The Measured Performance of
Communication and Serialization
Primitives

Brian Blose, Phillip Burdette, and Gregory M. Kapfhammer
Department of Computer Science
Allegheny College

http: //cs.allegheny.edu/ gkapfham/

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 — p. 1/15

Communication Primitives

@00
< >

O

© ©
& &

+ How does object encoding impact communication?

+ Contribution: A benchmarking framework to compare
the performance of sockets and XML-RPC

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 — p. 2/15

Serialization Primitives

JVM Heap

O O
P QDQ M F

al | ocat e serialize
a

+ How does object encoding impact serialization?

* Contribution: A benchmarking framework to compare
the performance of binary and XML serialization

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 — p. 3/15

Program Execution with a JVM

| nput P Output

Q00O QOO

Byte Code

Interpreter? | virtyal | Fast?
JIT? | Machine | Adaptive?

Program Native Code Cache
Stack

> JVM implementation and configuration impacts performance

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 — p. 4/15

Experiment Design

* Communication: sockets and XML-RPC
> Serialization: XStream, JBoss, Java Serialize and Externalize

> Select Java 1.5.0, GNU/Linux with kernel 2.6.12, 3 GHz P4, 1
GB main memory, 1 MB L1 Cache, CPU hyperthreading

*» Use operating system and language-based timers to calculate
response time and space overheads

> Execute ten trials and calculate arithmetic means, standard
deviations, and confidence intervals

* Understand internal behavior of the Java virtual machine

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 — p. 5/15

Micro Benchmarks

Experiment | Sent by client | Received by client
SS Single primitive | Single primitive
SV Single primitive Vector
VS Vector Single primitive
VvV Vector Vector

*> Use benchmarks similar to those proposed by Allman et al.
*> Implement the benchmarks in the Java language

*> ExperimentCampaign framework uses Perl and Mathematica

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 — p. 6/15

Micro Benchmarksl|

Experiment | Sent by client | Received by client
FIND (SS) | Single primitive | Single primitive

FACT (SV) | Single primitive Vector
GCD (VS) Vector Single primitive
REV (VV) Vector Vector

* Benchmarks use sockets and Apache XML-RPC
*» Benchmarks perform a simple computation on the server

*> Configure the client and server to execute on same node

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 —p. 7/15

0.14

0.12

0.1

0. 08

(seconds)

0. 06

Ti me

0. 04

0.02

> XML-RPC shows greater response time with more dispersion

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 — p. 8/15

M cro Experinents - Language-Based Ti mer

S-SS X-SS S-SV X-SV S-VS X-VS S-W X-W
i 0. 0908 i
0. 0859 0. Offw I 0 Oﬁ o7 ﬁ
0. 0237
I 0. 0004 0. 0013 0. 0012
I —— —
S-SS X-SS S-SV X-SV S-VS X-VS S-W X-W
Benchmar ks

Macr o Experinents - Language-Based Ti ner
S-FIND X-FIND S-FACT X-FACT S-GCD X-GCD S-REV

X-REV

1.75 |
1.5

1.25 ©

(seconds)

Ti me

0.75 |
0.5

0.25 -

*> X-REV exhibits high response time due to string parsing

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 — p. 9/15

0. 0863 0. 093 0. 0857

0. 0017 |i_| 0. 0023 Ii_l 0. 0022 m 0. 0033

1. 7605 |

5t

S-FIND X-FIND S-FACT X-FACT S-GCD X-GCD S-REV
Benchmar ks

X-REV

Using Very Large Vectors

size(V) | size(V) (bytes) | R(VV,S) (sec) | R(VV, X) (sec)
5000 80,520 0.298 0.347
10000 161,000 0.598 0.523
50000 927,720 18.784 1.697

+ At smaller vector sizes sockets demonstrate
slightly better response times

+ XML-RPC shows better response time when
size(V') = 50000 : why?

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 —p. 10/15

Explanatory Power of GC

size(V) | YGC (count) | YGC (sec) | FGC (count) | FGC (sec)

5000 16 .008 0 0
10000 63 .023 4 .050
50000 1645 697 663 10.375

size(V) | YGC (count) | YGC (sec) | FGC (count) | FGC (sec)

5000 14 016 0 0
10000 27 .022 1 .020
50000 123 .695 S 143

*> Varying the heap size of socket JVM yields similar results

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 —p. 11/15

GC Allocation Rate

+ S-VV allocates 710, 374, 184 bytes and X-VV only
allocates 54, 101, 312 bytes

+ At benchmark termination, S-VV has 4, 773, 224 bytes
and X-VV has 7, 234, 520 bytes of live objects

+ Sockets use char[] and XML-RPC uses
java.nio.CharBuffer

+ Can we use past GC behavior to predict future
program performance?

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 —p. 12/15

Serialization Response Time

Ser Deser
XS-L f] 1] XS-L XS-L] |1 XS-L
XS-M | [T] 1 XS-M XS-M | [T7] | XS-M
XS-S [| Xs-S XS-S [1 X8-S
o JE-L [1 JE-L JE-L [[J 1 JE-L
> JE-M ' [] 1 JE-M JE-M |] 1 JE-M
Z JE-S [1 JE-S JE-S | 1 JE-S
€ JB-L [1] 1 JB-L JB-L || [1 JB-L
el S VY e— 1 JB-M JBMI[] 1 JB-M
JB-S [1 JB-S JB-S [{ JB-S
JS-L 11 1J9S-L JS-L [[] 1Js-L
JS-M i[O 1 JS-M JS-MI[] 1 Js-Mm
gs-sy@ 135S JS-S [| | | | | Js-s
0 250 500 750 1000 1250 1500 1750 0 500 1000 1500 2000
Time (msec) - LL Time (nsec) - DLL

*> Serialize and deserialize a LinkedList
*» XS-L exhibits high response time due to parsing and validation

*» JS and JE demonstrate a low response time

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 —p. 13/15

300

250 ©

)

200

(msec

150 |

Ti me

100 -

50j—‘— s

0 1000

2000

3000

4000

Size of ADT (elenments) - JS-LL

*> JS response time varies as ADT size increases (not for XS)

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 — p. 14/15

5000

Conclusions

*> A suite of benchmarks to measure the performance of
communication and serialization primitives

*> EXxperiments reveal a trade-off in the performance of
the two primitives

*> Extend the study to new primitives and JVMs

* Focus on remote communication, long running
benchmarks, and the measurement of throughput

*> Consider the use of new abstract data types

> What are your suggestions?

The Measured Performance of Communication and Serialization Primitives, NITLE IPCC, June 19, 2007 —p. 15/15

	Communication Primitives
	Serialization Primitives
	Program Execution with a JVM
	Experiment Design
	Micro Benchmarks
	Micro Benchmarks II
	Micro Benchmark I
	Micro Benchmark II
	Using Very Large Vectors
	Explanatory Power of GC
	GC Allocation Rate
	Serialization Response Time
	Serialization Trade-Offs (JS)
	Conclusions

