## Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization

## Alexander P. Conrad<sup>‡</sup>, Robert S. Roos<sup>†</sup>, and Gregory M. Kapfhammer<sup>†</sup>



<sup>‡</sup> Department of Computer Science University of Pittsburgh <sup>†</sup> Department of Computer Science Allegheny College

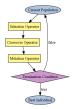


Genetic and Evolutionary Computation Conference Search-Based Software Engineering Track July 2010



# **Important Contributions**

Search-Based Prioritizers

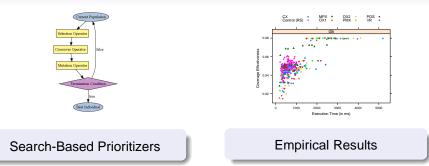

**Empirical Results** 

**Genetic algorithm**-based test prioritizer that uses many mutation, crossover, selection, and transformation operators

Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization

2/15

# **Important Contributions**

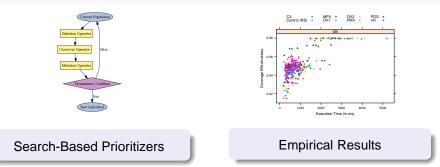



Search-Based Prioritizers

**Empirical Results** 

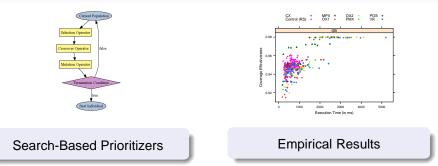
**Genetic algorithm**-based test prioritizer that uses many mutation, crossover, selection, and transformation operators

## **Important Contributions**



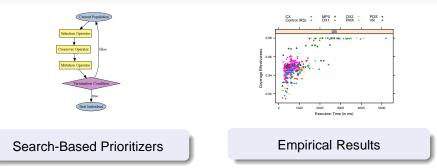

**Genetic algorithm**-based test prioritizer that uses many mutation, crossover, selection, and transformation operators

Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization


2/15

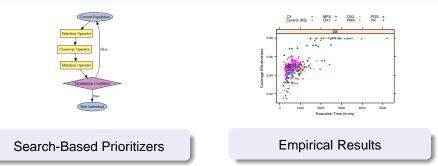
## **Important Contributions**




# **Genetic algorithm**-based test prioritizer that uses many mutation, crossover, selection, and transformation operators

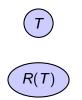
## **Important Contributions**




# Automatically constructed **tree models** highlight the unique role that the **selection** operator plays during prioritization

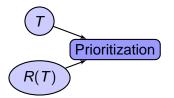
## **Important Contributions**




# Genetic algorithm is superior to random search and hill climbing and often suitable for many testing environments

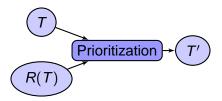
## **Important Contributions**




# Complete **genetic algorithm**-based prioritization framework is available from **http://gelations.googlecode.com/**

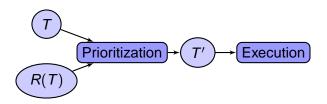
# **Process of Regression Testing**




#### Reorder the test suite in order to improve effectiveness

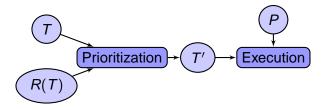
## **Process of Regression Testing**




#### Reorder the test suite in order to improve effectiveness

## **Process of Regression Testing**



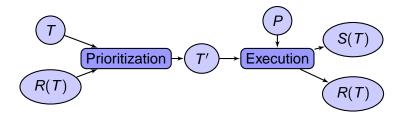

### Reorder the test suite in order to improve effectiveness

## **Process of Regression Testing**



### Reorder the test suite in order to improve effectiveness

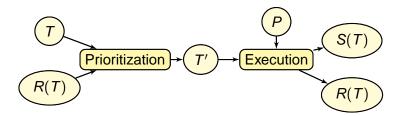
## **Process of Regression Testing**




### Reorder the test suite in order to improve effectiveness

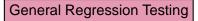
Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization

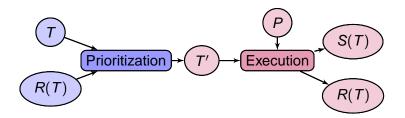
3/15


## **Process of Regression Testing**



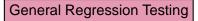
### Reorder the test suite in order to improve effectiveness

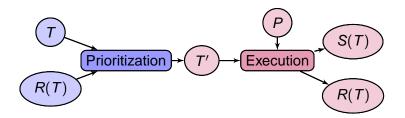

## **Process of Regression Testing**


Version Specific Regression Testing



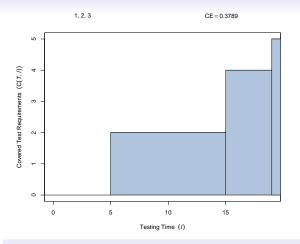
## Re-prioritize each time the suite or program changes


