Ask and You Shall Receive: Empirically Evaluating Declarative Approaches to Finding Data in Unstructured Heaps

William F. Jones and Gregory M. Kapfhammer

Allegheny College http://www.cs.allegheny.edu/~gkapfham/

20th International Conference on Software Engineering and Data Engineering, June 20 - 22, 2011

ALLEGHENY COLLEGE

Empirical Study

Conclusion

Overview of the Presentation

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

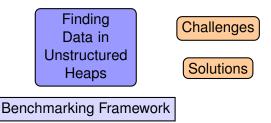
Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

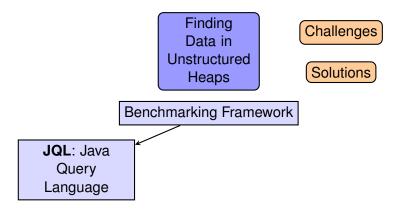

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

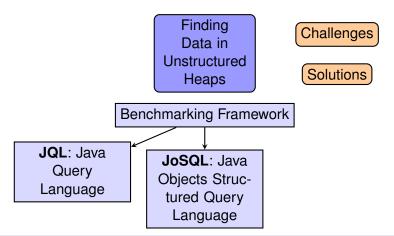

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

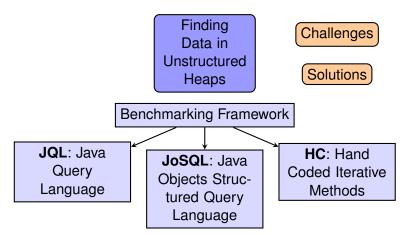

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

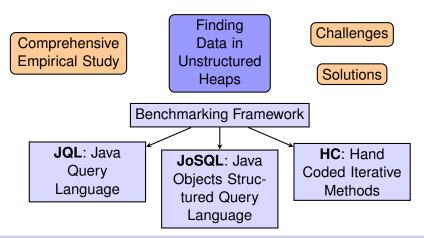

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Overview of the Presentation

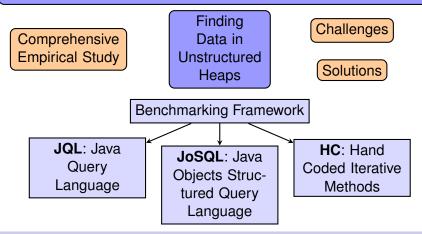

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Overview of the Presentation


Jones & Kapfhammer

Allegheny College

Conclusion

Overview of the Presentation

Experiments Reveal Trade-offs in Performance and Overall Viability

Jones & Kapfhammer

Allegheny College

Conclusion

Correctly and Efficiently Finding Objects in the Heap

The unstructured heap in a Java virtual machine stores objects that are connected in complex and unpredictable ways (Xu and Rountev, ICSE 2008)

Jones & Kapfhammer

Allegheny College

Conclusion

Correctly and Efficiently Finding Objects in the Heap

The unstructured heap in a Java virtual machine stores objects that are connected in complex and unpredictable ways (Xu and Rountev, ICSE 2008)

When is an Object Allocated to the Heap?

LinkedList list = new LinkedList()

Jones & Kapfhammer

Allegheny College

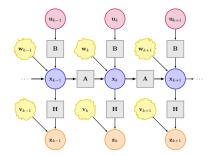
Conclusion

Correctly and Efficiently Finding Objects in the Heap

The unstructured heap in a Java virtual machine stores objects that are connected in complex and unpredictable ways (Xu and Rountev, ICSE 2008)

When is an Object Allocated to the Heap?

LinkedList list = new LinkedList()

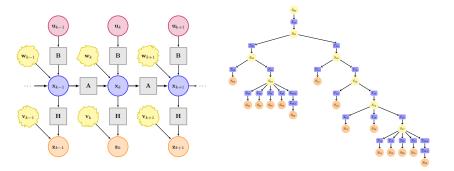

Let's Allocate Some Objects to the Heap!

