MAJOR: An Efficient and Extensible Tool for
Mutation Analysis in a Java Compiler

René Just', Franz Schweiggert', and Gregory M. Kapfhammer?

TUIm University, Germany
2Allegheny College, USA

26th International Conference on Automated Software Engineering

Lawrence, Kansas, USA
November 6 - 12, 2011

) ALLEGHENY COLLEGE

Introduction MAJOR
@00 0000

Overview of MAJOR

Compiler-
Integrated

A Tool for
Mutation
Analysis

Just, Kapfhammer, and Schweiggert

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Conclusion
oo

Ulm University, Allegheny College

Introduction MAJOR
@00 0000

Overview of MAJOR

Compiler-
Integrated

A Tool for
Mutation
Analysis

/

Fast and
Scalable

Just, Kapfhammer, and Schweiggert

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Conclusion
oo

Ulm University, Allegheny College

Introduction MAJOR
@00 0000

Overview of MAJOR

[Compiler-]

Integrated
A Tool for
Mutation
Analysis

Fast and

Scalable

Just, Kapfhammer, and Schweiggert

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Conclusion
oo

|

Domain Specific
Language

Ulm University, Allegheny College

Introduction MAJOR Conclusion
@00 0000 [e]e]

Overview of MAJOR

Compiler- Domain Specific
Integrated Language
A Tool for
Mutation
Analysis
Fast and Configurable
Scalable and Extensible
Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
@00 0000 [e]e]

Overview of MAJOR

[Compiler-] [Mutation Coverage] [Domain Specific]

Integrated Information Language
A Tool for
Mutation
Analysis
Fast and Configurable
Scalable and Extensible
Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
@00 0000 [e]e]

Overview of MAJOR

[Compiler-] [Mutation Coverage] [Domain Specific]

Integrated Information Language
A Tool for
Mutation
Analysis
Fast and Enables Optimized Configurable
Scalable Workflow and Extensible
Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR
oeo 0000

Overview of Mutation Analysis

Methodically inject small
syntactical faults into
the program under test

Mutation
Analysis

Just, Kapfhammer, and Schweiggert

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Conclusion
oo

Ulm University, Allegheny College

Introduction MAJOR Conclusion
oeo 0000 [e]e]

Overview of Mutation Analysis

Methodically inject small
syntactical faults into
the program under test

Mutation
Analysis

Unbiased and powerful
method for assessing test
oracles and input values

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
oeo 0000 [e]e]

Overview of Mutation Analysis

Methodically inject small
syntactical faults into
the program under test

Mutation
Analysis

N

Unbiased and powerful Useful method for fault
method for assessing test seeding during the empirical
oracles and input values study of testing techniques

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR
ooe 0000

Overview of Mutation Analysis

public int eval (int x) {
int a=3, b=1l, vy;

y = a*x x;j

y += Db;
return y;

}

public int max(int a, int D) {
int max = a;

if (b>a) {

max=b;
return max;

Just, Kapfhammer, and Schweiggert

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Conclusion
[e]e]

Ulm University, Allegheny College

Introduction MAJOR
ooe 0000

Overview of Mutation Analysis

public int eval (int x) {
int a=3, b=1l, vy;

y = a x x;

y += Db;
return y;

}

public int max(int a, int D) {
int max = a;

if (b>a) {

max=b;

return max;

Just, Kapfhammer, and Schweiggert

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Conclusion
[e]e]

Ulm University, Allegheny College

Introduction MAJOR Conclusion
ooe 0000 [e]e]

Overview of Mutation Analysis

public int eval (int x) {
int a=3, b=1l, vy;

Oy = a - X;

y = a * x; - oy a + x;

@y = a / x;

y += Db;
return y;

}

public int max(int a, int D) {

int max = a; q
@ if(b < a)

if (b>a) { e @ if(b != a)

max=b; a
) ! if(b == a)
return max;

}
Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 €000 oo

MAJOR’s Compiler

MAJOR’s
Compiler

Enhanced Standard
Java Compiler

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 €000 oo

MAJOR’s Compiler

Source Files

[MAJOR's
| Compiler

Enhanced Standard
Java Compiler

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 €000 oo

MAJOR’s Compiler

Common
Compiler Options

— N

[MAJOR's
| Compiler

Source Files

Enhanced Standard
Java Compiler

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 €000 oo

MAJOR’s Compiler

Common Domain Specific
Compiler Options Language

-- N/

[MAJOR's
| Compiler

Source Files

Enhanced Standard
Java Compiler

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 €000 oo

MAJOR’s Compiler

Common Domain Specific
Compiler Options Language

-- N/

: IBytecode with
. MAJOR
Source Files { Cor‘r]f;ilef]—» Embedded
Mutants

Enhanced Standard
Java Compiler

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 0e00 [e]e]

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};

// Define replacement list
BIN (+)<"org"> —-> {—,x};
BIN (x)<"org"> -> {/,%};

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;

}

// Enable built-in operator AOR
AOR<"org">;

// Enable operator myOp
myOp<"java.lang.System@println">;

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 0e00 [e]e]

MAJOR’s Domain Specific Language

// variable declaration

1istCOR={&&, ||, ==, !'=};

// Define replacement list]
BIN (+)<"org"> —-> {—,*};]
BIN (*)<"org"> —-> {/,%}; l

