The Measured Performance of Database-Aware Test Coverage Monitoring

Gregory M. Kapfhammer[†]

Department of Computer Science Allegheny College http://cs.allegheny.edu/~gkapfham/

University of Pittsburgh, 2007

[†] In Conjunction with Mary Lou Soffa (UVa/CS), Panos Chrysanthis (Pitt/CS), Bruce Childers (Pitt/CS)

< □ > < 同 > < 回 > < 回 >

Motivation What is a Database Application?

Outline

Introduction to Database Applications

Experimental Study

- Motivation
- What is a Database Application?
- Introduction to Software Testing
 - Traditional Software Testing
 - A New Testing Paradigm
- 3 Database-Aware Test Coverage Monitoring
 - Coverage Monitoring Basics
 - Fundamentals of Coverage Monitoring
 - Instrumentation Probes
- Experimental Study
 - Experiment Design
 - Instrumentation Costs
 - Coverage Monitoring Costs

Motivation What is a Database Application?

An Interesting Defect Report

Database Server Crashes

When you run a complex query against Microsoft SQL Server 2000, the SQL Server scheduler may stop responding. Additionally, you receive an error message that resembles the following: Date Time server Error: 17883 Severity: 1, State: 0 Date Time server Process 52:0 (94c) ...

An Input-Dependent Defect

This problem occurs when one or more of the following conditions are true: The query contains a UNION Clause or a UNION ALL clause that affects many columns. The query contains several JOIN statements. The query has a large estimated cost. **BUG 473858 (SQL Server 8.0)**

Motivation What is a Database Application?

An Interesting Defect Report

Database Server Crashes

When you run a complex query against Microsoft SQL Server 2000, the SQL Server scheduler may stop responding. Additionally, you receive an error message that resembles the following: Date Time server Error: 17883 Severity: 1, State: 0 Date Time server Process 52:0 (94c) ...

An Input-Dependent Defect

This problem occurs when one or more of the following conditions are true: The query contains a UNION clause or a UNION ALL clause that affects many columns. The query contains several JOIN statements. The query has a large estimated cost. **BUG 473858 (SQL Server 8.0)**

Motivation What is a Database Application?

Real World Example

A Severe Defect

The Risks Digest, Volume 22, Issue 64, 2003

Jeppesen reports airspace boundary problems

About 350 airspace boundaries contained in Jeppesen NavData are incorrect, the FAA has warned. The error occurred at Jeppesen after a software upgrade when information was pulled from a database containing 20,000 airspace boundaries worldwide for the March NavData update, which takes effect March 20.

An Important Point

Practically all use of databases occurs from within application programs [Silberschatz et al., 2006, pg. 311].

Motivation What is a Database Application?

Real World Example

A Severe Defect

The Risks Digest, Volume 22, Issue 64, 2003

Jeppesen reports airspace boundary problems

About 350 airspace boundaries contained in Jeppesen NavData are incorrect, the FAA has warned. The error occurred at Jeppesen after a software upgrade when information was pulled from a database containing 20,000 airspace boundaries worldwide for the March NavData update, which takes effect March 20.

An Important Point

Practically all use of databases occurs from within application programs [Silberschatz et al., 2006, pg. 311].

Motivation What is a Database Application?

Program and Database Interactions

Basic Operation

Program *P* creates SQL statements in order to view and/or modify the state of the relational database

Motivation What is a Database Application?

Database Interaction Granularity

Database Interactions

Program *P* interacts with two relational databases D_k and D_l at different levels of granularity (relation, record, attribute, ...)

Gregory M. Kapfhammer Database-Aware Test Coverage Monitoring

Motivation What is a Database Application?