Jones & Kapfhammer

Allegheny College

Conclusion

Correctly and Efficiently Finding Objects in the Heap

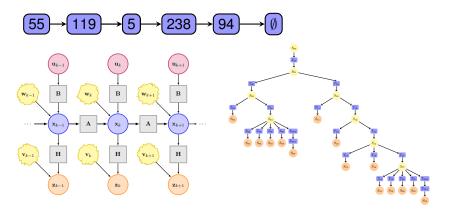


Jones & Kapfhammer

Allegheny College

Conclusion

Correctly and Efficiently Finding Objects in the Heap

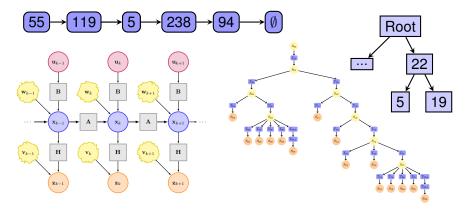

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Correctly and Efficiently Finding Objects in the Heap

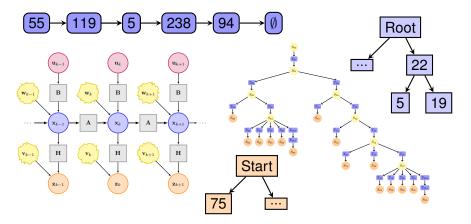

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Correctly and Efficiently Finding Objects in the Heap

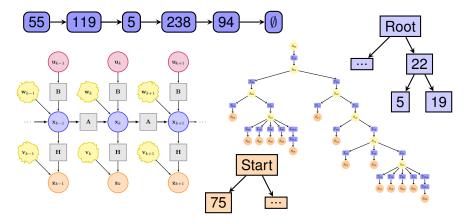

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Correctly and Efficiently Finding Objects in the Heap


Jones & Kapfhammer

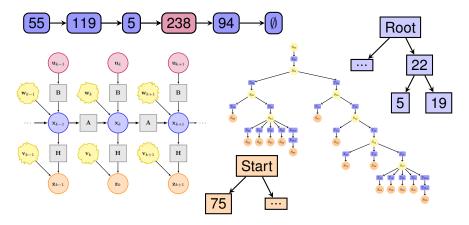
Allegheny College

Empirical Study

Conclusion

Correctly and Efficiently Finding Objects in the Heap

LinkedList Node(s) with Values Greater Than Those in the Trees


Jones & Kapfhammer

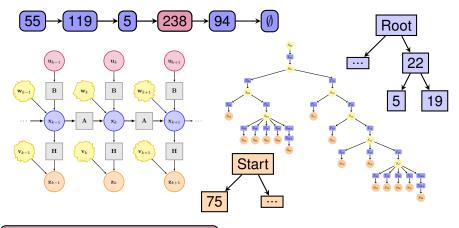
Allegheny College

Empirical Study

Conclusion

Correctly and Efficiently Finding Objects in the Heap

LinkedList Node(s) with Values Greater Than Those in the Trees


Jones & Kapfhammer

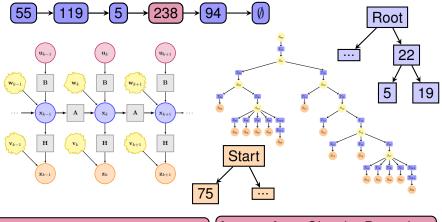
Allegheny College

Empirical Study

Conclusion

Correctly and Efficiently Finding Objects in the Heap

(How Do We Find These Nodes?)


Jones & Kapfhammer

Allegheny College

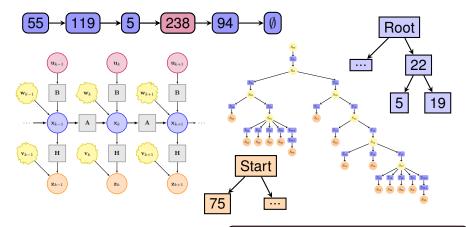
Empirical Study

Conclusion

Correctly and Efficiently Finding Objects in the Heap

(How Do We Find These Nodes?)

Imperative - Give the Procedure


Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Correctly and Efficiently Finding Objects in the Heap

How Do We Find These Nodes?

