Introduction Query Languages Empirical Evaluation Conclusion

The Measured Performance of Declarative Approaches to
Finding Data in Unstructured Heaps

Gregory M. Kapfhammer

Department of Computer Science o
Allegheny College

_ "~ ALLEGHENY
http://www.cs.allegheny.edu/~gkapfham/ COLLEGE

Department of Mathematics and Computer Science
Westminster College, December 2009

In conjunction with William Jones (Allegheny College)
Featuring an image from www.CampusBicycle.com

1/20

i

Suggestions m 777777 B o
Performance Evaluation J Detailed Empirical Study

Overview: Extend and empirically evaluate the efficiency and
effectiveness of declarative approaches to finding data in the
unstructured heap of a Java virtual machine

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

e |)220

i

Suggestions m 777777 [
Performance Evaluation J Detailed Empirical Study J

Overview: Extend and empirically evaluate the efficiency and
effectiveness of declarative approaches to finding data in the
unstructured heap of a Java virtual machine

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

e |){2/20}-

i

Suggestions m 777777 B o
Performance Evaluation J Detailed Empirical Study J

Overview: Extend and empirically evaluate the efficiency and
effectiveness of declarative approaches to finding data in the
unstructured heap of a Java virtual machine

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

2/20

Introduction Query Languages

Empirical Evaluation

Important Contributions

Benchmark
Executor

Configuration Suggestions

Performance Evaluation J

Conclusion

Detailed Empirical Study J

Overview: Extend and empirically evaluate the efficiency and
effectiveness of declarative approaches to finding data in the
unstructured heap of a Java virtual machine

2/20

Introduction Query Languages

Empirical Evaluation

Important Contributions

Benchmark
Executor

Configuration Suggestions

Performance Evaluation J

Conclusion

Detailed Empirical Study J

Analysis: Develop and use tree and random forest statistical
models and data visualizations that help to identify efficiency

and effectiveness trade-offs for data location strategies

2/20

Query Languages Empirical Evaluation Conclusion
The Value of Virtual Machines

Byte Code
Virtual Virtual
Machine M achine

The virtual machine enables platform independence, handles
migration, manages limited resources, provides optimization

3/20

Query Languages Empirical Evaluation Conclusion
The Value of Virtual Machines

Byte Code
Virtual Virtual
M achine Machine

The virtual machine enables platform independence, handles
migration, manages limited resources, provides optimization

3/20

Introduction Query Languages

Empirical Evaluation

The Value of Virtual Machines

Q00O

Byte Code

Virtual
M achine

Byte Code

Virtual
Machine

Conclusion

The virtual machine enables platform independence, handles
migration, manages limited resources, provides optimization

Introduction Query Languages Empirical Evaluation Conclusion

A Look Inside the Java Virtual Machine

I nput - % | Output
OOO - Byte Code g OOO
Interpreter? Virtual Fast?
JIT? Machine | Adaptive?

-
-

methodA
testOne
Program
Stack

~~
-~
-~
~~
-~

The virtual machine manages resources for the program J

4/20

Introduction

Query Languages

Empirical Evaluation Conclusion

A Look Inside the Java Virtual Machine

I nput % | Output
OOO Byte Code g OOO
Interpreter? Virtual Fast?
JIT? | Machine | Adaptive?
0O
methodA O
testOne Heap
Program

Stack

The virtual machine manages resources for the program J

4/20

Introduction

Empirical Evaluation Conclusion

Query Languages

A Look Inside the Java Virtual Machine

Output

000 % 000

\ 4

A 4

Interpreter? Virtual Fast?
JIT? Machine | Adaptive?
0O
methodA O DDD
testOne Heap
Program Native Code Cache

Stack
The virtual machine manages resources for the program J

4/20

Introduction Query Languages

Empirical Evaluation

The Container Hierarchy in the Heap

B Tree

Transaction Processor

/

\

|

LinkedList

ArrayList

Vector

]

2\

Objects (Type R)

Objects (Type S)

Objects (Type T)

The unstructured heap stores objects that are connected in
complex and unpredictable ways (Xu and Rountev, ICSE 2008)

Conclusion

5/20

Query Languages Empirical Evaluation Conclusion
The Container Hierarchy in the Heap

B Tree| | Transaction Processor

/ \

LinkedList | | ArrayList| | Vector

SIS\

Objects (Type S) | | Objects (Type T)

Objects (Type R)

A memory leak may occur when a Java program incorrectly
maintains object references (Xu and Rountev, ICSE 2008)

5/20

Introduction Query Languages

Empirical Evaluation

The Container Hierarchy in the Heap

B Tree| | Transaction Processor
LinkedList | | ArrayList| | Vector

I

Objects (Type R)

Objects (Type S)

Objects (Type T)

Why is my program “leaking”? The standard method of iterating
through large collections is often challenging and error prone!

