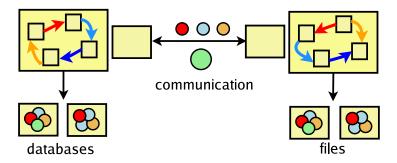
Towards Regression Testing for Database Applications

Gregory M. Kapfhammer[†]


Department of Computer Science Allegheny College, Pennsylvania, USA http://cs.allegheny.edu/~gkapfham/

ASTReNet and SOSoRNet, King's College London, 2007

[†] In Conjunction with Mary Lou Soffa (UVa/CS), Panos Chrysanthis (Pitt/CS), Bruce Childers (Pitt/CS)

< ロ > < 同 > < 回 > < 回 >

Testing Database Applications

Research Contribution

A **regression testing** framework for traditional database applications. Future research includes service-oriented applications that use Grid-enabled databases.

Gregory M. Kapfhammer Towards Regression Testing for Database Applications

An Interesting Defect Report

Database Server Crashes

When you run a complex query against Microsoft SQL Server 2000, the SQL Server scheduler may stop responding. Additionally, you receive an error message that resembles the following: Date Time server Error: 17883 Severity: 1, State: 0 Date Time server Process 52:0 (94c) ...

An Input-Dependent Defect

This problem occurs when one or more of the following conditions are true: The query contains a UNION Clause or a UNION ALL clause that affects many columns. The query contains several JOIN statements. The query has a large estimated cost. **BUG 473858 (SQL Server 8.0)**

An Interesting Defect Report

Database Server Crashes

When you run a complex query against Microsoft SQL Server 2000, the SQL Server scheduler may stop responding. Additionally, you receive an error message that resembles the following: Date Time server Error: 17883 Severity: 1, State: 0 Date Time server Process 52:0 (94c) ...

An Input-Dependent Defect

This problem occurs when one or more of the following conditions are true: The query contains a UNION clause or a UNION ALL clause that affects many columns. The query contains several JOIN statements. The query has a large estimated cost. **BUG 473858 (SQL Server 8.0)**

Real World Example

A Severe Defect

The Risks Digest, Volume 22, Issue 64, 2003

Jeppesen reports airspace boundary problems

About 350 airspace boundaries contained in Jeppesen NavData are incorrect, the FAA has warned. The error occurred at Jeppesen after a software upgrade when information was pulled from a database containing 20,000 airspace boundaries worldwide for the March NavData update, which takes effect March 20.

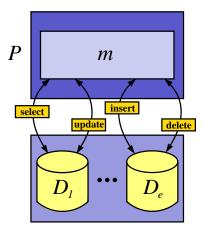
An Important Point

Practically all use of databases occurs from within application programs [Silberschatz et al., 2006, pg. 311]

Real World Example

A Severe Defect

The Risks Digest, Volume 22, Issue 64, 2003


Jeppesen reports airspace boundary problems

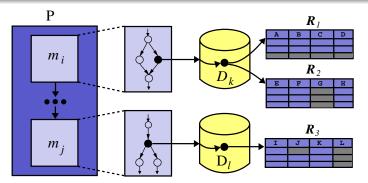
About 350 airspace boundaries contained in Jeppesen NavData are incorrect, the FAA has warned. The error occurred at Jeppesen after a software upgrade when information was pulled from a database containing 20,000 airspace boundaries worldwide for the March NavData update, which takes effect March 20.

An Important Point

Practically all use of databases occurs from within application programs [Silberschatz et al., 2006, pg. 311]

Program and Database Interactions

Basic Operation

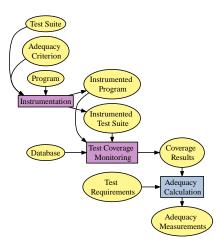

Program *P* creates SQL statements in order to view and/or modify the state of the relational database

SQL Construction

Static analysis does not reveal the exact SQL command since the program constructs the full SQL statement at run-time

< ロ > < 同 > < 回 > < 回 > < 回 >

Database Interaction Granularity



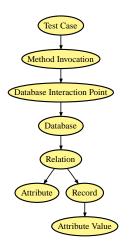
Database Interactions

Program *P* interacts with two relational databases D_k and D_l at different levels of granularity (relation, record, attribute, ...)