Declarative - Give the Specification

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Object Query Languages and Bicycles

Efficiency - Bicycle: Low wind resistance and time to destination

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Object Query Languages and Bicycles

Efficiency - Query: Minimal space overhead and a low response time

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Object Query Languages and Bicycles

Effectiveness - Bicycle: Transports all item(s) with no break downs

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Object Query Languages and Bicycles

Effectiveness - Query: Always returns the correct result(s) to a query

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Object Query Languages and Bicycles

Cost - Bicycle: Frame material(s) and components cause price to vary

Jones & Kapfhammer

Allegheny College

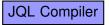
Empirical Study

Conclusion

Object Query Languages and Bicycles

Cost - Query: Must consider installation and development challenges

Jones & Kapfhammer


Allegheny College

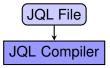
Query Methods

Empirical Study

Conclusion

JQL: Java Query Language

Jones & Kapfhammer


Allegheny College

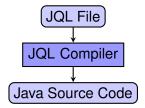
Query Methods

Empirical Study

Conclusion

JQL: Java Query Language

Jones & Kapfhammer


Allegheny College

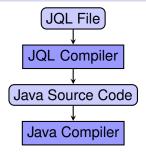
Query Methods

Empirical Study

Conclusion

JQL: Java Query Language

Jones & Kapfhammer


Allegheny College

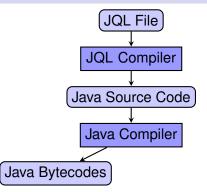
Query Methods

Empirical Study

Conclusion

JQL: Java Query Language

Jones & Kapfhammer


Allegheny College

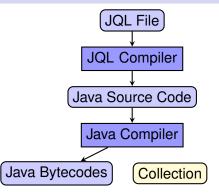
Query Methods

Empirical Study

Conclusion

JQL: Java Query Language

Jones & Kapfhammer


Allegheny College

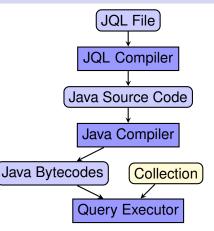
Query Methods

Empirical Study

Conclusion

JQL: Java Query Language

Jones & Kapfhammer


Allegheny College

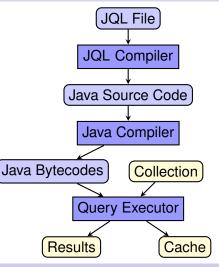
Query Methods

Empirical Study

Conclusion

JQL: Java Query Language

Jones & Kapfhammer


Allegheny College

Query Methods

Empirical Study

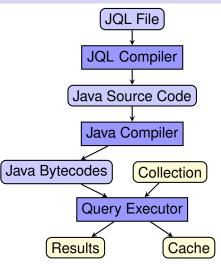
Conclusion

JQL: Java Query Language

Jones & Kapfhammer

Allegheny College

Query Methods


Empirical Study

Conclusion

JQL: Java Query Language

Features

- Pre-compilation
- AOP with AspectJ
- Method Queries
- Caching
- Optimizations

Jones & Kapfhammer

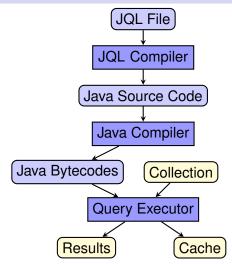
Allegheny College

Query Methods

Empirical Study

Conclusion

JQL: Java Query Language


Features

- Pre-compilation
- AOP with AspectJ
- Method Queries
- Caching
- Optimizations

References

• (Willis et al. ECOOP 2006)

 (Willis et al. OOPSLA 2008)