Conclusion

5/20

Introduction Query Languages

Empirical Evaluation Conclusion

JQL: Declaratively Finding Objects

Java Query Language (JQL)

JQL Compiler
Java Source Code

Collection
Query Executor
Query Results Cached Query Results

6/20

Introduction Empirical Evaluation Conclusion
JQL: Declaratively Finding Objects

JQL Compiler
Java Source Code

Java Query Language (JQL)
@ Features

@ Pre-compilation
AOP with AspectJ
Method queries
Caching
Optimizations

© © ¢ ¢

Collection
Query Results Cached Query Results

6/20

Introduction Query Languages

Empirical Evaluation Conclusion

JQL: Declaratively Finding Objects

Java Query Language (JQL)
@ Features

@ Pre-compilation
AOP with AspectJ
Method queries
Caching
Optimizations

© © ¢ ¢

@ References

@ Willis et al. ECOOP
2006

@ Willis et al. OOPSLA
2008

JQL Compiler
Java Source Code

Collection

Query Results Cached Query Results

6/20

Introduction Empirical Evaluation Conclusion
JoSQL: Declaratively Finding Objects

Query Object

Java Objects SQL (JoSQL)

Executable Query Collection

Query Results

7120

Introduction Empirical Evaluation Conclusion
JoSQL: Declaratively Finding Objects

Query Object

Java Objects SQL (JoSQL)
@ Features

©

SQL statements
String parsing
Java reflection
Query facilities

Executable Query Collection

Query Results

¢ ¢ ¢

7120

Introduction Empirical Evaluation Conclusion
JoSQL: Declaratively Finding Objects

Query Object

Java Objects SQL (JoSQL)
@ Features

©

SQL statements
@ String parsing
@ Java reflection
@ Query facilities

Executable Query Collection

Query Results

@ References

@ http://josql.sf.net/

7120

Introduction Empirical Evaluation Conclusion
Object Query Languages and Bicycles

handlebar handlebar &
tape

seat
brake hood

seat clamp

seatpost brake headset
‘ seatpost cable frame brake & shift
tire, g i
water bottle
front SCrews
derailleur

pedal
chainring Srankarm

) chain . . hub
(cassotie) deraiteur .
Efficiency: Low wind resistance and time to destination J

8/20

Introduction Empirical Evaluation Conclusion
Object Query Languages and Bicycles

handlebar handlebar &
tape

seat
brake hood

seat clamp

seatpost brake headset
‘ seatpost cable frame brake & shift
Hire, binder % i
rim \ =
water bottle
front SCrews
derailleur

pedal
chainring Srankarm
chain hub

rear cogs rear
(cassette) derailleur

Effectiveness: Transports all required materials and no break downs J

8/20

Introduction Empirical Evaluation Conclusion
Object Query Languages and Bicycles

handlebar handlebar &
tape

seat
brake hood

seat clamp

seatpost brake headset
‘ seatpost cable frame brake & shift
Hire, binder % i
rim \ =
water bottle
front SCrews
derailleur

pedal
chainring Srankarm
chain hub

rear cogs rear
(cassette) derailleur

Cost: Frame material and components cause price to vary consideranyJ

8/20

Introduction

Empirical Evaluation Conclusion
Benchmarks for Query Languages

Configuration

Random Collection Generator | | Benchmark Initializer |

Collection

| Benchmark Executor |

Evaluation Report

9/20

Introduction Empirical Evaluation Conclusion
Benchmarks for Query Languages

@ Features

@ Operations (Query, Join, s
Sub-Query, Others)

@ Objects (Integers,
Strings, Graphs, | Random Collection Generator | | Benchmark Initializer |
Complex Objects)

@ Object and Collection _
Size (Small, Medium,
Large)

| Benchmark Executor |

Evaluation Report

i

9/20

Introduction Query Languages

Empirical Evaluation Conclusion

Benchmarks for Query Languages

@ Features

@ Operations (Query, Join,
Sub-Query, Others)

@ Objects (Integers,
Strings, Graphs,
Complex Objects)

@ Object and Collection
Size (Small, Medium,
Large)

