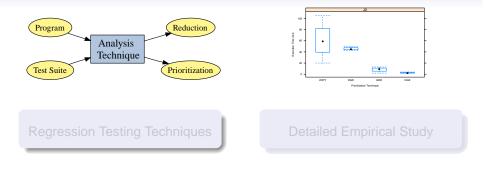
Practical Suggestions for Improving and Empirically Studying Greedy Test Suite Reduction and Prioritization Methods

Gregory M. Kapfhammer[†]

Department of Computer Science Allegheny College http://www.cs.allegheny.edu/~gkapfham/


1/30

Department of Computer Science and Technology Nanjing University, November 2009

[†] In Conjunction with Adam M. Smith, Joshua J. Geiger, G. Elisabeta Mara (University of Pittsburgh) Manos Renieris (Google)

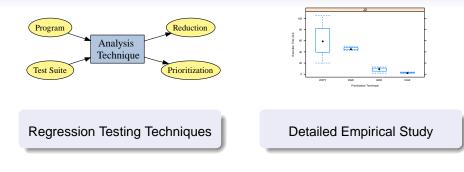
Featuring an image from www.CampusBicycle.com

Important Contributions

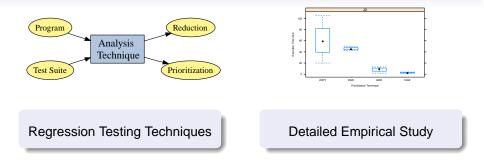


<u>Overview</u>: Implement and evaluate the **efficiency** and **effectiveness** of cost-aware greedy methods for regression test suite **reduction** and **prioritization**

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

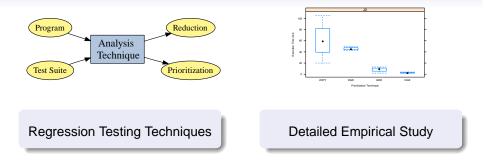

2/30

Important Contributions

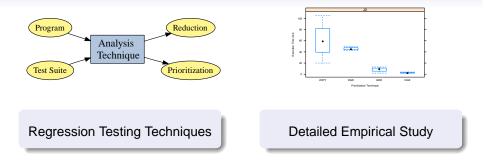

<u>Overview</u>: Implement and evaluate the efficiency and effectiveness of cost-aware greedy methods for regression test suite reduction and prioritization

Important Contributions

<u>Overview</u>: Implement and evaluate the efficiency and effectiveness of cost-aware greedy methods for regression test suite reduction and prioritization


Important Contributions

<u>Overview</u>: Implement and evaluate the **efficiency** and **effectiveness** of cost-aware greedy methods for regression test suite **reduction** and **prioritization**



Important Contributions

Experiments: Use automatically generated synthetic test suites and real world case study applications during the empirical study of greedy regression testing methods

Important Contributions

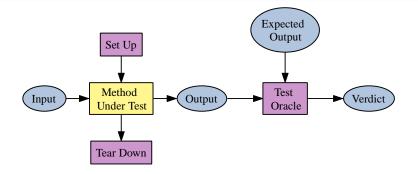
Analysis: Develop and use **tree** and **random forest** statistical models and interactive **visualization** techniques that help to **identify** efficiency and effectiveness **trade-offs** for testing

Regression Testing and Bicycles

Efficiency: Low wind resistance and time to destination

Regression Testing and Bicycles

Effectiveness: Transports all required materials and no break downs

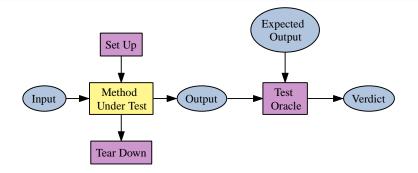

Regression Testing and Bicycles

Cost: Frame material and components cause price to vary considerably

What is a Test Case?

(Regression Testing)

Test suite executor runs each test case independently

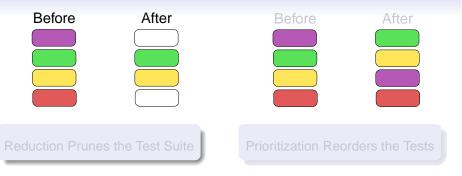

 Each test invokes a method within the program and then compares the actual and expected output values

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

4/30

What is a Test Case?

(Regression Testing)



• Test suite executor runs each test case independently

 Each test invokes a method within the program and then compares the actual and expected output values

Regression Testing Techniques

It is **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Reduction** discards some of the *n* tests in an attempt to **decrease** testing time while still **preserving** objectives like **coverage** or **fault detection**.

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

5/30

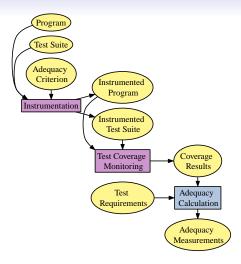
Regression Testing Techniques

It is **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Reduction** discards some of the *n* tests in an attempt to **decrease** testing time while still **preserving** objectives like **coverage** or **fault detection**.

Regression Testing Techniques

It is **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Reduction** discards some of the *n* tests in an attempt to **decrease** testing time while still **preserving** objectives like **coverage** or **fault detection**.

Regression Testing Techniques


It is **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Reduction** discards some of the *n* tests in an attempt to **decrease** testing time while still **preserving** objectives like **coverage** or **fault detection**.

