world applications
- Database applications have complex state and structure
- Source code, database state, and relational schema evolve
- Prioritization techniques can increase effectiveness
- Reduction methods can improve the efficiency of testing

#### **Future Work**

- New empirical studies of database-aware regression testing
  - Implement and release free and open source testi

Final Remarks

#### Conclusion

#### Conclusion

- Databases are widely used in real-world applications
- Database applications have complex state and structure
- Source code, database state, and relational schema evolve
- Prioritization techniques can increase effectiveness
- Reduction methods can improve the efficiency of testing

#### **Future Work**

- New empirical studies of database-aware regression testing
- Implement and release free and open source testing tools

# Regression Testing Techniques for Relational Database Applications

Gregory M. Kapfhammer

Department of Computer Science Allegheny College http://www.cs.allegheny.edu/~gkapfham/

Thank you for your attention! I welcome your questions and comments.