Jones & Kapfhammer

Allegheny College

Conclusion

JoSQL: Java Objects Structured Query Language

Parse SQL

Jones & Kapfhammer

Allegheny College

Query Methods

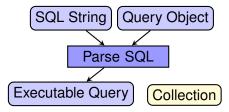
Empirical Study

Conclusion

JoSQL: Java Objects Structured Query Language

SQL String Query Object Parse SQL

Jones & Kapfhammer


Allegheny College

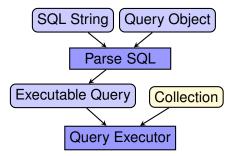
Query Methods

Empirical Study

Conclusion

JoSQL: Java Objects Structured Query Language

Jones & Kapfhammer


Allegheny College

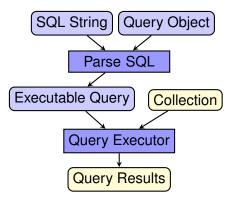
Query Methods

Empirical Study

Conclusion

JoSQL: Java Objects Structured Query Language

Jones & Kapfhammer


Allegheny College

Query Methods

Empirical Study

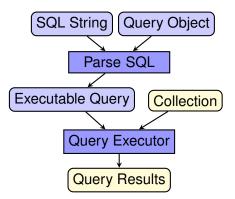
Conclusion

JoSQL: Java Objects Structured Query Language

Jones & Kapfhammer

Allegheny College

Query Methods


Empirical Study

Conclusion

JoSQL: Java Objects Structured Query Language

Features

- SQL Statements
- String Parsing
- Java Reflection
- Query Facilities

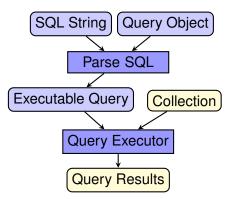
Jones & Kapfhammer

Allegheny College

Query Methods

Empirical Study

Conclusion


JoSQL: Java Objects Structured Query Language

Features

- SQL Statements
- String Parsing
- Java Reflection
- Query Facilities

Reference

http://josql.sf.net

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Comparison of Data Finding Methods

As the number of collections and objects increases, imperative programming may lead to applications that are complicated, error-prone, and hard to maintain (Xu and Rountev, ICSE 2008)

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Comparison of Data Finding Methods

As the number of collections and objects increases, imperative programming may lead to applications that are complicated, error-prone, and hard to maintain (Xu and Rountev, ICSE 2008)

JQL: Compile-Time

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Comparison of Data Finding Methods

As the number of collections and objects increases, imperative programming may lead to applications that are complicated, error-prone, and hard to maintain (Xu and Rountev, ICSE 2008)

JQL: Compile-Time

JoSQL: Run-Time

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

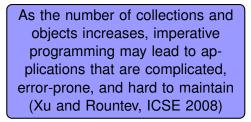
Comparison of Data Finding Methods

As the number of collections and objects increases, imperative programming may lead to applications that are complicated, error-prone, and hard to maintain (Xu and Rountev, ICSE 2008)

JQL: Compile-Time

JoSQL: Run-Time

Performance Trade-Offs?


Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Comparison of Data Finding Methods

JQL: Compile-Time

JoSQL: Run-Time

Performance Trade-Offs?

Effectiveness Concerns?

Jones & Kapfhammer

Allegheny College

Conclusion

Comparison of Data Finding Methods

Benchmarking Framework Helps to Answer These Questions

As the number of collections and objects increases, imperative programming may lead to applications that are complicated, error-prone, and hard to maintain (Xu and Rountev, ICSE 2008)

JQL: Compile-Time

JoSQL: Run-Time

Performance Trade-Offs?

Effectiveness Concerns?

Jones & Kapfhammer

Allegheny College

Conclusion

Benchmarking Framework to Evaluate Query Methods

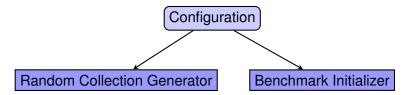
Random Collection Generator

Jones & Kapfhammer

Allegheny College

Conclusion

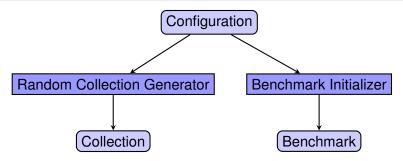
Benchmarking Framework to Evaluate Query Methods


