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Analysis: Develop and use tree and random forest statistical
models and data visualizations that help to identify efficiency

and effectiveness trade-offs for data location strategies
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Why is my program “leaking”? The standard method of iterating
through large collections is often challenging and error prone!
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Tree Models: Use recursive partitioning to create hierarchical view of dataJ
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Analysis Method: Regression Tree Models

Method: HC, JQL

. i : Mean
CollectionType: ArrayList, Vector

Mean Mean
Value Vaue

Response Variable: One of the evaluation metrics (e.g., “Response Time")J
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Analysis Method: Random Forests

CollectionType: ArrayList, Vector CollectionType: ArrayL.ist, Vector

CollectionType: ArrayList, Vector CollectionType: ArrayL.ist, Vector

Many Trees: Randomly construct a large collection of trees in order to
avoid bias and identify the most important explanatory variables
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Method | Small | Medium | Large

JQL 57.2 390.2 981.8
HC-HJ | 69.3 378.1 923.5
JoSQL | 997.3 | 3620.2 | 8823.1

Large Objects

Collection Size

Method | Small | Medium | Large

JQL 35.4 80.8 255.4
HC-HJ 11.4 63.3 217.8
JoSQL | 930.3 | 3107.3 | 8165.9

Conclusion
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Future Work in Performance Evaluation

CollectionType: ArrayList, Vector

o

Framework Extension J Statistical Analysis J

Incorporate new benchmarks, object types, and query
languages in order to better characterize performance. Use
statistical analysis to make reliable predictions.
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Java Query Language.

JQL : The Java Query Language

About JQL

Fxamples | /QL isan extension for Java that provides support for querying callestions of bjects. These queries can be run over
~Xamples objects in collections in your program, or even used 10 check expressions on all instances of specific types at
Download runtime.

Development | Queries provide a powerful abstraction for dealing with sets of objects, allowing the query engine lo take care of
the implementation details. This allaws for shorter, clearer cade, and permits the query engine Lo dynamically

Caching optimize query evaluation strategies as the runtime context changes.
Papers ) _ . ' R

Queries can also be cached and that cache inerementally maintained - this grealy increases their efficiency, and can
Help offer improved performance for many common eollection operations.

| A brief example!

4y we're bullding 4 crossword puzzle. We've got a list of candidate words for aur puzzle, and 4 list of the lengths
f the gaps we need to fill:

ArrayList<String> words = dict.getliords(Puzzle. NEDIUM);
ArrayList<Integer> gaplengths = puzzle.getCapLengths();

fow we've gl  truly marvelous algorithm for building a erossword puzele (that this webpage is too narrow 1o
antain), which relies on having a list of pairs of [length, word],
| Using a JQL query, we can build this list with ease:

See the Web site of Dr. David J. Pearce for additional resources

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps
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JoSQL: Web Site Reference

Josol

?‘ Quick Links

1) What is JoSQL?

JoSQL User Manual

agie

Download
JoSOL (SOL for Java Objects) prowdss the abilty fo- a devsloper to apply a SQL statement to a collection of
Java Objests. JoSCL provides the ahility to search, order and creup ANY Java objects and should be applied
JavaDocs wher you want to pertorm SUL-ike querizs on z collectior of Java Ubjects.

Download JoSQL GLI

UseTul Resources
For example, to tind all the H | ML tiles that have been medilied in Decemoer 2004
Potential Uses

SELECT *

FROD ava.io.File

WHERE name SLIKE "% him["

Aepor a Bug AND  lastModifiec BE EEN toDate (01-12-2004"
AND  teDate (131-12-2004')

Projects using JoS@L

Featurs Requesl

Contact / Gel Help

| SourceForge Neow to de this in Java ¢odes would requirs the eeation of a custem functior that will 2llow the eomparison

http://josgl.sourceforge.net/ provides tools and documentation
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R Language for Statistical Computation

SR

http://www.r-project.org/ provides amazing tools and documentation J
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