Exploring Time-Aware Test
Suite Prioritization

Mary Lou Soffa
University of Virginia

Collaborators:
Kristen Walcott
Gregory M. Kapthammer,
Allegheny College

$ Regression testing
. H 1

mE u

Software constantly modified
" Bug fixes
= Addition of functionality

After changes, regression testing — run test case in
test suite and provide more

" Provides confidence modifications correct
" Helps find new error

Large number of test cases — continues to grow
" Weeks/months to run entire test suite
" Costs high — V2cost of maintenance

$ Reducing cost regression testing
N - 1

® Jo reduce cost, do not run all test cases — prioritize
tests i.e., reorder them

" Jest Prioritization Techniques
" Original order
" Based on fault detection ability

" Analysis to determine what test cases affected by change
and order

" Random selection — order tests randomly

" Reverse — run tests in reverse order

$ Example — after prioritization
L B

* i
T1 T2 T3 T4 T5 T6 T7
Time: 3 Time:10 | [Time: 9 Time:12 Time: 3 Time: 5 Time: 3

Time budget

But, retesting usually has a time budget —
based on time, was the above order the best order?

Contribution: A test prioritization technique that
intelligently incorporates the test time budget

$ Fault Matrix Example
R

mE u

Given modified
program,have
6 test cases

Assume a priori
knowledge of
faults, f

Z‘;‘T’LTS/TJZ L6 L s e | | fs
CASE

11 X XX X |X | X |X
T2 X

73 X X

14 X | X X
T5 X X

16 X X X

Test Suite
$ Faults and Time
T

#faults | Time avg
‘ Tests vary
coSts faults/min .

according

T2 1 1 1.0 overhead
and

B |2 3 0.667 their ability

T4 3 4 0.75 to reveal
faul

T5 |3 y 0.75 aults

T6 3 4 O.75

GOAL: When testing, find as many

far11lfe 2 ennm mee mnAacailrhla

Fault — aware Prioritization - Time limit 12
minites

7 faults found in 9 minutes

-
i
T |y T2 T3 T4 T5 T6
.] _ . .
Time:9| |Time:1| |Time:3| |Time:4 Tmlle.4 Tere.4
| | | |
Faults:7 Faults:1 Faults:4 Faults:3 Faults:3 Faults:3
Fault based order_ B
= ol o1 oTe [T2
Time:3 Time:4 Timei4d Time:4d Time:1
' o \ \
Faults:7 Faul‘ts:4 Faults:3 Faults:3 Faults:3 Faults:1

Naive time-Based prioritization

" Original Order

T1 T2 T3 T4 T5 T6
Time:9| |Time:1| |Time:3| |Time:4 Tlrrlle:4 TITe:4
| | | | |
Faults:7 Faults:1 Faults:4 Faults:3 Faults:3 Faults:3
Naive time based order B
6 || T1 |
Time:4 Time:9
\ \
Faults:1 Faults:4 Faults:3 Faults:3 Faults:3 Faults:7

8 faults in 12 minutes

Average Percent Fault Detection -Based
‘Prioritization

Original Order
T1 T2 T3 T4 T5 T6
Time:9| |Time:1| |Time:3| |Time:4| Time:4 | |Time:4

APFD:8 APFD:1.0 APFD:0.7 APFD:0.8 APFD:0.8 APFD:8.8

APFD

T4 IE T6 T3
Time:4| |Time:i4d | |Time:4| Time:3

Faults:1 Faul‘ts:? FaL‘JItS:S Fal‘JItSZS Faults:3 Faulis:4

7 faults in 10 minutes

$ I Intelligent Time-aware prioritization

" Original order

T1 T2 T3
Time:9| [Time:1| |[Time:3
| | |
Faults:7 Faults:1 Faults:4

T4
Time:4

Faults:3

Time:4

15

Time:4

16

Faults:3

* Intelligent Time-aware prioritization

Faults:3 Faults:3

Faults:4

16

Time:4

Faults:3

8 faults in 11 minutes

Faults:3

T1
Time:9

T2
Time:1

Faults:7

Faults:1

$ Comparing Test Prioritization
. 1 |

" [Intelligent scheme performs better — finding most
faults in shortest time

® Considers testing time budget and overlapping fault
detection of test

" Jime-aware prioritization requires heuristic solution
to N'P-complete

" Use genetic algorithm

" Fitness function based on code coverage for ability to find
faults and time

Program
Under
Test (P)

Infrastructure

A 4

Test Transformer)

Test
Suite

Number tuples per Mutation probability

iteration

Maximum # iterations N Addition/deletion
properties

New

% of test suite
execution time

Test adequacy criteria

Test
suite

Crossover probability

Program coverage
weight

$ ‘Fitness Function
1
. —]

® Since fault information unknown, use method and block.
coverage to measure test suite potential

" Coverage is aggregated for entire test suite
® Test prioritization fitness measures
" The percentage of P’s code that is covered by ‘Ti

" The time at which each test case covers code within P —
can use percentages of code coverage

$ Change the order of test cases
k;_ |

" Develop smaller test suites based on operators that

change
" Order

B Test cases included

Fitness evaluation determines goodness of the changed
suite.