Gregory M. Kapfhammer Towards Regression Testing for Database Applications

Overview of the Coverage Monitoring Process

Calculating Coverage


Use instrumentation probes to capture and analyze a program's interaction with the databases

Regression Testing

The adequacy measurements can be used to support both test suite reduction and prioritization

< ロ > < 同 > < 回 > < 回 > < 回 >

Database-Aware Coverage Trees

Instrumentation Probes

Use **static** and **dynamic** (load-time) instrumentation techniques to insert coverage monitoring probes

Coverage Trees

Store the coverage results in a tree in order to support the calculation of many types of coverage (e.g., **data flow** or **call tree**)

Comparing the Coverage Trees

Tree Characteristics

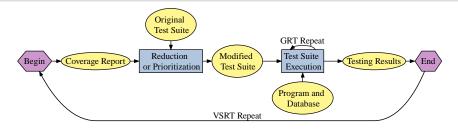
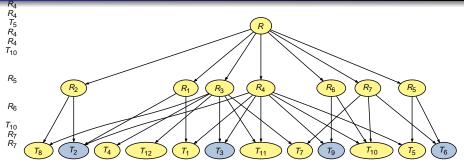

Tree	DB?	Context	Probe Time	Tree Space
CCT	×	Partial	Low - Moderate	Low
DCT	×	Full	Low	Moderate - High
DI-CCT	\checkmark	Partial	Moderate	Moderate
DI-DCT	\checkmark	Full	Moderate	High

Table Legend

Database? $\in \{\times, \checkmark\}$ Context $\in \{\text{Partial, Full}\}$ Probe Time Overhead $\in \{\text{Low, Moderate, High}\}$ Tree Space Overhead $\in \{\text{Low, Moderate, High}\}$

Regression Testing Experimental Study Future Work and Conclusions

Database-Aware Regression Testing


Regression Testing Overview

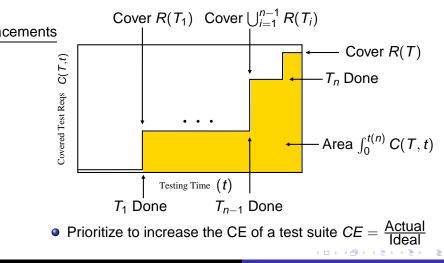
Reduction aims to find a smaller test suite that covers the same requirements as the original suite. **Prioritization** re-orders the tests so that they cover the requirements more effectively.

< ロ > < 同 > < 回 > < 回 > < 回 >

Regression Testing Experimental Study Future Work and Conclusions

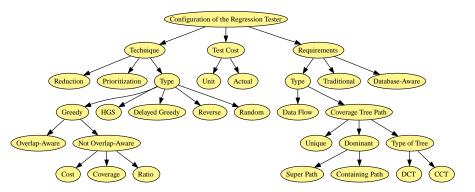
Finding the Overlap in Coverage

Test Suite Reduction


- $R_i \rightarrow T_i$ means that requirement R_i is covered by test T_i
- $T = \langle T_2, T_3, T_6, T_9 \rangle$ cover all of the test requirements

Gregory M. Kapfhammer Towards Regression Testing for Database Applications

イロト イ理ト イヨト イヨト


> Regression Testing Experimental Study Future Work and Conclusions

Measuring Coverage Effectiveness

Regression Testing Experimental Study Future Work and Conclusions

Configuring the Regression Testing Framework

Regression tester uses several algorithms and test requirements

< ロ > < 同 > < 回 > < 回 > < □ > <

Characterizing the Case Study Applications

Test Suites						
Application	# Tests	Test NCSS / Total NCSS				
RM	13	227/548 = 50.5%				
FF	16	330/558 = 59.1%				
ΡΙ	15	203/579 = 35.1%				
ST	25	365/620 = 58.9%				
ТМ	27	355/748 = 47.5%				
GΒ	51	769/1455 = 52.8%				