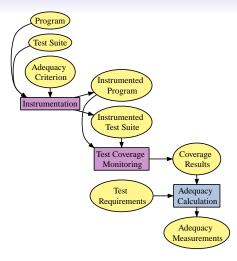
Regression Testing Techniques

It is **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Prioritization** searches through the $n! = n \times n - 1 \times ... \times 1$ orderings for those that **maximize** an objective function like **coverage** or **fault detection**.

Calculating the Coverage of a Test Suite

Calculating Coverage

Use instrumentation probes to **capture** and **analyze** a test suite's coverage of the program state and structure


Regression Testing

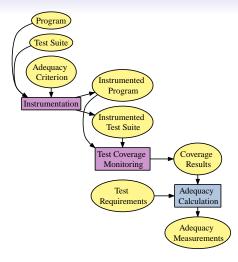
The coverage results and adequacy measurements can support both test suite reduction and prioritization

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

6/30

Calculating the Coverage of a Test Suite

Calculating Coverage

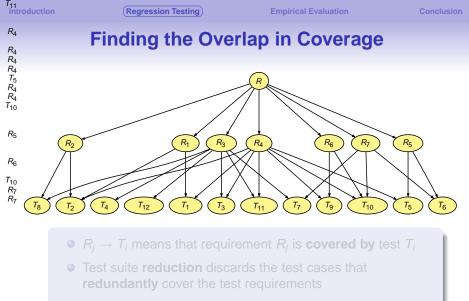

Use instrumentation probes to **capture** and **analyze** a test suite's coverage of the program state and structure

Regression Testing

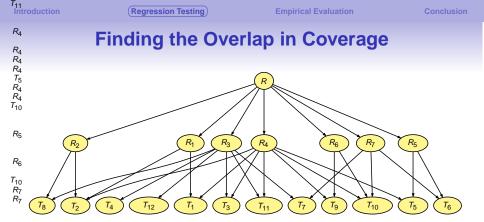
The coverage results and adequacy measurements can support both test suite reduction and prioritization

6/30

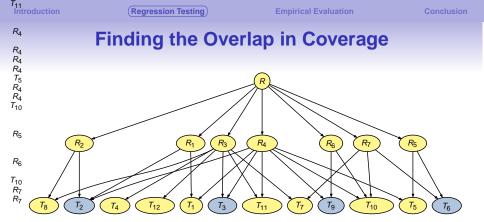
Calculating the Coverage of a Test Suite



Calculating Coverage


Use instrumentation probes to **capture** and **analyze** a test suite's coverage of the program state and structure

Regression Testing


The coverage results and adequacy measurements can support both test suite reduction and prioritization

• $T = \langle T_2, T_3, T_6, T_9 \rangle$ covers all of the test requirements

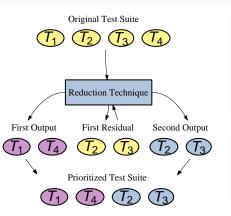
- $R_j \rightarrow T_i$ means that requirement R_j is **covered by** test T_i
- Test suite reduction discards the test cases that redundantly cover the test requirements
- $T = \langle T_2, T_3, T_6, T_9 \rangle$ covers all of the test requirements

- $R_j \rightarrow T_i$ means that requirement R_j is **covered by** test T_i
- Test suite reduction discards the test cases that redundantly cover the test requirements
- $T = \langle T_2, T_3, T_6, T_9 \rangle$ covers all of the test requirements

ts

Γ₄ Γ₃

 T_2


 T_1

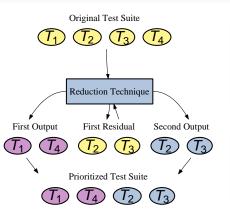
Γ₄ Γ₁ Γ₃

 T_2

Г3

 T_2

- Harrold, Gupta, Soffa (HGS)
- Delayed Greedy (DGR)
- Traditional Greedy (GRD)
- 2-Optimal Greedy (2OPT)


Hypothesis: Using the execution **time** of a test case can **improve** the reduced and prioritized test suites

Compare (i) greedy choices (cost, coverage, and ratio) and (ii) algorithms

(Regression Testing)

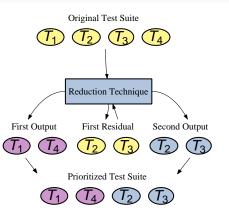
Conclusion

Greedy Approaches to Regression Testing

- Harrold, Gupta, Soffa (HGS)
- Delayed Greedy (DGR)
- Traditional Greedy (GRD)
- 2-Optimal Greedy (2OPT)

Hypothesis: Using the execution **time** of a test case can **improve** the reduced and prioritized test suites

Compare (i) greedy choices (cost, coverage, and ratio) and (ii) algorithms


Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

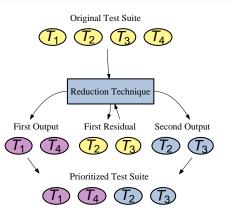
8/30

(Regression Testing)

Conclusion

Greedy Approaches to Regression Testing

- Harrold, Gupta, Soffa (HGS)
- Delayed Greedy (DGR)
- Traditional Greedy (GRD)
- 2-Optimal Greedy (2OPT)

