
An Examination of the Run- time Performance
of GUI Creation Frameworks

Christopher J. Howell
Gregory M. Kapfhammer

Robert S. Roos

Principles and Practices of Programming in Java
Kilkenny City, Ireland June 16-18, 2003

Presentation Outline

� Introduction: importance of graphical user interfaces (GUIs)

� What is a GUI?

� Event handling latency and GUI manipulation event difficulty

�

Overview of GUI creation frameworks: Swing and Thinlet

�

Experimental design and justification

�

Empirical results:

�

Event handling latency

�

CPU and memory consumption

� Related and future work

� Conclusion

Introduction

� Source code for GUIs: Past- 48%, Current- 60%

� GUI creation frameworks: correctness and performance

� Analysis of Java programs

� Statically, at source code and bytecode levels

� Dynamically, at bytecode level and on specific virtual machine(s)

� Our focus: performance of GUI creation frameworks for
specific applications and Java virtual machines

� GUI toolkit showdown: Thinlet vs. Swing

� User-perceived performance for a case study application

GUI Fundamentals

� A GUI is simply a set of widgets

� The state of the GUI is the state of all the widgets

� Our model ignores widget layout constraints

� Event handling latency: L(E) = LA(E) + LG(E)

� Difficulty of GUI manipulation event: D(E) = DA(E) + DG(E)

�

Formulation of DA(E) requires analysis of algorithms in
the underlying application and JVM

�

Formulation of DG(E) requires understanding of the GUI
widgets that are updated and added to the GUI

Comparing Swing and Thinlet

� Swing:

� Extension of AWT

� Approximately 50 components

� Advantages:

� Lightweight – more efficient

use of resources

� Written in Java – cross-

platform and very consistent

look and feel

� Disadvantages:

� Inherent abstraction level

� Excessive object creation

� Thinlet:

� Created by Robert Bajzat

� Currently 22 components

� Advantages:
� Application Separation: GUI in

XML and underlying code in

Java

� Relatively simple GUI

development

� Disadvantages:

� Limited number of components

� Limited threading model

Visual Database Querying Tool

� Ideal candidate application - enables the variation of GUI
manipulation event handling difficulty

� Difficulty was varied by changing table sizes to 25, 250,
and 2500 tuples

� User can select tables, attributes, and comparison
operators

� Query results displayed in the form of a table

� One version of the tool was developed with Swing and
another with Thinlet

� Each tool uses the same Java Database Connectivity
(JDBC) driver to connect to a PostreSQL database

Experiments

� Systems Used

� Pentium III, 533 Mhz with 128 MB RAM

• Debian/GNU Linux – JVM 1.4.1

• Ms Windows NT – JVM 1.4.0

� UltraSPARC-5 Sun4u, 366 Mhz with 128 MB RAM

• Solaris 8 – JVM 1.4.1

� Five Distinct Experiments

� Initial startup

� Opening of Screens (Selection of tables, attributes, relational operators)

� Viewing of final query results with 3 different table sizes

Latency Results: Overview

� Measured average event
handling latency for single
addition to textarea

� First four experiments measure
event handling latency when
table size is not a factor

•

Latency Time (ms)
OS Thinlet Swing

Solaris 4 6.33
Linux 3.16 3.66

Windows 3.33 3.33

� Fifth experiment varied the
table sizes:

� Thinlet outperforms Swing
for smaller number of
updates/adds

� Swing outperforms Thinlet
for larger number of
updates/adds

Latency Results: Graphs

(a) (b)

CPU and Memory Results

� Swing uses less CPU when
rendering large amounts of data

� Memory usage consistent
throughout applications with
more use at startup and
querying final results

� Memory usage for single
addition to textarea

Memory Used (ms)
OS Thinlet Swing

Solaris 392 992
Linux 312 748

Windows 334.66 846.66

Related and Future Work

� Related research:

� Memon et al.: testing and analysis of programs with GUIs

� Endo et al.: interactive system performance analysis

� Horgan et al: Java - centric performance analysis

� Future research:

� The impact of different JVM modes (HotSpot client, HotSpot server,
interpreted) on user- perceived performance

� Memory usage patterns for applications that use Swing and Thinlet

� New case study applications

� New Java GUI creation frameworks: Eclipse SWT, SWIXML

� General methodology for GUI toolkit performance analysis

Conclusion

� Thinlet is better for less difficult GUI manipulation events

� Easier to implement due to XML interface

� Currently, only 22 widgets

� Threading model needs to be improved

� Swing is better for more difficult GUI manipulation events

� Harder to implement

� Approximately 50 widgets in toolkit

� GUI toolkit choice depends of application being created for which
to choose

� Our goal: to provide GUI- driven application developers with
heuristics for chosing the appropriate GUI creation framework

Resources

� Java GUI Creation Framework Performance Research:

� http://cs.allegheny.edu/~gkapfham/research/jgp/

� Java Performance Tuning (J. Shirazi):

� http://www.javaperformancetuning.com

� Performance Documentation for Java HotSpot VM:

� http://java.sun.com/docs/hotspot/

� Performance Documentation for Java Platform:

� http://java.sun.com/docs/performance/

� S. Wilson and J. Kesselman. Java Platform Performance:
Stategies and Tactics, Addison- Wesley, 2003.

