The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Gregory M. Kapfhammer

Department of Computer Science Allegheny College http://www.cs.allegheny.edu/~gkapfham/

Department of Mathematics and Computer Science Westminster College, December 2009

In conjunction with William Jones (Allegheny College) Featuring an image from www.CampusBicycle.com

Important Contributions

<u>Overview</u>: Extend and empirically evaluate the **efficiency** and **effectiveness** of declarative approaches to finding data in the unstructured heap of a Java virtual machine

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Important Contributions

<u>Overview</u>: Extend and empirically evaluate the **efficiency** and **effectiveness** of declarative approaches to finding data in the unstructured heap of a Java virtual machine

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Important Contributions

<u>Overview</u>: Extend and empirically evaluate the **efficiency** and **effectiveness** of declarative approaches to finding data in the unstructured heap of a Java virtual machine

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Important Contributions

<u>Overview</u>: Extend and empirically evaluate the **efficiency** and **effectiveness** of declarative approaches to finding data in the unstructured heap of a Java virtual machine

Important Contributions

Analysis: Develop and use **tree** and **random forest** statistical models and data visualizations that help to identify efficiency and effectiveness **trade-offs** for data location strategies

The Value of Virtual Machines

The virtual machine enables platform independence, handles migration, manages limited resources, provides optimization

The Value of Virtual Machines

The virtual machine enables platform independence, handles migration, manages limited resources, provides optimization

The Value of Virtual Machines

The virtual machine enables platform independence, handles migration, manages limited resources, provides optimization

A Look Inside the Java Virtual Machine

The virtual machine manages resources for the program

A Look Inside the Java Virtual Machine

The virtual machine manages resources for the program

A Look Inside the Java Virtual Machine

The virtual machine manages resources for the program

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

The Container Hierarchy in the Heap

The unstructured heap stores objects that are connected in complex and unpredictable ways (Xu and Rountev, ICSE 2008)

The Container Hierarchy in the Heap

A memory leak may occur when a Java program incorrectly maintains object references (Xu and Rountev, ICSE 2008)

The Container Hierarchy in the Heap

Why is my program "leaking"? The standard method of iterating through large collections is often challenging and error prone!

JQL: Declaratively Finding Objects

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

JQL: Declaratively Finding Objects

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

JQL: Declaratively Finding Objects

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

7/20

JoSQL: Declaratively Finding Objects

JoSQL: Declaratively Finding Objects

JoSQL: Declaratively Finding Objects

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Object Query Languages and Bicycles

Efficiency: Low wind resistance and time to destination

Object Query Languages and Bicycles

Effectiveness: Transports all required materials and no break downs

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Object Query Languages and Bicycles

Cost: Frame material and components cause price to vary considerably

Benchmarks for Query Languages

Features

- Operations (Query, Join, Sub-Query, Others)
- Objects (Integers, Strings, Graphs, Complex Objects)
- Object and Collection Size (Small, Medium, Large)

Query Languages

- JQL 0.3.1 with ANTLR
 2.2.7, and AspectJ 1.5
 IoSOL 1.8
- Enhancements

Benchmarks for Query Languages

Features

- Operations (Query, Join, Sub-Query, Others)
- Objects (Integers, Strings, Graphs, Complex Objects)
- Object and Collection Size (Small, Medium, Large)

Query Languages

- JQL 0.3.1 with ANTLR 2.2.7, and AspectJ 1.5
 JoSQL 1.8
- Enhancements

9/20

Benchmarks for Query Languages

Features

- Operations (Query, Join, Sub-Query, Others)
- Objects (Integers, Strings, Graphs, Complex Objects)
- Object and Collection Size (Small, Medium, Large)

Query Languages

- JQL 0.3.1 with ANTLR 2.2.7, and AspectJ 1.5
- JoSQL 1.8
- Enhancements

Analysis Method: Regression Tree Models

Tree Models: Use recursive partitioning to create hierarchical view of data

Analysis Method: Regression Tree Models

Explanatory Variable: Configuration of the benchmark (e.g., "Method")

Analysis Method: Regression Tree Models

Response Variable: One of the evaluation metrics (e.g., "Response Time")

Analysis Method: Random Forests

11/20

Analysis Method: Random Forests

11/20

Analysis Method: Random Forests

11/20

Analysis Method: Random Forests

Analysis Method: Random Forests

Many Trees: Randomly construct a large collection of trees in order to avoid bias and identify the most important explanatory variables

Conclus

Query Benchmark with Integers

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Query Benchmark with Integers

Reflection's Impact: HC and JQL exhibit lower time values than JoSQL

Query Benchmark with Integers

Random Forest: Query method and collection type have most impact

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Conclus

Query Benchmark with Strings

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Query Benchmark with Strings

Reflection's Impact: HC and JQL exhibit lower time values than JoSQL

Query Benchmark with Strings

Reflection's Impact: Strings further degrade JoSQL's performance

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Query Benchmark with Strings