Types of Applications

- Testing framework relevant to all types of applications
- Current tool support focuses on Interface-Outside applications
- **Example:** Java application that submits SQL Strings to an HSQLDB relational database using a JDBC driver

ヘロン 人間と 人間と 人間と

Traditional Software Testing A New Testing Paradigm

Outline

- Introduction to Database Applications
 - Motivation
 - What is a Database Application?
- Introduction to Software Testing
 - Traditional Software Testing
 - A New Testing Paradigm
- 3 Database-Aware Test Coverage Monitoring
 - Coverage Monitoring Basics
 - Fundamentals of Coverage Monitoring
 - Instrumentation Probes
- Experimental Study
 - Experiment Design
 - Instrumentation Costs
 - Coverage Monitoring Costs

Traditional Software Testing A New Testing Paradigm

Focus on Testing Individual Components

Traditional Assumption

Defects may exist in program P and/or P's execution environment

Gregory M. Kapfhammer Database-Aware Test Coverage Monitoring

Traditional Software Testing A New Testing Paradigm

Various Approaches to Software Testing

Techniques and Supporting Tools

Structural testing requires a test coverage monitor!

Gregory M. Kapfhammer Database-Aware Test Coverage Monitoring

< □ > < 同 > < 回 > < □ > <

- (E

Traditional Software Testing A New Testing Paradigm

Testing Environment Interactions

A New Direction in Software Testing

Defects may exist in *P*'s **interaction** with its environment. This suggests the need for a **database-aware test coverage monitor**!

Gregory M. Kapfhammer Database-Aware Test Coverage Monitoring

Coverage Monitoring Basics Fundamentals of Coverage Monitoring Instrumentation Probes

Outline

- Introduction to Database Applications
 - Motivation
 - What is a Database Application?
- Introduction to Software Testing
 - Traditional Software Testing
 - A New Testing Paradigm
- 3 Database-Aware Test Coverage Monitoring
 - Coverage Monitoring Basics
 - Fundamentals of Coverage Monitoring
 - Instrumentation Probes
- Experimental Study
 - Experiment Design
 - Instrumentation Costs
 - Coverage Monitoring Costs

Coverage Monitoring Basics Fundamentals of Coverage Monitoring Instrumentation Probes

Coverage Criteria for Database Applications

Candidates for Coverage Monitoring

Find defects in the database interactions by ensuring that the test suite covers all of the possible **def-use associations** and/or **calling contexts**

Coverage Monitoring Basics Fundamentals of Coverage Monitoring Instrumentation Probes

Challenges of Database-Aware Monitoring

SQL Statement

select Path from Files where ucase(Path) like '%/usr/bin/bi%'

Testing Challenges

Traditional coverage monitoring does not reveal how the test case causes the method to interact with the database

◆ロト ◆聞 と ◆臣 と ◆臣 とう

Coverage Monitoring Basics Fundamentals of Coverage Monitoring Instrumentation Probes

Overview of the Coverage Monitoring Process

Current Considerations

Focus on the design, implementation, and performance evaluation of the **instrumentation** and **coverage monitoring** components

ヘロト 人間 とくほ とくほ とう

Coverage Monitoring Basics Fundamentals of Coverage Monitoring Instrumentation Probes

Database-Aware Coverage Trees

Instrumentation Probes

Use **static** and **dynamic** (load-time) instrumentation techniques to insert coverage monitoring probes

Coverage Trees

Store the coverage results in a tree in order to support the calculation of many types of coverage (e.g., **data flow** or **call tree**)

Coverage Monitoring Basics Fundamentals of Coverage Monitoring Instrumentation Probes

Comparing the Coverage Trees

Tree Characteristics

Tree	DB?	Context	Probe Time	Tree Space
CCT	×	Partial	Low - Moderate	Low
DCT	×	Full	Low	Moderate - High
DI-CCT	\checkmark	Partial	Moderate	Moderate
DI-DCT	\checkmark	Full	Moderate	High

Table Legend

Database? $\in \{\times, \checkmark\}$ Context $\in \{$ Partial, Full $\}$ Probe Time Overhead $\in \{$ Low, Moderate, High $\}$ Tree Space Overhead $\in \{$ Low, Moderate, High $\}$

< □ > < 同 > < 回 > <

Coverage Monitoring Basics Fundamentals of Coverage Monitoring Instrumentation Probes

Database-Aware Instrumentation

Important Goal

Efficiently monitor coverage of database state and structure without changing the behavior of the program under test