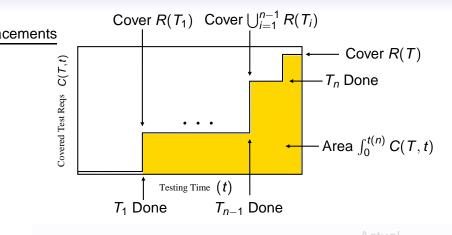

Hypothesis: Using the execution **time** of a test case can **improve** the reduced and prioritized test suites

Compare (i) greedy choices (cost, coverage, and ratio) and (ii) algorithms

(Regression Testing)

Conclusion

Greedy Approaches to Regression Testing

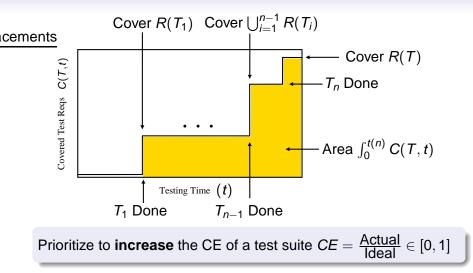


- Harrold, Gupta, Soffa (HGS)
- Delayed Greedy (DGR)
- Traditional Greedy (GRD)
- 2-Optimal Greedy (2OPT)

Hypothesis: Using the execution **time** of a test case can **improve** the reduced and prioritized test suites

Compare (i) greedy choices (cost, coverage, and ratio) and (ii) algorithms

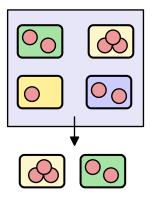
Evaluating Test Suite Prioritizers



Prioritize to **increase** the CE of a test suite $CE = \frac{AC}{LA}$

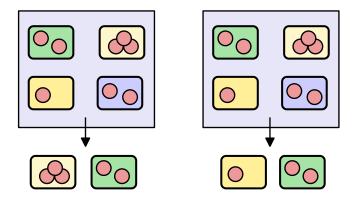
Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

9/30

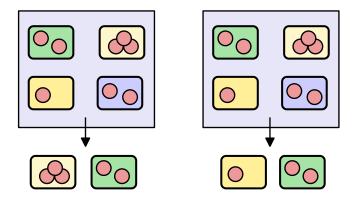

Evaluating Test Suite Prioritizers

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

9/30


Evaluating Test Suite Reducers

Reduction Factor for Size (RFFS): How small is the reduced test suite?


Evaluating Test Suite Reducers

Reduction Factor for Time (RFFT): How fast is the reduced test suite?

Evaluating Test Suite Reducers

Common Rate (CR): How similar are differently reduced test suites?

	R_1	R_2	R_3	R_4	R_5	Execution Time
T_1	\checkmark	\checkmark	\checkmark	\checkmark		4
<i>T</i> ₂			\checkmark	\checkmark		1
<i>T</i> ₃		\checkmark				1
<i>T</i> ₄	\checkmark				\checkmark	1

Greedy-by	Tr	$time(T_r)$	T_p	CE
coverage	$\langle T_1, T_4 \rangle$	5	$\langle T_1, T_4, T_2, T_3 \rangle$	0.400
time	$\langle T_2, T_3, T_4 \rangle$	3	$\langle T_2, T_3, T_4, T_1 \rangle$	0.714
ratio	$\langle T_2, T_4, T_3 \rangle$	3	$\langle T_2, T_4, T_3, T_1 \rangle$	0.743

	R_1	R_2	R_3	R_4	R_5	Execution Time
<i>T</i> ₁	\checkmark	\checkmark	\checkmark	\checkmark		4
<i>T</i> ₂			\checkmark	\checkmark		1
<i>T</i> ₃		\checkmark				1
T_4	\checkmark				\checkmark	1

Greedy-by	T_r	$time(T_r)$	T_p	CE
coverage	$\langle T_1, T_4 \rangle$	5	$\langle T_1, T_4, T_2, T_3 \rangle$	0.400
time	$\langle T_2, T_3, T_4 \rangle$	3	$\langle T_2, T_3, T_4, T_1 \rangle$	0.714
ratio	$\langle T_2, T_4, T_3 \rangle$	3	$\langle T_2, T_4, T_3, T_1 \rangle$	0.743

	R_1	R_2	R_3	R_4	R_5	Execution Time
<i>T</i> ₁	\checkmark	\checkmark	\checkmark	\checkmark		4
<i>T</i> ₂			\checkmark	\checkmark		1
<i>T</i> ₃		\checkmark				1
T_4	\checkmark				\checkmark	1

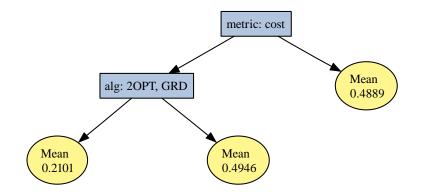
Greedy-by	T _r	$time(T_r)$	$T_{ ho}$	CE
coverage	$\langle T_1, T_4 \rangle$	5	$\langle T_1, T_4, T_2, T_3 \rangle$	0.400
time	$\langle T_2, T_3, T_4 \rangle$	3	$\langle T_2, T_3, T_4, T_1 \rangle$	0.714
ratio	$\langle T_2, T_4, T_3 \rangle$	3	$\langle T_2, T_4, T_3, T_1 \rangle$	0.743