Random Collection Generator

Benchmark Initializer

Jones & Kapfhammer

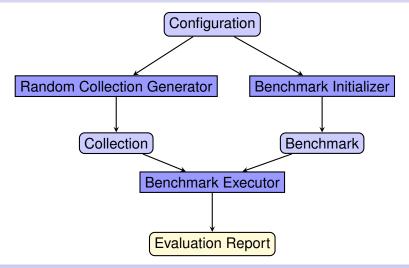
Allegheny College


Benchmarking Framework to Evaluate Query Methods

Jones & Kapfhammer

Allegheny College

Benchmarking Framework to Evaluate Query Methods



Jones & Kapfhammer

Allegheny College

Conclusion

Benchmarking Framework to Evaluate Query Methods

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Configuration of the Benchmarking Framework

Possible Configurations

Explored a wide variety of benchmark configurations

Jones & Kapfhammer

Allegheny College

Empirical Study

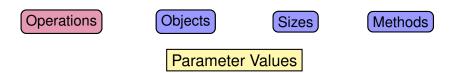
Conclusion

Configuration of the Benchmarking Framework

Possible Configurations

What operations do we run to evaluate the query methods?

Jones & Kapfhammer

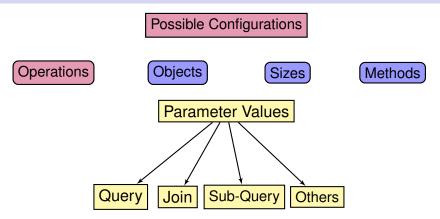

Allegheny College

Empirical Study

Conclusion

Configuration of the Benchmarking Framework

Possible Configurations


What operations do we run to evaluate the query methods?

Jones & Kapfhammer

Allegheny College

Conclusion

Configuration of the Benchmarking Framework

What operations do we run to evaluate the query methods?

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

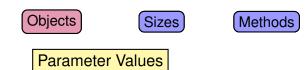
Configuration of the Benchmarking Framework

Possible Configurations

What objects will we allocate to the JVM's heap?

Jones & Kapfhammer

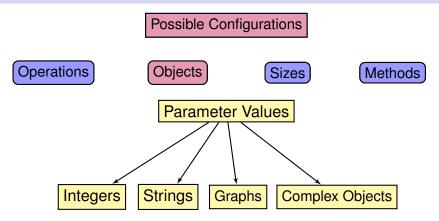
Allegheny College


Empirical Study

Conclusion

Configuration of the Benchmarking Framework

Possible Configurations


What objects will we allocate to the JVM's heap?

Jones & Kapfhammer

Allegheny College

Conclusion

Configuration of the Benchmarking Framework

What objects will we allocate to the JVM's heap?

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

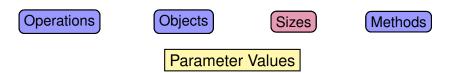
Configuration of the Benchmarking Framework

Possible Configurations

How big should we make the objects and the collections?

Jones & Kapfhammer

Allegheny College


Query Methods

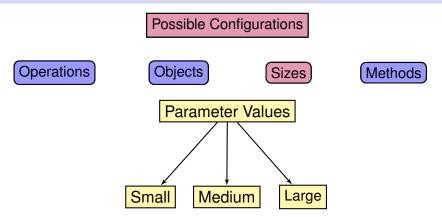
Empirical Study

Conclusion

Configuration of the Benchmarking Framework

Possible Configurations

How big should we make the objects and the collections?


Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Configuration of the Benchmarking Framework

How big should we make the objects and the collections?

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

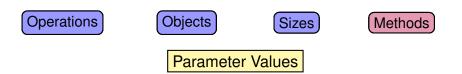
Configuration of the Benchmarking Framework

Possible Configurations

Which methods should be part of the framework?

Jones & Kapfhammer

Allegheny College


Query Methods

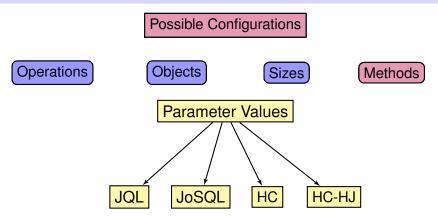
Empirical Study

Conclusion

Configuration of the Benchmarking Framework

Possible Configurations

Which methods should be part of the framework?