@ Query Languages

@ JQL 0.3.1 with ANTLR
2.2.7, and Aspect] 1.5

@ JoSQL 1.8

@ Enhancements

| Random Collection Generator | | Benchmark Initializer |

Collection

| Benchmark Executor |

Evaluation Report

i

9/20

Introduction Query Languages Conclusion
Analysis Method: Regression Tree Models

Method: HC, JQL

. i : Mean
CollectionType: ArrayList, Vector

Mean Mean
Value Vaue

Tree Models: Use recursive partitioning to create hierarchical view of dataJ

10/20

Introduction Query Languages Conclusion
Analysis Method: Regression Tree Models

Method: HC, JQL

. i : Mean
CollectionType: ArrayList, Vector

Mean Mean
Value Vaue

Explanatory Variable: Configuration of the benchmark (e.g., “Method”) J

10/20

Introduction Query Languages Conclusion
Analysis Method: Regression Tree Models

Method: HC, JQL

. i : Mean
CollectionType: ArrayList, Vector

Mean Mean
Value Vaue

Response Variable: One of the evaluation metrics (e.g., “Response Time")J

10/20

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps
I I I I I

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps
I I I I

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps
I I I I

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps
I I I

Introduction Query Languages Conclusion
Analysis Method: Random Forests

CollectionType: ArrayList, Vector CollectionType: ArrayL.ist, Vector

CollectionType: ArrayList, Vector CollectionType: ArrayL.ist, Vector

Many Trees: Randomly construct a large collection of trees in order to
avoid bias and identify the most important explanatory variables

11/20

Query Benchmark with Integers

Method: HC,JQL
T

CollectionType:

IArrayList,Vector

38.65

309.40

CollectionS|ze < 55000

ObjectSige < 550

408.50
48460.00 86330.00

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Query Benchmark with Integers

Method: HC,JQL
T

CollectionType:

IArrayList,Vector

38.65

309.40

CollectionS|ze < 55000

ObjectSige < 550
408.50
48460.00 86330.00

Reflection’s Impact: HC and JQL exhibit lower time values than JoSQLJ

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

12/20

Query Benchmark with Integers

Method: HC,JQL
T

CollectionType:

IArrayList,Vector

38.65

309.40

CollectionS|ze < 55000

ObjectSige < 550
408.50
48460.00 86330.00

Random Forest: Query method and collection type have most impact J

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

12/20

Query Benchmark with Strings

Method: HC,JQL
T

CollectionType: IArrayList,Vector

63.75

CollectionS|ze < 27500

218.50

CollectionSige < 275000
189.40
74530.00 120700.00

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Query Benchmark with Strings

Method: HC,JQL
T

CollectionType: IArrayList,Vector

63.75

CollectionS|ze < 27500

218.50

CollectionSige < 275000
189.40
74530.00 120700.00

Reflection’s Impact: HC and JQL exhibit lower time values than JoSQLJ

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

13/20

Query Benchmark with Strings

Method: HC,JQL
T

CollectionType: IArrayList,Vector

63.75

CollectionS|ze < 27500

218.50

CollectionSige < 275000
189.40
74530.00 120700.00

Reflection’s Impact: Strings further degrade JoSQL's performance J

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

13/20

Query Benchmark with Strings

Method: HC,JQL
T

CollectionType: IArrayList,Vector

63.75

CollectionS|ze < 27500

218.50

CollectionSige < 275000
189.40
74530.00 120700.00

Random Forest: Query method and collection type have most impact

)

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

13/20

Join Benchmark with Integers and Strings

Method: HC-HJ,JQL
T

Collectiongize < 2250

247.4

CollectionType:

|ArrayList,Vector

3651.0

8447.0

80720.0

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Join Benchmark with Integers and Strings

Method: HC-HJ,JQL
T

Collectionjize <2250

247.4

CollectionType:

|ArrayList,Vector

3651.0

8447.0

Reflection’s Impact: HC-HJ and JQL exhibit lower

80720.0

values than JoSQL J

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

]

14/20

Join Benchmark with Integers and Strings

Method: HC-HJ,JQL
T

Collectionjize <2250

247.4

CollectionType:

|ArrayList,Vector

3651.0

8447.0

80720.0

Reflection’s Impact: LinkedList still degrades JoSQLs performance J

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

]

14/20

Join Benchmark with Integers and Strings

Method: HC-HJ,JQL
T

Collectionjize <2250

247.4

CollectionType:

|ArrayList,Vector

3651.0

8447.0

80720.0

Random Forest: Query method and collection type have most impact J

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

]

14/20

Introduction Query Languages

Impact of Object Size on Joining

Small Objects

Empirical Evaluation

Collection Size

Method | Small | Medium | Large

JQL 57.2 390.2 981.8
HC-HJ | 69.3 378.1 923.5
JoSQL | 997.3 | 3620.2 | 8823.1

Conclusion

15/20

Introduction Query Languages

Impact of Object Size on Joining

Small Objects

Empirical Evaluation

Collection Size

Method | Small | Medium | Large

JQL 57.2 390.2 981.8
HC-HJ | 69.3 378.1 923.5
JoSQL | 997.3 | 3620.2 | 8823.1

Large Objects

Collection Size

Method | Small | Medium | Large

JQL 35.4 80.8 255.4
HC-HJ 11.4 63.3 217.8
JoSQL | 930.3 | 3107.3 | 8165.9

Conclusion

15/20

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Framework Extension J

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Framework Extension J Statistical Analysis J

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

C) [16/20}

Introduction Query Languages Empirical Evaluation
Future Work in Performance Evaluation

CollectionType: ArrayList, Vector

o

Framework Extension J Statistical Analysis J

Incorporate new benchmarks, object types, and query
languages in order to better characterize performance. Use
statistical analysis to make reliable predictions.