	R_1	R_2	R_3	R_4	R_5	Execution Time
<i>T</i> ₁	\checkmark	\checkmark	\checkmark	\checkmark		4
<i>T</i> ₂			\checkmark	\checkmark		1
<i>T</i> ₃		\checkmark				1
T_4	\checkmark				\checkmark	1

Greedy-by	T _r	$time(T_r)$	$T_{ ho}$	CE
coverage	$\langle T_1, T_4 \rangle$	5	$\langle T_1, T_4, T_2, T_3 \rangle$	0.400
time	$\langle T_2, T_3, T_4 \rangle$	3	$\langle T_2, T_3, T_4, T_1 \rangle$	0.714
ratio	$\langle T_2, T_4, T_3 \rangle$	3	$\langle T_2, T_4, T_3, T_1 \rangle$	0.743

Greedy Choices Impact Effectiveness

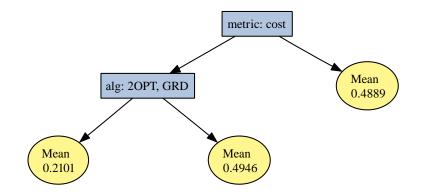
	R_1	R_2	R_3	R_4	R_5	Execution Time
<i>T</i> ₁	\checkmark	\checkmark	\checkmark	\checkmark		4
<i>T</i> ₂			\checkmark	\checkmark		1
<i>T</i> ₃		\checkmark				1
T_4	\checkmark				\checkmark	1


Greedy-by	T _r	$time(T_r)$	T_{ρ}	CE
coverage	$\langle T_1, T_4 \rangle$	5	$\langle T_1, T_4, T_2, T_3 \rangle$	0.400
time	$\langle T_2, T_3, T_4 \rangle$	3	$\langle T_2, T_3, T_4, T_1 \rangle$	0.714
ratio	$\langle T_2, T_4, T_3 \rangle$	3	$\langle T_2, T_4, T_3, T_1 \rangle$	0.743

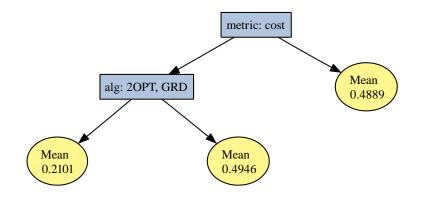
Greedy Choices Impact Effectiveness

	R_1	R_2	R_3	R_4	R_5	Execution Time
<i>T</i> ₁	\checkmark	\checkmark	\checkmark	\checkmark		4
<i>T</i> ₂			\checkmark	\checkmark		1
<i>T</i> ₃		\checkmark				1
T_4	\checkmark				\checkmark	1

Greedy-by	T _r	$time(T_r)$	Τ _ρ	CE
coverage	$\langle T_1, T_4 \rangle$	5	$\langle T_1, T_4, T_2, T_3 \rangle$	0.400
time	$\langle T_2, T_3, T_4 \rangle$	3	$\langle T_2, T_3, T_4, T_1 \rangle$	0.714
ratio	$\langle T_2, T_4, T_3 \rangle$	3	$\langle T_2, T_4, T_3, T_1 \rangle$	0.743


Analysis Method: Tree Models

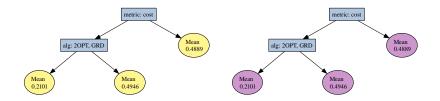
Tree Models: Use recursive partitioning to create hierarchical view of data


Analysis Method: Tree Models

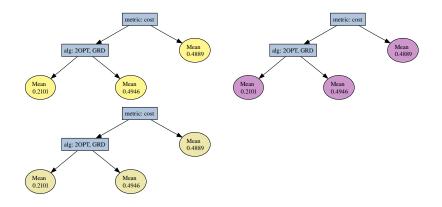
Explanatory Variable: Configuration of the testing methods (e.g., GCM)

Analysis Method: Tree Models

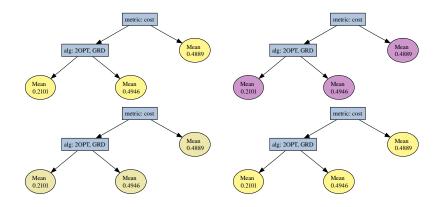
Response Variable: One of the evaluation metrics (e.g., CE or RFFT)



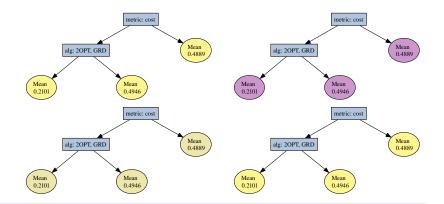
Analysis Method: Random Forests



Analysis Method: Random Forests



Analysis Method: Random Forests



Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

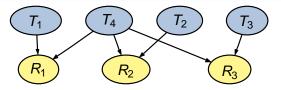
Analysis Method: Random Forests

Analysis Method: Random Forests

Many Trees: Randomly construct a large collection of trees in order to avoid bias and identify the most important explanatory variables

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

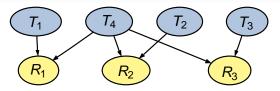
Name	<i>T</i>	$ \mathcal{R}(T) $	CCN	NCSS
DS	110	40	1.35	1243.00
GB	51	88	2.60	1455.00
JD	54	783	1.64	2716.00
LF	13	6	1.40	215.00
RM	13	19	2.13	569.00
SK	27	117	2.00	628.00
TM	27	46	2.21	748.00
RP	76	221	2.65	6822.00


