
MAJOR: An Efficient and Extensible Tool for
Mutation Analysis in a Java Compiler

René Just1, Franz Schweiggert1, and Gregory M. Kapfhammer2

1Ulm University, Germany
2Allegheny College, USA

26th International Conference on Automated Software Engineering

Lawrence, Kansas, USA
November 6 - 12, 2011

Introduction MAJOR Conclusion

Overview of MAJOR

A Tool for
Mutation
Analysis

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of MAJOR

A Tool for
Mutation
Analysis

Compiler-
Integrated

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of MAJOR

A Tool for
Mutation
Analysis

Compiler-
Integrated

Fast and
Scalable

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of MAJOR

A Tool for
Mutation
Analysis

Compiler-
Integrated

Domain Specific
Language

Fast and
Scalable

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of MAJOR

A Tool for
Mutation
Analysis

Compiler-
Integrated

Domain Specific
Language

Fast and
Scalable

Configurable
and Extensible

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of MAJOR

A Tool for
Mutation
Analysis

Compiler-
Integrated

Domain Specific
Language

Mutation Coverage
Information

Fast and
Scalable

Configurable
and Extensible

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of MAJOR

A Tool for
Mutation
Analysis

Compiler-
Integrated

Domain Specific
Language

Mutation Coverage
Information

Fast and
Scalable

Configurable
and Extensible

Enables Optimized
Workflow

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of Mutation Analysis

Mutation
Analysis

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of Mutation Analysis

Mutation
Analysis

Methodically inject small
syntactical faults into

the program under test

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of Mutation Analysis

Mutation
Analysis

Methodically inject small
syntactical faults into

the program under test

Unbiased and powerful
method for assessing test
oracles and input values

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of Mutation Analysis

Mutation
Analysis

Methodically inject small
syntactical faults into

the program under test

Unbiased and powerful
method for assessing test
oracles and input values

Useful method for fault
seeding during the empirical
study of testing techniques

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

y = a - x;

y = a + x;

y = a / x;

if(b < a)

if(b != a)

if(b == a)

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

y = a - x;

y = a + x;

y = a / x;

if(b < a)

if(b != a)

if(b == a)

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Overview of Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

y = a - x;

y = a + x;

y = a / x;

if(b < a)

if(b != a)

if(b == a)

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

MAJOR’s Compiler

MAJOR’s
Compiler

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Common
Compiler Options

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Common
Compiler Options

Domain Specific
Language

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Source Files

Common
Compiler Options

Domain Specific
Language

Bytecode with
Embedded

Mutants

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Specify mutation
operators in detail

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Specify mutation
operators in detail

Define own mutation
operator groups

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

MAJOR’s Domain Specific Language
// variable declaration
listCOR={&&, ||, ==, !=};

// Define replacement list

BIN(+)<"org"> -> {-,*};

BIN(*)<"org"> -> {/,%};

// Define own operator

myOp{

BIN(&&) -> listCOR;

BIN(||) -> listCOR;

COR;

LVR;

}

// Enable built-in operator AOR

AOR<"org">;

// Enable operator myOp

myOp<"java.lang.System@println">;

Specify mutation
operators in detail

Define own mutation
operator groups

Enable operators for
a specific package,

class, or method

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Optimized Mutation Analysis Process

1 Embed and compile all mutants
2 Run test suite on instrumented program
3 Sort tests according to their runtime
4 Perform mutation analysis with reordered test suite

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Optimized Mutation Analysis Process

1 Embed and compile all mutants
2 Run test suite on instrumented program
3 Sort tests according to their runtime
4 Perform mutation analysis with reordered test suite

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Optimized Mutation Analysis Process

1 Embed and compile all mutants
2 Run test suite on instrumented program
3 Sort tests according to their runtime
4 Perform mutation analysis with reordered test suite

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Optimized Mutation Analysis Process

1 Embed and compile all mutants
2 Run test suite on instrumented program
3 Sort tests according to their runtime
4 Perform mutation analysis with reordered test suite

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Conclusion

Key Concepts and Features:

Compiler-integrated solution
Furnishes its own domain specific language
Provides mutation coverage information

Characteristics of MAJOR:

Fast and scalable technique
Configurable and extensible mutation tool
Enables an optimized workflow for mutation analysis

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion

Conclusion

Key Concepts and Features:

Compiler-integrated solution
Furnishes its own domain specific language
Provides mutation coverage information

Characteristics of MAJOR:

Fast and scalable technique
Configurable and extensible mutation tool
Enables an optimized workflow for mutation analysis

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Do you want to learn more details about MAJOR?