< ロ > < 同 > < 回 > < 回 > < □ > <

Coverage Monitoring Basics Fundamentals of Coverage Monitoring Instrumentation Probes

Phases of Coverage Monitoring

Monitoring Operations

Database-aware probes:

- Capture the SQL String
- Consult the database schema and result set meta-data
- Extract and analyze portions of the database state
- Update the coverage tree

Coverage Monitoring Basics Fundamentals of Coverage Monitoring Instrumentation Probes

Relational Differencing

Before

After

< □ > < 同 > < 回 > < 回 > < 回 >

Handling Database Modifications

The probes use **relational differencing** to determine that record t_2 and attribute value $t_2[2]$ were modified by the SQL UPDATE command

Experiment Design nstrumentation Costs Coverage Monitoring Costs

Outline

- Introduction to Database Applications
 - Motivation
 - What is a Database Application?
- Introduction to Software Testing
 - Traditional Software Testing
 - A New Testing Paradigm
- 3 Database-Aware Test Coverage Monitoring
 - Coverage Monitoring Basics
 - Fundamentals of Coverage Monitoring
 - Instrumentation Probes
- Experimental Study
 - Experiment Design
 - Instrumentation Costs
 - Coverage Monitoring Costs

Experiment Design Instrumentation Costs Coverage Monitoring Costs

Characterizing the Case Study Applications

Test Suites			
Application	# Tests	Test NCSS / Total NCSS	
RM	13	227/548 = 50.5%	
FF	16	330/558 = 59.1%	
ΡΙ	15	203/579 = 35.1%	
ST	25	365/620 = 58.9%	
ΤM	27	355/748 = 47.5%	
GB	51	769/1455 = 52.8%	

Gregory M. Kapfhammer Database-Aware Test Coverage Monitoring

Experiment Design Instrumentation Costs Coverage Monitoring Costs

Details about the Database Interactions

Interaction Counts				
Application	executeUpdate	executeQuery	Total	
RM	3	4	7	
FF	3	4	7	
ΡΙ	3	2	5	
ST	4	3	7	
TM	36	9	45	
GB	11	23	34	

Gregory M. Kapfhammer Database-Aware Test Coverage Monitoring

Experiment Design Instrumentation Costs Coverage Monitoring Costs

Static Instrumentation Costs

- Attach probes to all of the applications in less than nine seconds
- Statically inserting probes increases space overhead

ъ

Experiment Design Instrumentation Costs Coverage Monitoring Costs

Coverage Monitoring Time: Static Versus Dynamic

Time Overhead				
Instr	Tree	TCM Time (sec)	Per Incr (%)	
Static	CCT	7.44	12.5	
Static	DCT	8.35	26.1	
Dynamic	CCT	10.17	53.0	
Dynamic	DCT	11.0	66.0	

Discussion

Static has poor space overhead but leads to a minimal increase in testing time. Static is less flexible than dynamic.

< □ > < 同 > < 回 > < 回 >

Experiment Design Instrumentation Costs Coverage Monitoring Costs

Further Comparison of Static Versus Dynamic

Discussion

Static is faster than dynamic / CCT is faster than DCT

Gregory M. Kapfhammer Database-Aware Test Coverage Monitoring

Experiment Design Instrumentation Costs Coverage Monitoring Costs

Varying Database Interaction Granularity

Time Overhead			
DB Level	TCM Time (sec)	Per Incr (%)	
Program	7.44	12.39	
Database	7.51	13.44	
Relation	7.56	14.20	
Attribute	8.91	34.59	
Record	8.90	34.44	
Attribute Value	10.14	53.17	

Discussion

Static supports **efficient** monitoring since there is a 53% increase in testing time at the **finest** level of interaction

< ロ > < 同 > < 回 > < 回 >

Experiment Design Instrumentation Costs Coverage Monitoring Costs

Conclusions and Future Work

Concluding Remarks

 A new perspective on software testing and an efficient and effective database-aware test coverage monitor

Future Work

- Perform demand-driven instrumentation
- Use the coverage tree to reduce or prioritize a test suite
- Conduct experiments with larger database applications

Resources

http://cs.allegheny.edu/~gkapfham/research/diatoms/