Name	<i>T</i>	$ \mathcal{R}(T) $	CCN	NCSS
DS	110	40	1.35	1243.00
GB	51	88	2.60	1455.00
JD	54	783	1.64	2716.00
LF	13	6	1.40	215.00
RM	13	19	2.13	569.00
SK	27	117	2.00	628.00
TM	27	46	2.21	748.00
RP	76	221	2.65	6822.00

Name	<i>T</i>	$ \mathcal{R}(T) $	CCN	NCSS
DS	110	40	1.35	1243.00
GB	51	88	2.60	1455.00
JD	54	783	1.64	2716.00
LF	13	6	1.40	215.00
RM	13	19	2.13	569.00
SK	27	117	2.00	628.00
TM	27	46	2.21	748.00
RP	76	221	2.65	6822.00

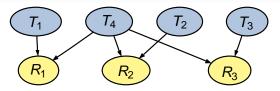
Name	<i>T</i>	$ \mathcal{R}(T) $	CCN	NCSS
DS	110	40	1.35	1243.00
GB	51	88	2.60	1455.00
JD	54	783	1.64	2716.00
LF	13	6	1.40	215.00
RM	13	19	2.13	569.00
SK	27	117	2.00	628.00
TM	27	46	2.21	748.00
RP	76	221	2.65	6822.00

Do the **greedy** reducers and prioritizers efficiently identify test suites that **improve** effectiveness? What are the fundamental **trade-offs**?


Revision: 12 "Greedy Fooling" Coverage Generation

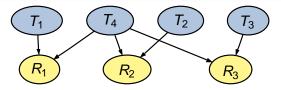
Generation Procedure

- The greedy test prioritizer iteratively selects test cases according to the (coverage / cost) ratio
- **Goal**: generate coverage and timing information that will **fool** the greedy technique into creating $T_p = \langle T_n, ..., T_1 \rangle$ even though $CE(T_p) < CE(T)$ for $T = \langle T_1, ..., T_n \rangle$
- Inspiration: Vazirani's construction of a tight example for the greedy minimal set cover algorithm

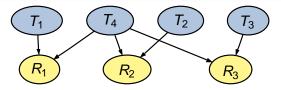

Revision: 12 "Greedy Fooling" Coverage Generation

Generation Procedure

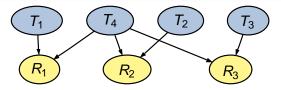
- The greedy test prioritizer iteratively selects test cases according to the (coverage / cost) ratio
- **Goal**: generate coverage and timing information that will **fool** the greedy technique into creating $T_p = \langle T_n, ..., T_1 \rangle$ even though $CE(T_p) < CE(T)$ for $T = \langle T_1, ..., T_n \rangle$
- Inspiration: Vazirani's construction of a tight example for the greedy minimal set cover algorithm


Revision: 1.2 "Greedy Fooling" Coverage Generation

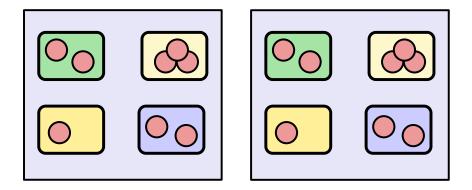
Generation Procedure


- The greedy test prioritizer iteratively selects test cases according to the (coverage / cost) ratio
- **Goal**: generate coverage and timing information that will **fool** the greedy technique into creating $T_p = \langle T_n, ..., T_1 \rangle$ even though $CE(T_p) < CE(T)$ for $T = \langle T_1, ..., T_n \rangle$
- Inspiration: Vazirani's construction of a tight example for the greedy minimal set cover algorithm

Revision : 1.2 Constructing "Greedy Fooling" Test Suites

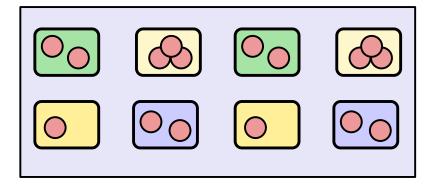

- Approach: use one dimensional optimization (e.g., golden section search and successive parabolic interpolation) to pick a value for cost(T_n)
- **Construction**: set $cost(T_1) = cost(T_2) = cost(T_3) = 1$ and then determine the bounds for $cost(T_4) \in [C_{min}, C_{max}]$
- **Example**: $cost(T_4) \in [2.138803, 2.472136]$ so that $CE_{min}(T_p) = .5838004$ $CE_{min}(T) = .6108033$ $CE_{max}(T_p) = .5482172$ $CE_{max}(T) = .6345125$

Revision : 1.2 Constructing "Greedy Fooling" Test Suites

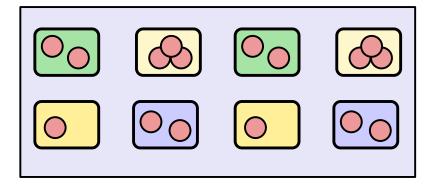

- Approach: use one dimensional optimization (e.g., golden section search and successive parabolic interpolation) to pick a value for cost(T_n)
- **Construction**: set $cost(T_1) = cost(T_2) = cost(T_3) = 1$ and then determine the bounds for $cost(T_4) \in [C_{min}, C_{max}]$
- **Example**: $cost(T_4) \in [2.138803, 2.472136]$ so that $CE_{min}(T_p) = .5838004$ $CE_{min}(T) = .6108033$ $CE_{max}(T_p) = .5482172$ $CE_{max}(T) = .6345125$

