MAJOR: An Efficient Technique for Mutation Analysis
ulm university umverS|tat in a Java Compiler
I I I René Just' and Gregory M. Kapfhammer?

'Department of Applied Information Processing, Ulm University
2Department of Computer Science, Allegheny College

PERFORMANCE EVALUATION

¢
a\
L
oo TN 2R
T T N
g 7 T A ST
3 i w2
> = | Tl B
)
_ T y
il I |
B 1| 0 LTINN)
= At L
= o T T

. Enhanced the Java 6 Standard Edlthn Compiler 12 ! ! ! ! , , Table: Time and space overhead for all of the investigated proje:ts. 1
: : : : : jcati]] Memor nsumption
~ Simple compiler options enable the mutation analysis . | | SERicalOn LOEIS | AR CULGE SUES | b7 (R
_ _ _ _ generated covered Killed original instrumented | original instrumented
~ Easily applicable in all Java development environments 10 WeS2 WOS+COV
» Effectively reduces mutant generation time to a minimum aspect 406,382 20,144 10,361 43 4.8 5.0 559 813
% apache ant 60,258 28,118 21,084 331.0 335.0 346.0 237 293
ji jfreechart 68,782 29,485 12,788 15.0 18.0 23.0 220 303
CONDITIONAL MUTATION E text 124,184 12,793 4546 51 56 63 217 325
=) 0 0
, I java pathfinder 37,331 8,918 4,434 17.0 22.0 29.0 182 217
~ Transforms the program’s abstract syntax tree (AST) Y S — i — S S S— commons math| 67,895 54,326 44,084 67.0 83.0 98.0 153 205
» Encapsulates the mutations within conditional statements commons lang 25783 21,144 16,153 10.3 11.8 14.8 104 149
ASSIGN apaché ant ¢ numeI’ICS4j 5,869 4,900 401 1 2 1 3 1 6 73 90
T = A A - | Jfrfhjci?g;% x "Runtime in seconds and memory consumption of the compiler in megabytes 2wcs: worst-case scenario 3cov: coverage tracking enabled
: : : : java pathfinder O
2 o e e e e commons math ¢ - . . .) o
PR COND A 1 | ey ~ Time overhead for generating and compiling the mutants is negligible
ASSIGN /I\ ° 20000 40000 ohm S0 doeno o doee w0, Inserting conditional statements leads to a minimal increase in space overhead
THEN COND ELSE Figure: Compiler runtime to generate and compile the mutants for all of the projects. » Even for |arge projectS, the method is app]icab|e on Commodity workstations
ID]?NT BINARY _ BINARY (M.NO —— COND EXPR :
| |
y * - /N IMPLEMENTATION DETAILS OPTIMIZED WORKFLOW
N N
- ~ . : THEN COND ELSE ' Test suite Test suite
» A separate package modularly extends the compiler .
BINARY (M_ NO ==2) BIN ARY _ _ _ _ Runtime tyof test cases Runtime txof test cases
! | » Mutation operators configurable with enhanced -Xx options) = -
P o~ » AST transformation implemented by means of the visitor pattern 8
a X a X §, B tCS tAf tDS tB - qé A
Figure: Multiple mutated binary expression as the right hand side of an assignment statement. Compiler % C é 5
| o [
SUPPORTED FEATURES Parse — Attribute — Flow [—® Lower — Generate ! !
» Enables second and higher order mutation analysis Compile Execute Prioritize Mutation
» Determination of mutation coverage by running the original code Conditional mutants test suite test cases analysis
» Configurable mutation operators by means of compiler options Mutation Mutation coverage
) : public class Foo{
MUTATION COVERAGE : e
Configuration >
ublic int eval (int x) { 1
e e A m 5 B 1, o | | o g DI e T
> |t IS ImpOSSIble {o kl” a mutant If It IS Figure: Integration of the conditional mutation approach into the compilation process. }I |
y = (MNO==1)7? a - x:
(M_NO==2)7? a + x: not reaChed and eXeCUted Figure: Minimizing the runtime of mutation analysis by means of test prioritization and mutation coverage.
M Nom—o ts covemiiaya ® Addltlonal instrumentation [Gpuons S~ e
a «x :axx //original determines the covered mutations i .
i€ (M_NO==4) { » Mutation coverage is only examined | T |
y —= b; : e ! TreeTranslator | _ _ _
else if(uwo—-0 ss cover(s,4))(|1 the te€Sts execute the original code | l ~ Comparison of MAJOR with related techniques and tools such
. : « s mutation ! !
S & » An external driver efficiently records i A i as mudJava, Javalanche, and Jumble
| y += b; // original the Covered mutations as ranges — Config : i com.sun.tools.javac.mutation : . Further runtime optimizations by balancing the AST
> Only those mutants covered by d + COVER(from : int, to : inf) : boolean| | 1 '~ ~ 1| CondMutation . Mutator TreeCopier . |mp|ementation of several new mutation Operators
return y; o _ 1
} test case are executed -~ Domain specific language for specifying mutation operators
Figure: Collecting coverage information. Figure: UML diagram of the implemented compiler classes and the external driver class. . |ntegrati0n Of COnditiOnal mUtatiOn intO a C/C++ COmpiler

rene.just@uni-ulm.de Fourth International Conference on Software Testing, Verification and Validation (ICST 2011) gkapfham@allegheny.edu