$ Crossover Operator
i3
. 1

" Vary test prioritizations by recombination at a
randomly chosen crossover point

T T T, T, T Tul e T T | T T T [T Bl Ty T

Te| Tial Tys Tial Te

10 L1 1y =15 o Ln

Crossover Deint

§ L Addition and Deletion Operators

" Operators

Entire test suite

Add operator

Delete operator

$ Mutation Operators
.
=]

" Another way to add variation to create new
population

B Tost cases are mutated —

" replaced by an unused test case

" Swap test cases if no unused test case

$ Experiment Goals and Design
kE_ |

" Determine if the GA-produced prioritizations, on
average, outperform a selected set of other
prioritizations

" [dentify overfiead - time and space - associated with
the creation of the prioritized test suite

$ Experiments
A i | |

" Block or method coverage
" Order

" Jnitial order
" Reverse order
" Random order

" Fault-aware prioritization

$ Experimental Design
. 11

" GNU/Linux Workstation — 1.80 GHz Intel Pentium and
1GB of main memory

B sed JUnit to prioritize test cases

B Seeded faults: 25%, 50%, 75% of 40 faults
B Used Emma to compute coverage criteria

" 2 Case studies

" Gradebook

" JDepend — traverse directories of Java class
files

$ Test Adequacy Metrics
A 3 |

" Method coverage
" Considered covered when entered
" Basic block coverage

" A4 sequence of byte code instructions without any jumps or
Jjump targets
" Considered covered when entered

" How much of the code has been executed — used 100%

APFD Results for Block and Method Coverage

\-g!]

Code Coverage: Block vs. Method

0.8

B 1Depend, Method
[1Depend, Block

Bl Gradebook, Method
Gradebook, Block

25% 50% 75%
11% better Gradebook

Percent of Total Time

13% better JDepend

b

Prioritization ‘Efficiency

User Time Overhead
70000
60000
] ——e—]|Depend, Method
50000 =
| : R == IDepend, Block
Time(s) : ~‘*-.—‘-_h.-‘__“h "® | — 4 — Gradebook, Mcthod
40000 -513-8 hours e e --—-— Gradebook, Block
‘ "*__ _ .
. 3 —~ i
30000 2 Space costs
8.3haurs insignificant
"DDU{J T I
(25 ﬁ[}) (50.30) (75.15)

Nuumber of Generations, Population Size

0.5

APFD

0.5

(25%. 010y (75%.,10)

] | | I

1
(305 20

(50% 100 (23%.20)

(Percent of Total Time, Number of Faults)

(25% 30)
(30, 30)

(73%,30)
(73% 20

i Gradebook: Intelligent vs Random

(iradebook Prioritization: GA vs. Random

GA Tuple
] Random Tuple

$ I JDdepend: Intelligent vs Random

IDepend Prioritization: (A vs. Random

5=

|| GA Tuple
. Random Tuple

APFD

I I 1 | I I | I |
(23%. 10) (75%.10) (30%20) (25%30) (7539%.30)

(30% 100 (25%.200 (73%.20) (30% 30)

(Percent of Total Time. Number of Faults)

$ Comparisons with other orders
k;_ |

B Experiments to compare with other types of
prioritizations

" Original
B Reverse
" Fault aware (impossible to implement)

" Time qaware

L APFD Metric

Let T' be the test suite under evaluation, ¢ the number of faults contained in the

program under test P, n the total number of test cases, and reveal(i, ') the position
of the first test in 1T that exposes fault 7.
T reveal(n,T) 1
APFD(T P)=1-<=) -+

g n

Gradebook: Alternative Prioritizations

3

Pi | Fi | Initial | Reverse GAa
0.25 |10 |-0.6 -0.2 0.4
0.25 |20 |-0.9 -0.2 0.4
0.25 |30 |-09 -0.0 0.6
0.50 |10 |-0.04 0.1 0.7
0.50 |20 |-0.2 0.2 0.7
0.50 |30 |-0.3 0.3 0.7
0.75 |10 |0.3 0.5 0.9
0.75 |20 |0.1 0.4 0.7

0.75 |30 |0.04 0.5 0.7

$ Results
A 3 1

" Comparison of
" Original
" Fault-aware (impossible to implement)
" Reverse

" Gradebook
" 120% better than original

" Time aware better than original

" JDepend

® Produced better results

$ Technique Enhancements
. 1

" MaKe fitness calculation faster

" Eliminate the majority of coverage cover overlap by
reducing the test suite

" Record coverage on a per-test basis
" Distribute execution of fitness function

" Exploit test execution histories and favor tests that have
recently revealed faults

" Terminate the genetic algorithm when it achieves fitness
equivalent to previous prioritizations

$ Conclusions and Future Work
A 3 1

" Contribution: a test prioritization technique that
includes the testing time budget

" Jime-aware prioritization can yield a 120%
improvement in APFD when compared to alternative
prioritizations

" Different heuristics - analysis

‘Paper to appear
L$ |
=1

" [nternational Symposium on Software Testing and
Analysis (1S574)

" July, 2006