Revision : 1.2 Constructing "Greedy Fooling" Test Suites

- Approach: use one dimensional optimization (e.g., golden section search and successive parabolic interpolation) to pick a value for cost(T_n)
- Construction: set $cost(T_1) = cost(T_2) = cost(T_3) = 1$ and then determine the bounds for $cost(T_4) \in [C_{min}, C_{max}]$
- **Example**: $cost(T_4) \in [2.138803, 2.472136]$ so that $CE_{min}(T_p) = .5838004$ $CE_{min}(T) = .6108033$ $CE_{max}(T_p) = .5482172$ $CE_{max}(T) = .6345125$


Constructing Build/Test Machine Suites

Objective: Simulate test suite execution on a centralized server


Constructing Build/Test Machine Suites

Objective: Simulate test suite execution on a centralized server

Constructing Build/Test Machine Suites

Construction: Combine all of the test suites and coverage reports

Random Number	Input	Output
$\{1, 2, 3, 4\}$ 2	$\langle t_1, t_2, t_3, t_4\rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
$\{1, 2, 3\}$ 3	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
{1,2} 1	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_4, t_1, t_3, t_2 \rangle$

Random Number	Input	Output
$\{1, 2, 3, 4\}$ 2	$\langle t_1, t_2, t_3, t_4\rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
$\{1, 2, 3\}$ 3	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
{1,2} 1	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_4, t_1, t_3, t_2 \rangle$

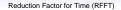
Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

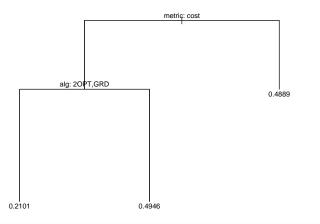
Random Number	Input	Output
$\{1, 2, 3, 4\}$ 2	$\langle t_1, t_2, t_3, t_4\rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
$\{1, 2, 3\}$ 3	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
{1,2} 1	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_4, t_1, t_3, t_2 \rangle$

18/30

Random Test Suite Prioritization

Random Number	Input	Output
$\{1, 2, 3, 4\}$ 2	$\langle t_1, t_2, t_3, t_4\rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
$\{1, 2, 3\}$ 3	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
{1,2} 1	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_4, t_1, t_3, t_2 \rangle$

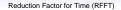

Random Number	Input	Output
$\{1, 2, 3, 4\}$ 2	$\langle t_1, t_2, t_3, t_4\rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
$\{1, 2, 3\}$ 3	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
{1,2} 1	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_4, t_1, t_3, t_2 \rangle$

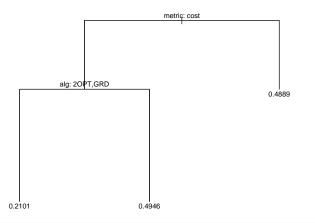

Importance: Random prioritization serves as a valuable experimental control and often produces orderings better than the initial suite

Random Number	Input	Output
$\{1, 2, 3, 4\}$ 2	$\langle t_1, t_2, t_3, t_4 \rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
$\{1, 2, 3\}$ 3	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_1, t_4, t_3, t_2 \rangle$
{1,2} 1	$\langle t_1, t_4, t_3, t_2 \rangle$	$\langle t_4, t_1, t_3, t_2 \rangle$

Strategy: Use the modern and efficient implementation of the Fisher-Yates shuffle to produce the reordered test suite $T_p = \langle t_4, t_1, t_3, t_2 \rangle$

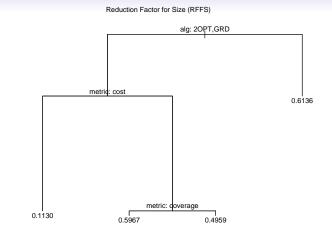
Overview of RFFT Trends



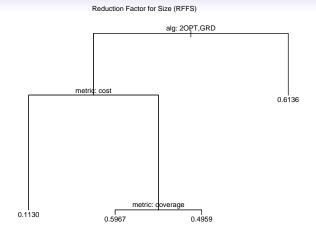


The myopic focus on cost leads to low RFFT values for 2OPT and GRD

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods


Overview of RFFT Trends

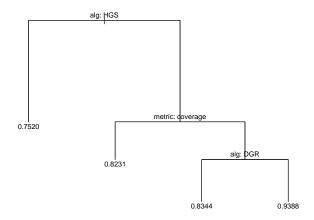
The myopic focus on **cost** leads to **low** RFFT values for 2OPT and GRD


Overview of RFFS Trends

DGR and HGS are the best at creating test suites that improve RFFS

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

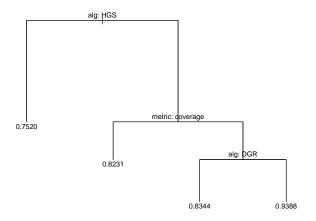
Overview of RFFS Trends



DGR and HGS are the best at creating test suites that improve RFFS

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

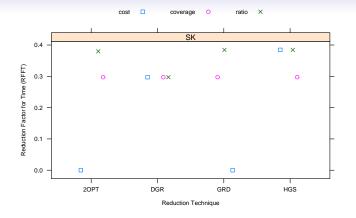
Overview of CE Trends



Using ratio and cost improves the CE of the prioritized test suite

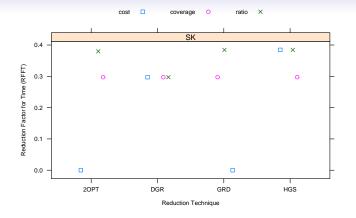
Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