16/20

JOL R

Java Query Language.

JQL : The Java Query Language

About JQL

Fxamples | /QL isan extension for Java that provides support for querying callestions of bjects. These queries can be run over
~Xamples objects in collections in your program, or even used 10 check expressions on all instances of specific types at
Download runtime.

Development | Queries provide a powerful abstraction for dealing with sets of objects, allowing the query engine lo take care of
the implementation details. This allaws for shorter, clearer cade, and permits the query engine Lo dynamically

Caching optimize query evaluation strategies as the runtime context changes.
Papers) _ . ' R

Queries can also be cached and that cache inerementally maintained - this grealy increases their efficiency, and can
Help offer improved performance for many common eollection operations.

| A brief example!

4y we're bullding 4 crossword puzzle. We've got a list of candidate words for aur puzzle, and 4 list of the lengths
f the gaps we need to fill:

ArrayList<String> words = dict.getliords(Puzzle. NEDIUM);
ArrayList<Integer> gaplengths = puzzle.getCapLengths();

fow we've gl truly marvelous algorithm for building a erossword puzele (that this webpage is too narrow 1o
antain), which relies on having a list of pairs of [length, word],
| Using a JQL query, we can build this list with ease:

See the Web site of Dr. David J. Pearce for additional resources

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Introduction Query Languages Empirical Evaluation
JoSQL: Web Site Reference

Josol

?‘ Quick Links

1) What is JoSQL?

JoSQL User Manual

agie

Download
JoSOL (SOL for Java Objects) prowdss the abilty fo- a devsloper to apply a SQL statement to a collection of
Java Objests. JoSCL provides the ahility to search, order and creup ANY Java objects and should be applied
JavaDocs wher you want to pertorm SUL-ike querizs on z collectior of Java Ubjects.

Download JoSQL GLI

UseTul Resources
For example, to tind all the H | ML tiles that have been medilied in Decemoer 2004
Potential Uses

SELECT *

FROD ava.io.File

WHERE name SLIKE "% him["

Aepor a Bug AND lastModifiec BE EEN toDate (01-12-2004"
AND teDate (131-12-2004')

Projects using JoS@L

Featurs Requesl

Contact / Gel Help

| SourceForge Neow to de this in Java ¢odes would requirs the eeation of a custem functior that will 2llow the eomparison

http://josgl.sourceforge.net/ provides tools and documentation

18/20

Introduction Query Languages Empirical Evaluation
R Language for Statistical Computation

SR

http://www.r-project.org/ provides amazing tools and documentation J

19/20

i

Suggestions m 777777 B o
Performance Evaluation J Detailed Empirical Study

Summary: Extended and empirically evaluated the efficiency
and effectiveness of declarative approaches to finding data in
the unstructured heap of a Java virtual machine.
http://www.cs.allegheny.edu/~gkapfham/research/

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

T 11 {20/20

i

Suggestions m 777777 =
Performance Evaluation J Detailed Empirical Study J

Summary: Extended and empirically evaluated the efficiency
and effectiveness of declarative approaches to finding data in
the unstructured heap of a Java virtual machine.
http://www.cs.allegheny.edu/~gkapfham/research/

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

IS 1T [){20/20

i

Suggestions m 777777 [
Performance Evaluation J Detailed Empirical Study J

Summary: Extended and empirically evaluated the efficiency
and effectiveness of declarative approaches to finding data in
the unstructured heap of a Java virtual machine.
http://www.cs.allegheny.edu/~gkapftham/research/

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

BRI 1) 120/20

Introduction Query Languages Empirical Evaluation
Concluding Remarks

Benchmark
Executor

Performance Evaluation J Detailed Empirical Study J

Summary: Extended and empirically evaluated the efficiency
and effectiveness of declarative approaches to finding data in
the unstructured heap of a Java virtual machine.

20/20

Introduction Query Languages

Empirical Evaluation

Concluding Remarks

Benchmark
Executor

Performance Evaluation J

Conclusion

Detailed Empirical Study J

Summary: Extended and empirically evaluated the efficiency
and effectiveness of declarative approaches to finding data in

the unstructured heap of a Java virtual machine.

http://www.cs.allegheny.edu/~gkapfham/research/

20/20

	Introduction
	Query Languages
	Empirical Evaluation
	Conclusion