Random Forest: Query method and collection type have most impact

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

14/20

Join Benchmark with Integers and Strings

Join Benchmark with Integers and Strings

Reflection's Impact: HC-HJ and JQL exhibit lower values than JoSQL

Join Benchmark with Integers and Strings

Reflection's Impact: LinkedList still degrades JoSQL's performance

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Join Benchmark with Integers and Strings

Random Forest: Query method and collection type have most impact

Impact of Object Size on Joining

Small Objects

	Collection Size		
Method	Small	Medium	Large
JQL	57.2	390.2	981.8
HC-HJ	69.3	378.1	923.5
JoSQL	997.3	3620.2	8823.1

Large Objects

	Collection Size		
Method	Small	Medium	Large
JQL	35.4	80.8	255.4
HC-HJ	11.4	63.3	217.8
JoSQL	930.3	3107.3	8165.9

Impact of Object Size on Joining

Smal	l Ob	jects

	Collection Size		
Method	Small	Medium	Large
JQL	57.2	390.2	981.8
HC-HJ	69.3	378.1	923.5
JoSQL	997.3	3620.2	8823.1

Large Objects

	Collection Size		
Method	Small	Medium	Large
JQL	35.4	80.8	255.4
HC-HJ	11.4	63.3	217.8
JoSQL	930.3	3107.3	8165.9

Future Work in Performance Evaluation

Incorporate new **benchmarks**, **object types**, and **query** anguages in order to better characterize performance. Use statistical analysis to make reliable predictions.

Future Work in Performance Evaluation

Incorporate new **benchmarks**, **object types**, and **query** anguages in order to better characterize performance. Use statistical analysis to make reliable predictions.

Future Work in Performance Evaluation

Incorporate new **benchmarks**, **object types**, and **query** languages in order to better characterize performance. Use statistical analysis to make reliable predictions.

Future Work in Performance Evaluation

Incorporate new **benchmarks**, **object types**, and **query languages** in order to better characterize performance. Use **statistical analysis** to make reliable predictions.

17/20

JQL: Web Site Reference

_	Java Query Language	
bout IOL	JQL : The Java Query Language	
xamples	JQL is an extension for Java that provides support for querying collections of objects. These queries can be run of	
Download	runtime.	
Development	Queries provide a powerful abstraction for dealing with sets of objects, allowing the query engine to take care of	
Caching	the implementation details. This allows for shorter, clearer code, and permits the query engine to dynamically optimize query evaluation strategies as the runtime context changes.	
apers	Queries can also be cached and that cache incrementally maintained - this greatly increases their efficiency, and can	
Ielp	offer improved performance for many common collection operations.	
	A brief example!	
	Say we're building a crossword puzzle. We've got a list of candidate words for our puzzle, and a list of the lengths of the gaps we need to fill:	
	<pre>ArrayList<string> words = dict.getWords(Puzzle.MEDIUM); ArrayList<integer> gaplengths = puzzle.getGapLengths();</integer></string></pre>	

See the Web site of Dr. David J. Pearce for additional resources

JoSQL: Web Site Reference

Josql	12 AUTODOLU A	
🤕 Quick Links	🔱 What is JoSQL?	
JoSQL User Manual	Version 2 0 now available.	
Download		
Download JoSQL GUI	JoSQL (SQL for Java Objects) provides the ability for a developer to apply a SQL statement to a collection of Java Objects. JoSQL provides the ability to search, order and group ANY Java objects and should be applied when you want to perform SQL-like queries on a collection of Java Objects.	
JavaDocs		
Useful Resources		
Potential Uses	To example, to mis an the first we may that have been meaned in beechber 2004.	
Projects using JoSQL	SELECT *	
Feature Request	FROM Javano-htte WHERE name \$LIKE "%.html" AND IsaMcdifice BETWEEN toDate (01-12-2004)	
Report a Bug		
Contact / Get Help	AND tcDate (31-12-2004')	
SourceForge	Now to do this in Java code would require the creation of a custom function that will allow the comparison	

http://josql.sourceforge.net/ provides tools and documentation

R Language for Statistical Computation

http://www.r-project.org/ provides amazing tools and documentation

Summary: Extended and empirically evaluated the efficiency and effectiveness of declarative approaches to finding data in the unstructured heap of a Java virtual machine. http://www.cs.allegheny.edu/~gkapfham/research/

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Concluding Remarks

<u>Summary</u>: Extended and empirically evaluated the **efficiency** and **effectiveness** of declarative approaches to finding data in the unstructured heap of a Java virtual machine. http://www.cs.allegheny.edu/~gkapfham/research/

The Measured Performance of Declarative Approaches to Finding Data in Unstructured Heaps

Summary: Extended and empirically evaluated the efficiency and effectiveness of declarative approaches to finding data in the unstructured heap of a Java virtual machine. http://www.cs.allegheny.edu/~gkapfham/research/

<u>Summary</u>: Extended and empirically evaluated the efficiency and effectiveness of declarative approaches to finding data in the unstructured heap of a Java virtual machine. http://www.cs.allegheny.edu/~gkapfham/research/

<u>Summary</u>: Extended and empirically evaluated the efficiency and effectiveness of declarative approaches to finding data in the unstructured heap of a Java virtual machine. http://www.cs.allegheny.edu/~gkapfham/research/