Overview of CE Trends



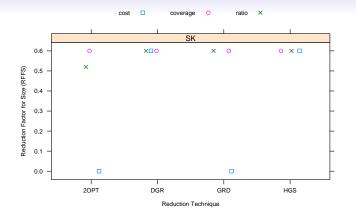
Using ratio and cost improves the CE of the prioritized test suite

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

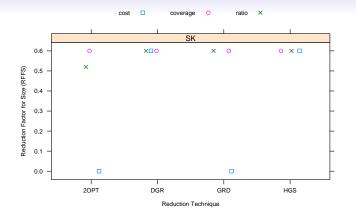

Reduction Factor for Time - SK

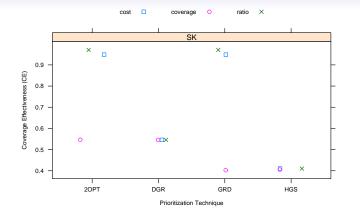
For 2OPT and GRD, ratio and coverage create the best test suites

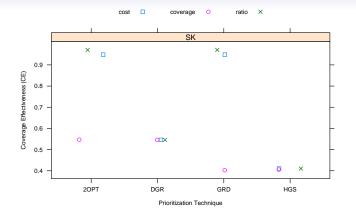
Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods


Reduction Factor for Time - SK

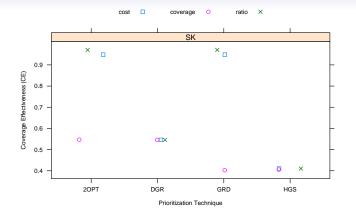
For 2OPT and GRD, ratio and coverage create the best test suites

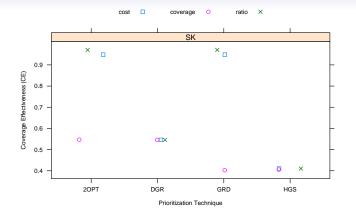

Reduction Factor for Size - SK

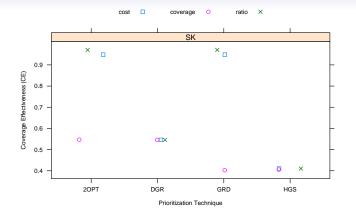

It is often easy to construct test suites with high RFFS values


Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

Reduction Factor for Size - SK


It is often easy to construct test suites with high RFFS values


DGR and HGS exhibit lackluster performance when reordering



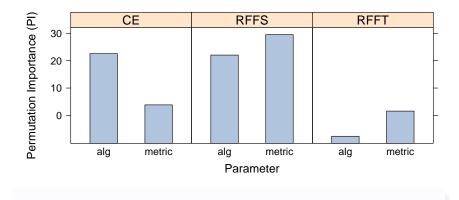
Greedily reordered test suites are better than randomly prioritized ones

Greedy fooling test suites cause GRD and DGR to make low CE suites

20PT uses lookahead and can construct high CE test prioritizations

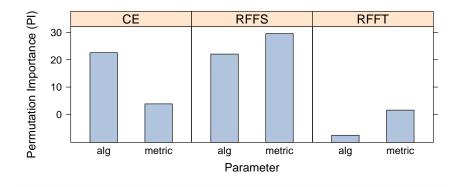
Application	CommonRate(Υ)			
Reminder	0.700			
ReduceAndPrioritize	0.361			
Sudoku	0.571			
TransactionManager	0.450			
DataStructures	0.171			
GradeBook	0.747			
JDepend	0.606			
LoopFinder	0.500			
Average	0.513			

Application	CommonRate(Υ)			
Reminder	0.700			
ReduceAndPrioritize	0.361			
Sudoku	0.571			
TransactionManager	0.450			
DataStructures	0.171			
GradeBook	0.747			
JDepend	0.606			
LoopFinder	0.500			
Average	0.513			


Application	CommonRate(Υ)			
Reminder	0.700			
ReduceAndPrioritize	0.361			
Sudoku	0.571			
TransactionManager	0.450			
DataStructures	0.171			
GradeBook	0.747			
JDepend	0.606			
LoopFinder	0.500			
Average	0.513			

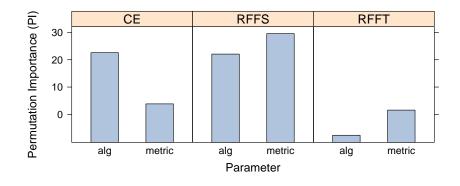
Application	CommonRate(Υ)			
Reminder	0.700			
ReduceAndPrioritize	0.361			
Sudoku	0.571			
TransactionManager	0.450			
DataStructures	0.171			
GradeBook	0.747			
JDepend	0.606			
LoopFinder	0.500			
Average	0.513			

Application	CommonRate(Υ)			
Reminder	0.700			
ReduceAndPrioritize	0.361			
Sudoku	0.571			
TransactionManager	0.450			
DataStructures	0.171			
GradeBook	0.747			
JDepend	0.606			
LoopFinder	0.500			
Average	0.513			


