
MAJOR: An Efficient Technique for Mutation Analysis
in a Java Compiler

René Just1 and Gregory M. Kapfhammer2

1Department of Applied Information Processing, Ulm University
2Department of Computer Science, Allegheny College

IMPORTANT CONTRIBUTIONS

I Enhanced the Java 6 Standard Edition compiler
I Simple compiler options enable the mutation analysis
I Easily applicable in all Java development environments
I Effectively reduces mutant generation time to a minimum

CONDITIONAL MUTATION

I Transforms the program’s abstract syntax tree (AST)
I Encapsulates the mutations within conditional statements

ASSIGN

IDENT

y

BINARY

*

a x

⇒

ASSIGN

IDENT

y

COND-EXPR

THEN

BINARY

-

a x

COND

(M NO ==1)

ELSE

COND-EXPR

THEN

BINARY

+

a x

COND

(M NO ==2)

ELSE

BINARY

*

a x

Figure: Multiple mutated binary expression as the right hand side of an assignment statement.

SUPPORTED FEATURES

I Enables second and higher order mutation analysis
I Determination of mutation coverage by running the original code
I Configurable mutation operators by means of compiler options

MUTATION COVERAGE

public int eval(int x){
int a = 3, b = 1, y;

y = (M_NO==1)? a - x:
(M_NO==2)? a + x:
(M_NO==3)? a % x:
(M_NO==0 && COVER(1,3))?
a * x : a * x; // original

if(M_NO==4){
y -= b;

}else if(M_NO==0 && COVER(4,4)){
y += b;

}else{
y += b; // original

}

return y;
}

Figure: Collecting coverage information.

I It is impossible to kill a mutant if it is
not reached and executed

I Additional instrumentation
determines the covered mutations

I Mutation coverage is only examined
if the tests execute the original code

I An external driver efficiently records
the covered mutations as ranges

I Only those mutants covered by a
test case are executed

PERFORMANCE EVALUATION

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 20000 40000 60000 80000 100000 120000 140000

C
om

pi
le

r r
un

tim
e

in
 s

ec
on

ds

Number of mutants

apache ant
jfreechart

itext
java pathfinder
commons math
commons lang

numerics4j

Figure: Compiler runtime to generate and compile the mutants for all of the projects.

Table: Time and space overhead for all of the investigated projects.

Application Mutants Runtime of test suite1 Memory consumption1

generated covered killed original instrumented original instrumented
wcs2 wcs+cov3

aspectj 406,382 20,144 10,361 4.3 4.8 5.0 559 813
apache ant 60,258 28,118 21,084 331.0 335.0 346.0 237 293
jfreechart 68,782 29,485 12,788 15.0 18.0 23.0 220 303

itext 124,184 12,793 4,546 5.1 5.6 6.3 217 325
java pathfinder 37,331 8,918 4,434 17.0 22.0 29.0 182 217
commons math 67,895 54,326 44,084 67.0 83.0 98.0 153 225
commons lang 25,783 21,144 16,153 10.3 11.8 14.8 104 149

numerics4j 5,869 4,900 401 1.2 1.3 1.6 73 90
1Runtime in seconds and memory consumption of the compiler in megabytes 2wcs: worst-case scenario 3cov: coverage tracking enabled

I Time overhead for generating and compiling the mutants is negligible
I Inserting conditional statements leads to a minimal increase in space overhead
I Even for large projects, the method is applicable on commodity workstations

IMPLEMENTATION DETAILS

I A separate package modularly extends the compiler
I Mutation operators configurable with enhanced -X options
I AST transformation implemented by means of the visitor pattern

Figure: Integration of the conditional mutation approach into the compilation process.

Figure: UML diagram of the implemented compiler classes and the external driver class.

OPTIMIZED WORKFLOW

Figure: Minimizing the runtime of mutation analysis by means of test prioritization and mutation coverage.

FUTURE WORK

I Comparison of MAJOR with related techniques and tools such
as muJava, Javalanche, and Jumble

I Further runtime optimizations by balancing the AST
I Implementation of several new mutation operators
I Domain specific language for specifying mutation operators
I Integration of conditional mutation into a C/C++ compiler

rene.just@uni-ulm.de Fourth International Conference on Software Testing, Verification and Validation (ICST 2011) gkapfham@allegheny.edu

