
Testing in Resource Constrained

Execution Environments

Gregory M. Kapfhammer

Department of Computer Science

Allegheny College

Mary Lou Soffa

Department of Computer Science

University of Virginia

Daniel Mossé

Department of Computer Science

University of Pittsburgh

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 1/19

Contributions

Use of native code unloading during test suite execution in a

resource constrained environment

Identification of the testing techniques that yield the greatest

reduction in execution time and native code size

Characterization of how software applications and test

suites restrict and/or support resource constrained testing

Cost-benefit analysis for the use of sample-based and

exhaustive profiles of program testing behavior

Executes test suites faster when memory resources are limited!

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 2/19

Test Suite Execution with a JVM

Program
Stack

Fast?Interpreter?
Machine
Virtual

JIT? Adaptive?

Native Code Cache
Heap

methodA

testOne

Input Output

Byte Code

T

P

During testing the JVM must manage limited resources

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 3/19

Resource Constrained Testing

exec time: 1%
size: 100 KB

inv ct: 8 inv ct: 1200
exec time: 15%
size: 64 KB

inv ct: 15

size: 50 KB
exec time: 2%

inv ct: 50

size: 75 KB
exec time: 22%

TE v

inv ct: 1
exec time: 1%

inv ct: 2
exec time: 2%

ms m t...

Test Executor

TE u ...

Memory Resident Native Code Bodies

All Tests size: 128 KB

T1 Tn...
Test Suite TPProgram

JIT compiler produces native code that exhausts limited
memory resources

Frequent invocation of GC increases testing time

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 4/19

Test Suite Execution Strategies

Omit tests? - Could reduce overall confidence in the
correctness of P

Use non-constrained environment? - Defects related to P ’s
interaction with environment might not be isolated

Execute tests individually? - Might increase overall testing
time and violate test order dependencies

Unload with offline profile? - Not useful if P and T change
frequently during regression testing

Our Approach: Use online behavior profiles to guide the
unloading of native code

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 5/19

Experiment Goals and Design

Research Question: Can an adaptive code unloading JVM
reduce time and space overheads associated with memory
constrained testing?

Experiment Metrics: percent reduction in time, T %
R

(P, T) and
space, S%

R
(P, T)

Jikes RVM 2.2.1, JUnit 3.8.1, GNU/Linux 2.4.18

Sample-based (S) and exhaustive (X) program profiles

Timer (TM), garbage collection (GC), and code cache size
(CS) triggers the unloading technique

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 6/19

Case Study Applications

Name Min Size (MB) # Tests NCSS

UniqueBoundedStack (UBS) 8 24 362

Library (L) 8 53 551

ShoppingCart (SC) 8 20 229

Stack (S) 8 58 624

JDepend (JD) 10 53 2124

IDTable (ID) 11 24 315

Empirically determined the MIN Jikes RVM heap size

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 7/19

Testing Time Overhead: Full RVM

UBS L SC S JD I
Application, Full RVM

1

2

3

4

5

E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL
UBS L SC S JD I

0.47 0.52 0.468 0.48

3.67

0.688

When memory is not constrained, testing time is acceptable

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 8/19

Testing Time Overhead: Min RVM

UBS L SC S JD I
Application, Min JVM

5

10

15

20

25

E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL
UBS L SC S JD I

4.276

10.644

3.686
5.196

21.108

3.376

Testing time increases significantly when memory is Min

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 9/19

Summary of Reductions for Library

Name T
%

R
(P, T) S

%
R

(P, T)

S-GC 32.7 78.8 X

X-GC 32.1 65.0
S-TM 32.0 72.8
X-TM 31.5 62.3
S-CS 34.3 X 61.4
X-CS 33.4 59.8

Significant reductions in time and space required for testing

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 10/19

Testing Time Overhead: Library

S-GC X-GC S-CS X-CS S-TM X-TM
Library

2

4

6

8

10

12

E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL
S-GC X-GC S-CS X-CS S-TM X-TM