Value of the common rate is relatively stable across methods

Parameter Importance Values

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods


Parameter Importance Values

Algorithm choice is most important for improving the CE of ordering

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

Parameter Importance Values

Greedy choice metric has the greatest impact on the test suite reducers

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

Efficiency Measurements

For the chosen case study applications, the techniques are fast

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods


Efficiency Measurements

For the chosen case study applications, the techniques are fast

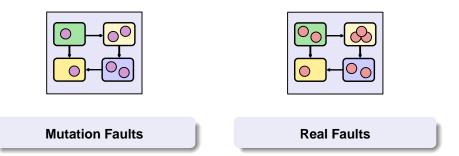
Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

Alternative Evaluation Metrics Like APFD

Use **mutation** and **real** faults to support the calculation of fault detection effectiveness (**FDE**) and average percentage of faults detected (**APFD**). Consider **search-based** testing methods.

Alternative Evaluation Metrics Like APFD

Use **mutation** and **real** faults to support the calculation of fault detection effectiveness (**FDE**) and average percentage of faults detected (**APFD**). Consider **search-based** testing methods.

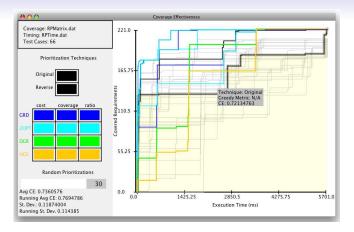

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

Alternative Evaluation Metrics Like APFD

Use **mutation** and **real** faults to support the calculation of fault detection effectiveness (**FDE**) and average percentage of faults detected (**APFD**). Consider **search-based** testing methods.

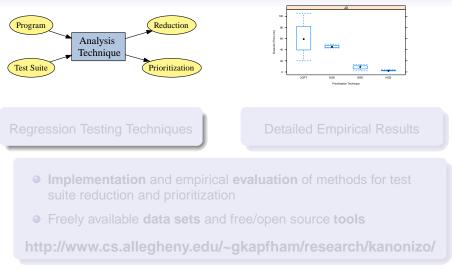
Alternative Evaluation Metrics Like APFD

Use **mutation** and **real** faults to support the calculation of fault detection effectiveness (**FDE**) and average percentage of faults detected (**APFD**). Consider **search-based** testing methods.


RAISE - Reduce And prlortize SuitEs

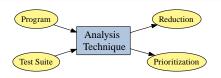
Gode	e raise Reduce And	i prioritize	e SuitEs				Search Projects
Project Home	Downloads	Wiki	Issues	Source	Administe	ər	
Summary Upd	ates						
Software develope					Star this pro	ject	
and prioritization t	· · · ·			Co	de License:	Eclipse Public	c License 1.0
required to detect	faults during test	suite exec	cution. This	La	bels:	Regression, F	Beduction
package uses the						and a state of the second	Software, Suite,
raditional greedy, both test suite red						JUnit, Test, Te	esting
educing and reor							
ensure that testing				Fe	eds: Project	Feeds	
normally configure	ed to make greed	choices	with				
coverage informat				Pr	oject owners		
algorithms to gree			-		Adam	MatthewSmith	gkapfham
using both test cos							

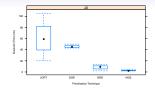
http://raise.googlecode.com/ provides tools, data sets, and resources


RAISE - Reduce And prlortize SuitEs

Interactive visualization methods enable testers to find best ordering

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods


Concluding Remarks

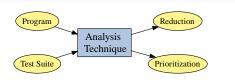


Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

Concluding Remarks

Regression Testing Techniques

Detailed Empirical Results


 Implementation and empirical evaluation of methods for test suite reduction and prioritization

Freely available data sets and free/open source tools

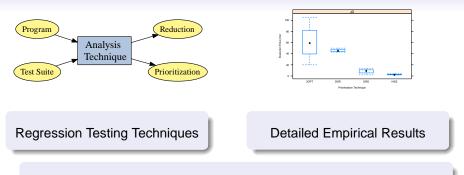
http://www.cs.allegheny.edu/~gkapfham/research/kanonizo/

Concluding Remarks

Regression Testing Techniques

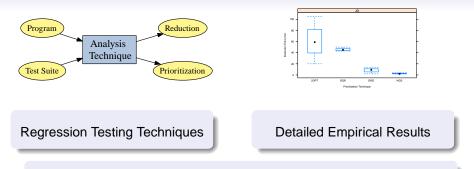
Detailed Empirical Results

 Implementation and empirical evaluation of methods for test suite reduction and prioritization


Freely available data sets and free/open source tools

http://www.cs.allegheny.edu/~gkapfham/research/kanonizo/

Concluding Remarks


- Implementation and empirical evaluation of methods for test suite reduction and prioritization
- Freely available data sets and free/open source tools

http://www.cs.allegheny.edu/~gkapfham/research/kanonizo/

Practical Suggestions for Improving and , Empirically Studying Greedy Test Suite , Reduction and Prioritization Methods

Concluding Remarks

- Implementation and empirical evaluation of methods for test suite reduction and prioritization
- Freely available data sets and free/open source tools

http://www.cs.allegheny.edu/~gkapfham/research/kanonizo/

