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public int eval (int x) {
int a=3, b=1l, vy;

Oy = a - X;

y = a * x; - oy a + x;

@y = a / x;

y += Db;
return y;

}

public int max(int a, int D) {

int max = a; q
@ if(b < a)

if (b>a) { e @ if(b != a)

max=b; a
) ! if(b == a)
return max;

}
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MAJOR’s Domain Specific Language

// variable declaration
1istCOR={&&, ||, ==, !=};

// Define replacement list
BIN (+)<"org"> —-> {—,x};
BIN (x)<"org"> -> {/,%};

// Define own operator

myOp {
BIN(&&) —-> 1istCOR;
BIN(||) -> 1istCOR;
COR;
LVR;

}

// Enable built-in operator AOR
AOR<"org">;

// Enable operator myOp
myOp<"java.lang.System@println">;
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Specify mutation
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BIN(+)<"org"> —-> {—,%};
BIN (x)<"org"> -> {/,%};

// Define own operator

myOp {
— l' ; 'd N N N\
BIN(&&) —> 11SECOR Define own mutation
BIN(||) —-> 1istCOR;
operator groups
LVR;

}
// Enable built-in operator AOR
AOR<"org">;

Enable operators for
a specific package,
class, or method

l // Enable operator myOp

l
l
l
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l
l
COR; ]
|
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l
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[ myOp<"java.lang.System@println">;
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@ Embed and compile all mutants
@ Run test suite on instrumented program
© Sort tests according to their runtime
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Optimized Mutation Analysis Process

Original
test suite

A J 4

Compile Instrumented Execute Runtime of| _ |Prioritize | o Reordered Mutation
mutants program test suite test cases test cases test suite analysis
A A
Mutation
 —
coverage

@ Embed and compile all mutants

@ Run test suite on instrumented program

© Sort tests according to their runtime

© Perform mutation analysis with reordered test suite
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Key Concepts and Features:
@ Compiler-integrated solution
@ Furnishes its own domain specific language
@ Provides mutation coverage information
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Conclusion

Key Concepts and Features:
@ Compiler-integrated solution
@ Furnishes its own domain specific language
@ Provides mutation coverage information

Characteristics of MAJOR:

@ Fast and scalable technique
@ Configurable and extensible mutation tool
@ Enables an optimized workflow for mutation analysis
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Do you want to learn more details about MAJOR?

MAJOR: An Eff

» Enhances the Java 6 Standard Edition compiler
» Provides its own domain specific language (DSL)

- Easiy appicable in all Java development environments
- Effectively reduces mutant generation time to a minimum

GONDITIONAL MUTATION
» Transforms the program's abstract syntax tree (AS'
+ Encapsulates the mutations within conditional statements
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SUPPORTED FEATURES

» Simple compiler options enable the mutation analysis

ient and Extensible Tool
Mutation Analysis in a Java Compiler

René Just' and Franz Schweiggert' and Gregory M. Kapfhammer?
"Department of Applied Information Processing, Uim University

“Department of Computer Science, Allegheny College

IMPLEMENTATION DETAILS

[Compiter_]

for y

\ m

ALLEGHENY COLLEGE

RUNTIME OF MAJOR'S COMPILER
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- Applicable on commodity workstations, even for large projects

EVALUATION OF MUTATION ANALYSIS PROCESSES

[
Al

» Configurable mutation operators by means of a DSL

running

MUTATION COVERAGE

+ Itis impossible to kil a mutant f it is
d

- Miaton coeage i ony exarined
ifthe tests execute

SihGEe Ee
‘e covered mutations as ranges
+ Only those mutants covered by a
test case aro executod

Perform mutation analysis while employing the reordered test
suito and the mutation coverage information
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Implementing new mutation operators at the semantic evel

s 0
» Integrating condiional mutation into the new Java 7 compiler
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See you tomorrow for a live demonstration!