7.168 7.222 6.998 7.09 7.238 7.292

S vs. X: Similar reductions for all code unloading techniques

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 11/19

Testing Space Overhead: Library

S-GC X-GC S-CS X-CS S-TM X-TM
Library

20000

40000

60000

80000

C
o
d
e
S
i
z
e

HKBL
S-GC X-GC S-CS X-CS S-TM X-TM

16052.7

26463.7
29212.1 30444.1

20612.2

28545.1

Code size reduction does not always yield best testing time

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 12/19

Code Size Fluctuation: Library

0 1 2 3 4 5 6 7
Time HsecL0

10000

20000

30000

40000

C
o
d
e
S
i
z
e

HKBL
S-CS S-GC

S-GC causes code size fluctuation that increases testing time

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 13/19

Summary of Reductions for ID

Name T
%

R
(P, T) S

%
R

(P, T)

S-GC -1.1 42.5
X-GC -1.1 26.7
S-TM -1.2 44.5
X-TM -.29 X 28.8
S-CS -.77 51.4
X-CS -1.4 61.4 X

Unloading can decrease code size while still creating an
overall increase in testing time

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 14/19

Number of Code Unloads

2.5 5 7.5 10 12.5 15 17.5 20
Code Unloading Times

ID

JD

S

SC

L

UBS

A
p
p
l
i
c
a
t
i
o
n

ID

JD

S

SC

L

UBS

2.0

16.0

12.0

4.0

11.0

11.4

4.0

16.6

6.0

4.0

9.0

8.0

4.0

14.0

2.0

1.4

2.0

2.0

S-GC
S-TM
S-CS

All techniques cause ID to perform few unloading sessions

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 15/19

Number of Unloaded Code Bodies

500 1000 1500 2000 2500
Unloaded Native Code Bodies

ID

JD

S

SC

L

UBS

A
p
p
l
i
c
a
t
i
o
n

ID

JD

S

SC

L

UBS

164.0

1970.2

589.8

163.0

542.8

469.4

635.8

2228.2

437.4

303.4

533.0

398.4

664.4

1953.8

326.6

194.0

272.4

238.6

S-GC
S-TM
S-CS

ID’s large working set forces unloading of many code bodies

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 16/19

Summary of Reductions

Name T
%

R
(P, T) S

%
R

(P, T)

S-GC 16.1 68.4 X

X-GC 16.4 52.8
S-TM 17.1 62.6
X-TM 16.4 45.9
S-CS 17.6 X 58.8
X-CS 15.3 54.8

Across all applications, adaptive code unloading techniques
reduce both testing time and space overhead

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 17/19

Conclusions and Future Work

Dynamic compilation in JVMs can increase testing
time if memory is constrained

Adaptive unloading of native code often reduces
memory overhead, avoids GC invocation, and reduces
testing time

Impact of unloading varies with respect to size of
application’s working set and program testing behavior

Regression test suite prioritization and reduction
techniques that consider structural coverage and time
and space overheads

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 18/19

Additional Resources

Kapfhammer et al. Testing in Resource Constrained

Execution Environments. In IEEE/ACM Automated Software

Engineering. November 7 - 11, 2005.

http : //cs.allegheny.edu/˜gkapfham/research/juggernaut/

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 19/19

	Contributions
	Test Suite Execution with a JVM
	Resource Constrained Testing
	Test Suite Execution Strategies
	Experiment Goals and Design
	Case Study Applications
	Testing Time Overhead: {em Full} RVM
	Testing Time Overhead: {em Min} RVM
	Summary of Reductions for ${	t Library}$
	Testing Time Overhead: ${	t Library}$
	Testing Space Overhead: ${	t Library}$
	Code Size Fluctuation: ${	t Library}$
	Summary of Reductions for ${	t ID}$
	Number of Code Unloads
	Number of Unloaded Code Bodies
	Summary of Reductions
	Conclusions and Future Work
	Additional Resources

