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Contributions

Use of native code unloading during test suite execution in a

resource constrained environment

Identification of the testing techniques that yield the greatest

reduction in execution time and native code size

Characterization of how software applications and test

suites restrict and/or support resource constrained testing

Cost-benefit analysis for the use of sample-based and

exhaustive profiles of program testing behavior

Executes test suites faster when memory resources are limited!
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Test Suite Execution with a JVM
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During testing the JVM must manage limited resources
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Resource Constrained Testing
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JIT compiler produces native code that exhausts limited
memory resources

Frequent invocation of GC increases testing time
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Test Suite Execution Strategies

Omit tests? - Could reduce overall confidence in the
correctness of P

Use non-constrained environment? - Defects related to P ’s
interaction with environment might not be isolated

Execute tests individually? - Might increase overall testing
time and violate test order dependencies

Unload with offline profile? - Not useful if P and T change
frequently during regression testing

Our Approach: Use online behavior profiles to guide the
unloading of native code
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Experiment Goals and Design

Research Question: Can an adaptive code unloading JVM
reduce time and space overheads associated with memory
constrained testing?

Experiment Metrics: percent reduction in time, T %
R

(P, T ) and
space, S%

R
(P, T )

Jikes RVM 2.2.1, JUnit 3.8.1, GNU/Linux 2.4.18

Sample-based (S) and exhaustive (X) program profiles

Timer (TM), garbage collection (GC), and code cache size
(CS) triggers the unloading technique
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Case Study Applications

Name Min Size (MB) # Tests NCSS

UniqueBoundedStack (UBS) 8 24 362

Library (L) 8 53 551

ShoppingCart (SC) 8 20 229

Stack (S) 8 58 624

JDepend (JD) 10 53 2124

IDTable (ID) 11 24 315

Empirically determined the MIN Jikes RVM heap size
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Testing Time Overhead: Full RVM

UBS L SC S JD I
Application, Full RVM

1

2

3

4

5

E
x
e
c
u
t
i
o
n
T
i
m
e

HsecL
UBS L SC S JD I

0.47 0.52 0.468 0.48

3.67

0.688

When memory is not constrained, testing time is acceptable
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Testing Time Overhead: Min RVM
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Testing time increases significantly when memory is Min
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Summary of Reductions for Library

Name T
%

R
(P, T ) S

%
R

(P, T )

S-GC 32.7 78.8 X

X-GC 32.1 65.0
S-TM 32.0 72.8
X-TM 31.5 62.3
S-CS 34.3 X 61.4
X-CS 33.4 59.8

Significant reductions in time and space required for testing
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Testing Time Overhead: Library
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S vs. X: Similar reductions for all code unloading techniques
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Testing Space Overhead: Library
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Code size reduction does not always yield best testing time
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Code Size Fluctuation: Library
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S-GC causes code size fluctuation that increases testing time
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Summary of Reductions for ID

Name T
%

R
(P, T ) S

%
R

(P, T )

S-GC -1.1 42.5
X-GC -1.1 26.7
S-TM -1.2 44.5
X-TM -.29 X 28.8
S-CS -.77 51.4
X-CS -1.4 61.4 X

Unloading can decrease code size while still creating an
overall increase in testing time

Testing in Resource Constrained Execution Environments, IEEE/ACM ASE 2005, Nov. 7-11, 2005 – p. 14/19



Number of Code Unloads
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All techniques cause ID to perform few unloading sessions
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Number of Unloaded Code Bodies
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ID’s large working set forces unloading of many code bodies
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Summary of Reductions

Name T
%

R
(P, T ) S

%
R

(P, T )

S-GC 16.1 68.4 X

X-GC 16.4 52.8
S-TM 17.1 62.6
X-TM 16.4 45.9
S-CS 17.6 X 58.8
X-CS 15.3 54.8

Across all applications, adaptive code unloading techniques
reduce both testing time and space overhead
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Conclusions and Future Work

Dynamic compilation in JVMs can increase testing
time if memory is constrained

Adaptive unloading of native code often reduces
memory overhead, avoids GC invocation, and reduces
testing time

Impact of unloading varies with respect to size of
application’s working set and program testing behavior

Regression test suite prioritization and reduction
techniques that consider structural coverage and time
and space overheads
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Additional Resources

Kapfhammer et al. Testing in Resource Constrained

Execution Environments. In IEEE/ACM Automated Software

Engineering. November 7 - 11, 2005.

http : //cs.allegheny.edu/˜gkapfham/research/juggernaut/
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