Specify mutation
operators in detalil

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) —-> 1listCOR;
COR;
LVR;

}

// Enable built-in operator AOR
AOR<"org">;

// Enable operator myOp
myOp<"java.lang.System@println">;

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 0®00 oo

MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};
// Define replacement list

Specify mutation

BIN (+)<"org"> -> {-,+*}; - .
operators in detalil

BIN (x)<"org"> -> {/,%};

// Define own operator

myOp {
BIN(&&) —> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;

[Define own mutation)
operator groups

}
// Enable built-in operator AOR
AOR<"org">;

// Enable operator myOp
myOp<"java.lang.System@println">;

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 000 oo

MAJOR’s Domain Specific Language

// variable declaration
1listCOR={&&, ||, ==, !=};
// Define replacement list

Specify mutation
operators in detalil

BIN(+)<"org"> —-> {—,%};
BIN (x)<"org"> -> {/,%};

// Define own operator

myOp {
— l' ; 'd N N N\
BIN(&&) —> 11SECOR Define own mutation
BIN(||) —-> 1istCOR;
operator groups
LVR;

}
// Enable built-in operator AOR
AOR<"org">;

Enable operators for
a specific package,
class, or method

l // Enable operator myOp

l
l
l
l
l
l
l
COR;]
|
l
l
l
l

[myOp<"java.lang.System@println">;

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction
000

MAJOR
foYe] Yo}

Optimized Mutation Analysis Process

Compile
mutants

Instrumented
program

Conclusion
oo

@ Embed and compile all mutants

Just, Kapfhammer, and Schweiggert

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Ulm University, Allegheny College

Introduction
000

MAJOR
foYe] Yo}

Optimized Mutation Analysis Process

A J

Original
test suite

Compile
mutants

Instrumented
program

Execute
test suite

Runtime of
test cases

Mutation
—
coverage

@ Embed and compile all mutants
@ Run test suite on instrumented program

Just, Kapfhammer, and Schweiggert

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Conclusion
oo

Ulm University, Allegheny College

Introduction MAJOR

Conclusion
000 fete] Yo}

e}

Optimized Mutation Analysis Process

Original
test suite
Y y

Compile Instrumented Execute Runtime of| _ |Prioritize | .| Reordered
mutants program test suite test cases test cases test suite
Mutation
 —
coverage

@ Embed and compile all mutants
@ Run test suite on instrumented program
© Sort tests according to their runtime

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 fete] Yo} oo

Optimized Mutation Analysis Process

Original
test suite

A J 4

Compile Instrumented Execute Runtime of| _ |Prioritize | o Reordered Mutation
mutants program test suite test cases test cases test suite analysis
A A
Mutation
 —
coverage

@ Embed and compile all mutants

@ Run test suite on instrumented program

© Sort tests according to their runtime

© Perform mutation analysis with reordered test suite

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College

MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 0000 [le]

Conclusion

Key Concepts and Features:
@ Compiler-integrated solution
@ Furnishes its own domain specific language
@ Provides mutation coverage information

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Introduction MAJOR Conclusion
000 0000 [le]

Conclusion

Key Concepts and Features:
@ Compiler-integrated solution
@ Furnishes its own domain specific language
@ Provides mutation coverage information

Characteristics of MAJOR:

@ Fast and scalable technique
@ Configurable and extensible mutation tool
@ Enables an optimized workflow for mutation analysis

Just, Kapfhammer, and Schweiggert Ulm University, Allegheny College
MAJOR: An Efficient and Extensible Tool for Mutation Analysis in a Java Compiler

Do you want to learn more details about MAJOR?

MAJOR: An Eff

» Enhances the Java 6 Standard Edition compiler
» Provides its own domain specific language (DSL)

- Easiy appicable in all Java development environments
- Effectively reduces mutant generation time to a minimum

GONDITIONAL MUTATION
» Transforms the program's abstract syntax tree (AS'
+ Encapsulates the mutations within conditional statements

/\

—~

—~

LA PR

SUPPORTED FEATURES

» Simple compiler options enable the mutation analysis

ient and Extensible Tool
Mutation Analysis in a Java Compiler

René Just' and Franz Schweiggert' and Gregory M. Kapfhammer?
"Department of Applied Information Processing, Uim University

“Department of Computer Science, Allegheny College

IMPLEMENTATION DETAILS

[Compiter_]

for y

\ m

ALLEGHENY COLLEGE

RUNTIME OF MAJOR'S COMPILER

[Configuration] [orver] L
\ =
o) []| =
|

m”

. for
- Applicable on commodity workstations, even for large projects

EVALUATION OF MUTATION ANALYSIS PROCESSES

[
Al

» Configurable mutation operators by means of a DSL

running

MUTATION COVERAGE

+ Itis impossible to kil a mutant f it is
d

- Miaton coeage i ony exarined
ifthe tests execute

SihGEe Ee
‘e covered mutations as ranges
+ Only those mutants covered by a
test case aro executod

Perform mutation analysis while employing the reordered test
suito and the mutation coverage information

rene. justeuni-ulm.de

26th IEEE/ACM International Gonference on Automated Software Engineering (ASE 2011)

i
,%—41——/
/

Implementing new mutation operators at the semantic evel

s 0
» Integrating condiional mutation into the new Java 7 compiler

gkapthandallegheny. edu

See you tomorrow for a live demonstration!