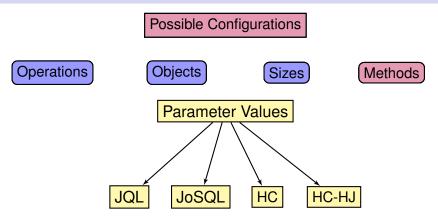

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Configuration of the Benchmarking Framework


Which methods should be part of the framework?

Jones & Kapfhammer

Allegheny College

Conclusion

Configuration of the Benchmarking Framework

See the paper for further operator and configuration details

Jones & Kapfhammer

Allegheny College

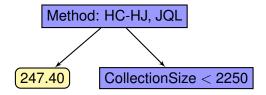
Empirical Study

Conclusion

Analysis Techniques: Regression Tree Models

Method: HC-HJ, JQL

Tree Models: Recursive partitioning creates hierarchical view of data


Jones & Kapfhammer

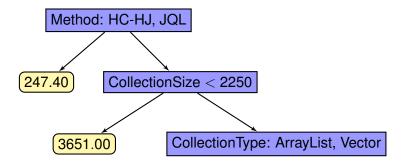
Allegheny College

Empirical Study

Conclusion

Analysis Techniques: Regression Tree Models

Tree Models: Recursive partitioning creates hierarchical view of data


Jones & Kapfhammer

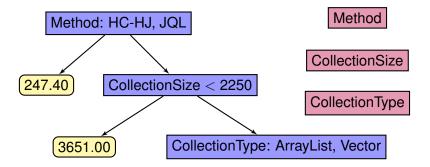
Allegheny College

Empirical Study

Conclusion

Analysis Techniques: Regression Tree Models

Tree Models: Recursive partitioning creates hierarchical view of data


Jones & Kapfhammer

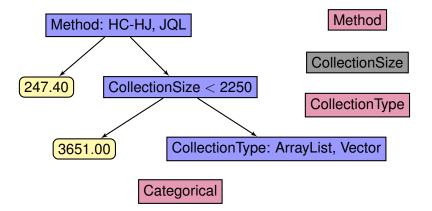
Allegheny College

Empirical Study

Conclusion

Analysis Techniques: Regression Tree Models

Explanatory Variable: Configuration of the benchmarking framework


Jones & Kapfhammer

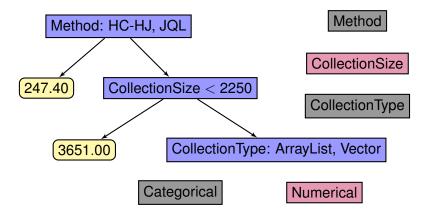
Allegheny College

Empirical Study

Conclusion

Analysis Techniques: Regression Tree Models

Non-parametric techniques that handles different variable types


Jones & Kapfhammer

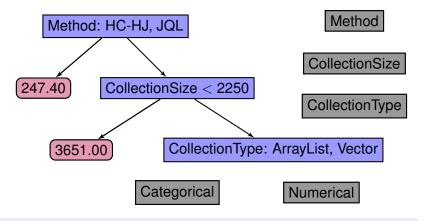
Allegheny College

Empirical Study

Conclusion

Analysis Techniques: Regression Tree Models

Non-parametric techniques that handles different variable types


Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Analysis Techniques: Regression Tree Models

Response Variable: Response time of the benchmark

Jones & Kapfhammer

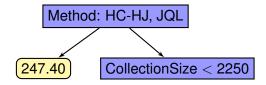
Allegheny College

Empirical Study

Conclusion

Join Benchmark with Integers and Strings

Method: HC-HJ, JQL

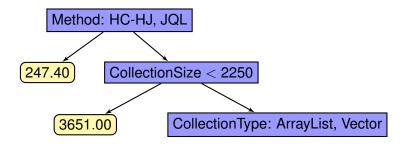

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Join Benchmark with Integers and Strings