< □ > < 同 > < 回 > < 回 >

Details About the Database Interactions

Static Interaction Counts							
Application	executeUpdate	executeQuery	Total				
RM	3	4	7				
FF	3	4	7				
ΡΙ	3	2	5				
ST	4	3	7				
ΤM	36	9	45				
GB	11	23	34				

Dynamic Interaction Counts

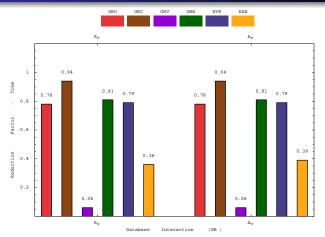
Database interactions that occur in **iterative** or **recursive** computations are executed more frequently

Gregory M. Kapfhammer Towards Regression Testing for Database Applications

Reducing the Size of the Test Suite

(Size of Reduced Test Suite, Reduction Factor)

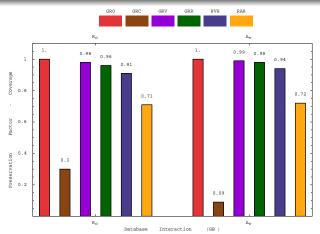
Арр	Rel	Attr	Rec	Attr Value
RM (13)	(7, .462)	(7, .462)	(10,.300)	(9,.308)
FF (16)	(7,.563)	(7, .563)	(11, .313)	(11, .313)
PI (15)	(6,.600)	(6, .600)	(8,.700)	(7, .533)
ST (25)	(5, .800)	(5, .760)	(11, .560)	(10, .600)
TM (27)	(14, .481)	(14, .481)	(15, .449)	(14, .481)
GB (51)	(33, .352)	(33, .352)	(33, .352)	(32, .373)
All (24.5)	(12, .510)	(12.17, .503)	(14.667, .401)	(13.83, .435)


Reduction factor for test suite size varies from .352 to .8

< ロ > < 同 > < 回 > < 回 >

Introduction to Database Applications Database-Aware Test Coverage Monitoring Regression Testing Experimental Study

Future Work and Conclusions

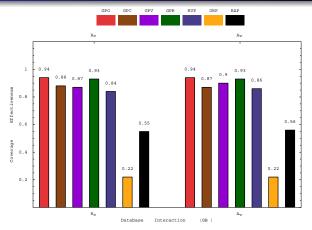

Reducing the Testing Time

GRO reduces test execution time even though it removes few tests

Gregory M. Kapfhammer Towards Regression Testing for Database Applications

Preserving Requirement Coverage

GRO guarantees coverage preservation while the others do not

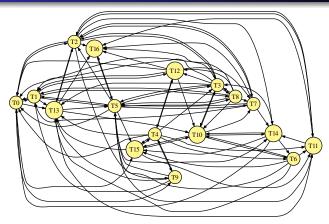

Gregory M. Kapfhammer

Towards Regression Testing for Database Applications

Introduction to Database Applications Database-Aware Test Coverage Monitoring Regression Testing Experimental Study

Future Work and Conclusions

Improving Coverage Effectiveness



GRO is the best choice and the original ordering is poor

Gregory M. Kapfhammer Towards Regression Testing for Database Applications

< □ > < 同 >

Future Work: Avoid Database Restarts

Use prioritization to reduce testing time by avoiding database restarts

< □ > < 同 > < 回 > < 回 >

Conclusions and Future Work

Concluding Remarks

 A new perspective on software testing and an efficient and effective method for database-aware regression testing

Future Work

- Challenges associated with grid-enabled databases
- Conduct experiments with larger database applications

Resources

http://cs.allegheny.edu/~gkapfham/research/diatoms/

< ロ > < 同 > < 回 > < 回 > < 回 >