MAJOR: An Efficient and Extensible Tool for
Mutation Analysis in a Java Compiler

René Just1 and Franz Schweiggert1 and Gregory M. Kapfhammer2

1Department of Applied Information Processing, Ulm University
2Department of Computer Science, Allegheny College

IMPORTANT CONTRIBUTIONS

I Enhances the Java 6 Standard Edition compiler
I Provides its own domain specific language (DSL)
I Easily applicable in all Java development environments
I Effectively reduces mutant generation time to a minimum

CONDITIONAL MUTATION

I Transforms the program’s abstract syntax tree (AST)
I Encapsulates the mutations within conditional statements

ASSIGN

IDENT

y

BINARY

*

a x

⇒

ASSIGN

IDENT

y

COND-EXPR

THEN

BINARY

-

a x

COND

(M NO ==1)

ELSE

COND-EXPR

THEN

BINARY

+

a x

COND

(M NO ==2)

ELSE

BINARY

*

a x

Figure: Multiple mutated binary expression as the right hand side of an assignment statement.

SUPPORTED FEATURES

I Simple compiler options enable the mutation analysis
I Configurable mutation operators by means of a DSL
I Determination of mutation coverage by running the original code

MUTATION COVERAGE

public int eval(int x){
int a = 3, b = 1, y;

y = (M_NO==1)? a - x:
(M_NO==2)? a + x:
(M_NO==3)? a % x:
(M_NO==0 && COVERED(1,3))?
a * x : a * x; // original

if(M_NO==4){
y -= b;

}else if(M_NO==0 && COVERED(4,4)){
y += b;

}else{
y += b; // original

}

return y;
}

Figure: Collecting coverage information.

I It is impossible to kill a mutant if it is
not reached and executed

I Additional instrumentation
determines the covered mutations

I Mutation coverage is only examined
if the tests execute the original code

I An external driver efficiently records
the covered mutations as ranges

I Only those mutants covered by a
test case are executed

IMPLEMENTATION DETAILS

Figure: Integration of the conditional mutation approach into the compilation process.

listCOR={&&, ||, ==, !=};
method ="java.lang.System@println";

myOp{
BIN(&&) -> listCOR;
BIN(||) -> listCOR;
COR;
LVR;

}

// Define replacement list
BIN(+)<"org"> -> {-,*};
BIN(*)<"org"> -> {/,%};
// Enable built-in operator AOR
AOR<"org">;
// Enable operator myOp
myOp<method>;

Figure: DSL script to define the mutation process.

package major.mutation;

public class Driver{
public static int MAX_NO = 100000;
public static int[] COV =

new int[MAX_NO];

public static int M_NO=0;

public static boolean COVERED
(int from, int to){

for(int i=from; i<=to; ++i){
COV[i]++;

}
return false;

}
}

Figure: Simple driver class implementation.

OPTIMIZED MUTATION ANALYSIS PROCESS

Figure: Minimizing the runtime of mutation analysis by means of test prioritization and mutation coverage.

1. Embed and compile all mutants into the original program
2. Run tests on original program to gather runtime and coverage
3. Sort tests in ascending order according to their runtime
4. Perform mutation analysis while employing the reordered test

suite and the mutation coverage information

RUNTIME OF MAJOR’S COMPILER

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 20000 40000 60000 80000 100000 120000 140000

C
o

m
p

ile
r

ru
n

ti
m

e
 i
n

 s
e

c
o

n
d

s

Number of mutants

apache ant
jfreechart

itext
java pathfinder
commons math
commons lang

numerics4j

Figure: Compiler runtime to generate and compile the mutants for all of the projects.

I Negligible overhead for generating and compiling the mutants
I Applicable on commodity workstations, even for large projects

EVALUATION OF MUTATION ANALYSIS PROCESSES

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

N
u
m

b
e
r

o
f
k
ill

e
d
 m

u
ta

n
ts

Runtime in seconds

optimized order (using coverage information)

random order (using coverage information)

original order (using coverage information)

optimized order (without coverage information)

random order (without coverage information)

original order (without coverage information)

Figure: Runtime of the mutation analysis processes.

FUTURE WORK

I Implementing new mutation operators at the semantic level
I Extending the domain specific language to support new operators
I Integrating conditional mutation into the new Java 7 compiler

rene.just@uni-ulm.de 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011) gkapfham@allegheny.edu

See you tomorrow for a live demonstration!