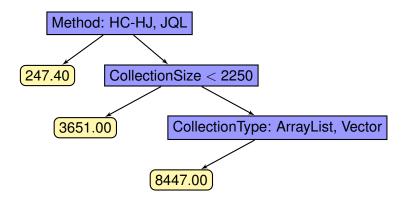

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Join Benchmark with Integers and Strings

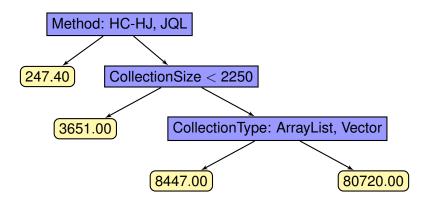

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Join Benchmark with Integers and Strings

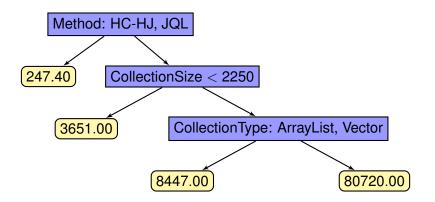

Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Join Benchmark with Integers and Strings


Jones & Kapfhammer

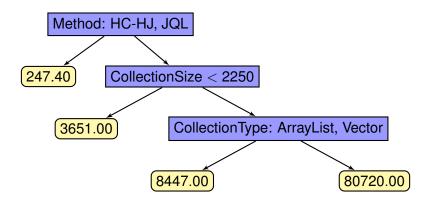
Allegheny College

Empirical Study

Conclusion

Join Benchmark with Integers and Strings

Reflection's Impact: HC-HJ and JQL exhibit lower values than JoSQL


Jones & Kapfhammer

Allegheny College

Empirical Study

Conclusion

Join Benchmark with Integers and Strings

Reflection's Impact: LinkedList further degrades JoSQL's performance

Jones & Kapfhammer

Allegheny College

Conclusion

Impact of Object Size on Joining

Small Obje	mall Objects Collection Size				
	Method	Small	Medium	Large	
	JQL	57.2	390.2	981.8	
	HC-HJ	69.3	378.1	923.5	
	JoSQL	997.3	3620.2	8823.1	

Jones & Kapfhammer

Allegheny College

Conclusion

Impact of Object Size on Joining

Small Obje	Objects Collection Size				
	Method	Small	Medium	Large	
	JQL	57.2	390.2	981.8	
	HC-HJ	69.3	378.1	923.5	
	JoSQL	997.3	3620.2	8823.1	

Large Objects		Collection Size			
	Method	Small	Medium	Large	
	JQL	35.4	80.8	255.4	
	HC-HJ	11.4	63.3	217.8	
	JoSQL	930.3	3107.3	8165.9	

Jones & Kapfhammer

Allegheny College

Conclusion

Impact of Object Size on Joining

Small Obje	Il Objects Collection Size				
	Method	Small	Medium	Large	
	JQL	57.2	390.2	981.8	
	HC-HJ	69.3	378.1	923.5	
	JoSQL	997.3	3620.2	8823.1	

Large Obje	cts	Collection Size			
	Method	Small	Medium	Large	
	JQL	35.4	80.8	255.4	
	HC-HJ	11.4	63.3	217.8	
	JoSQL	930.3	3107.3	8165.9	

Jones & Kapfhammer

Allegheny College

Conclusion

Impact of Object Size on Joining

Small Obje	jects Collection Size				
	Method	Small	Medium	Large	
	JQL	57.2	390.2	981.8	
	HC-HJ	69.3	378.1	923.5	
	JoSQL	997.3	3620.2	8823.1	

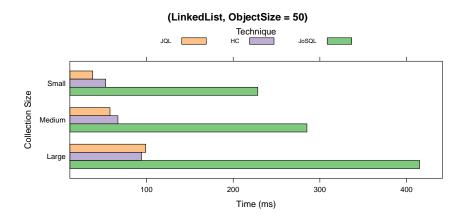
Large Objects		Collection Size			
	Method	Small	Medium	Large	
	JQL	35.4	80.8	255.4	
	HC-HJ	11.4	63.3	217.8	
	JoSQL	930.3	3107.3	8165.9	

Jones & Kapfhammer

Allegheny College

Conclusion

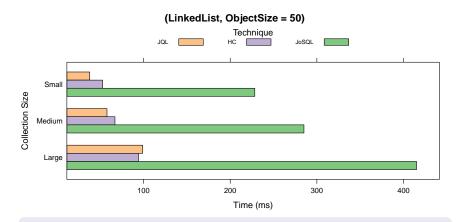
Impact of Object Size on Joining


Small Obje	Objects Collection Size				
	Method	Small	Medium	Large	
	JQL	57.2	390.2	981.8	
	HC-HJ	69.3	378.1	923.5	
	JoSQL	997.3	3620.2	8823.1	

Large Obje	cts	C	ollection S	ize
	Method	Small	Medium	Large
	JQL	35.4	80.8	255.4
	HC-HJ	11.4	63.3	217.8
	JoSQL	930.3	3107.3	8165.9

Jones & Kapfhammer

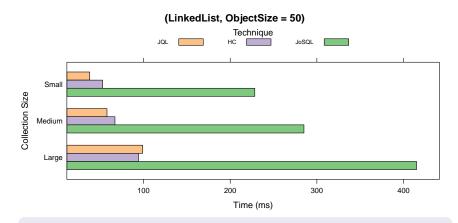
Allegheny College


SubQuery Benchmark with Graphs Containing Strings

Jones & Kapfhammer

Allegheny College

SubQuery Benchmark with Graphs Containing Strings

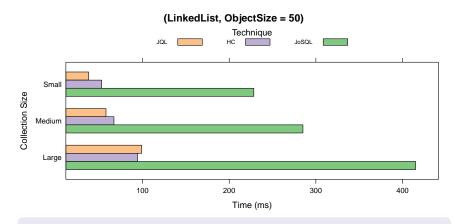


JQL is Faster Than HC When the Collection Size is Small and Medium

Jones & Kapfhammer

Allegheny College

SubQuery Benchmark with Graphs Containing Strings

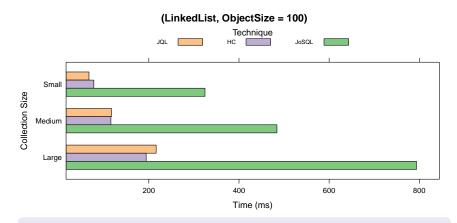


HC is Faster Than JQL When the Collection Size is Large

Jones & Kapfhammer

Allegheny College

SubQuery Benchmark with Graphs Containing Strings



Why? JQL Must Track All of the Objects in the Heap

Jones & Kapfhammer

Allegheny College

SubQuery Benchmark with Graphs Containing Strings

Trend is Even More Pronounced as the Object Size Increases

Jones & Kapfhammer

Allegheny College

Conclusion

Conclusions and Future Work

Concluding Remarks

- Comprehensive empirical study of query methods
- Interesting trends concerning JQL, JoSQL, HC, and HC-HJ
- Refer to the paper for many more insights

Future Work

- Integrate new benchmarks and object types
- Consider different sizes of objects and collections
- Incorporate different data finding methods
- Leverage additional statistical analysis techniques

Jones & Kapfhammer

Allegheny College

Conclusion

Conclusions and Future Work

Concluding Remarks

- Comprehensive empirical study of query methods
- Interesting trends concerning JQL, JoSQL, HC, and HC-HJ
- Refer to the paper for many more insights

Future Work

- Integrate new benchmarks and object types
- Consider different sizes of objects and collections
- Incorporate different data finding methods
- Leverage additional statistical analysis techniques

Jones & Kapfhammer

Allegheny College

Ask and You Shall Receive: Empirically Evaluating Declarative Approaches to Finding Data in Unstructured Heaps

> Thank you for your attention! Questions?

Allegheny College

"Ask, and you will receive. Search, and you will find. Knock, and the door will be opened for you." Matthew 7:7 (GWT) http://bible.cc/matthew/7-7.htm