## **Process of Regression Testing**






## Use the same suite for multiple rounds of test execution

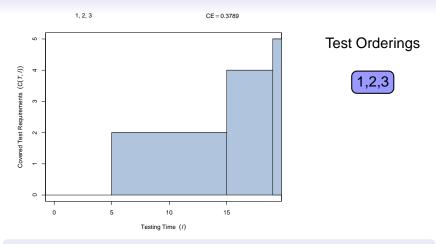

## **Process of Regression Testing**





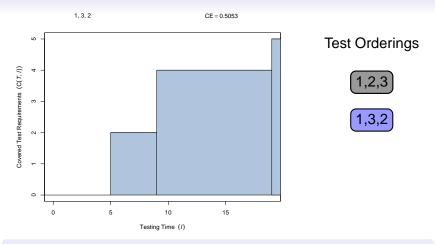
Do et al. "the worst thing that JUnit users can do is not practice some form of prioritization" (ISSRE 2004)

# **Importance of Test Suite Prioritization**



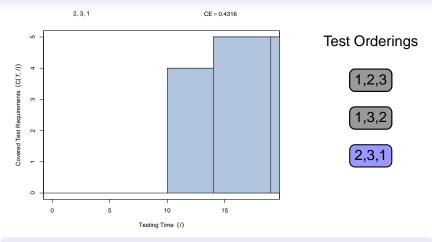

Prioritize to increase the CE of a test suite  $CE = \frac{\text{Actual}}{\text{Ideal}} \in [0, 1]$ 

Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization


4/15

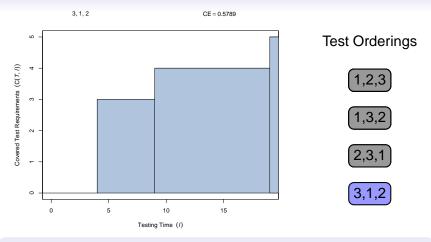
# **Importance of Test Suite Prioritization**




#### Original ordering exhibits poor effectiveness score - CE = 0.3789

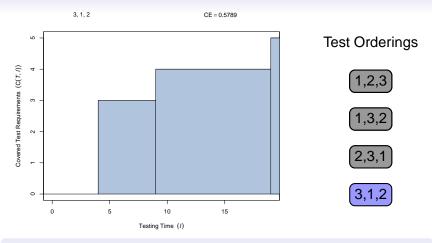
# **Importance of Test Suite Prioritization**




#### Different ordering improves the effectiveness score - CE = 0.5053

# **Importance of Test Suite Prioritization**




#### Some orderings have less improved scores - CE = 0.4316

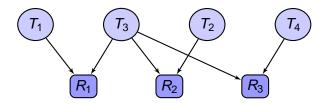
# **Importance of Test Suite Prioritization**



#### Best ordering shows a higher effectiveness scores - CE = 0.5789

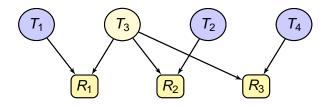
# **Importance of Test Suite Prioritization**




#### Greedy methods often produce high effectiveness orderings

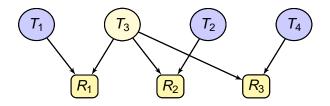
## **Limitations of Greedy Methods**




### Possible configuration of the coverage report

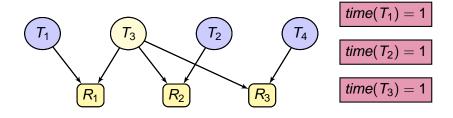
## **Limitations of Greedy Methods**




## Possible configuration of the coverage report

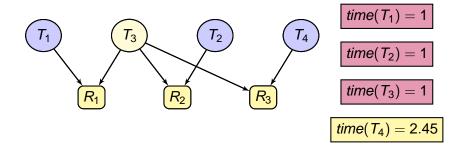
## **Limitations of Greedy Methods**




## Possible configuration of the coverage report

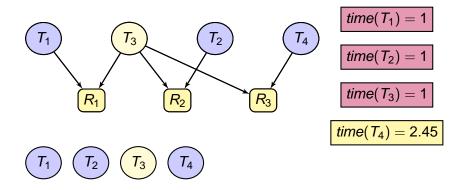
## **Limitations of Greedy Methods**




## Possible configuration of the coverage report

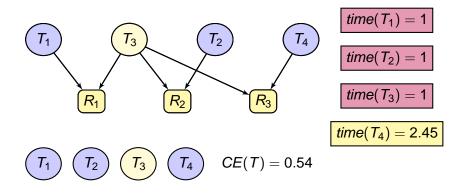
## **Limitations of Greedy Methods**




#### Execution time of the test cases may mislead greedy

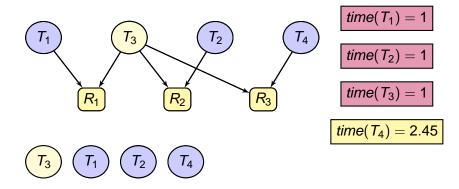
## **Limitations of Greedy Methods**




#### Execution time of the test cases may mislead greedy

## **Limitations of Greedy Methods**

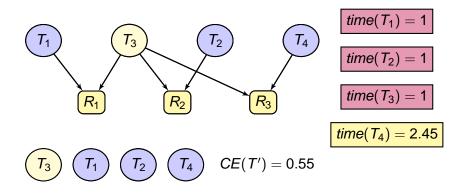



### Original ordering has low effectiveness score

## **Limitations of Greedy Methods**

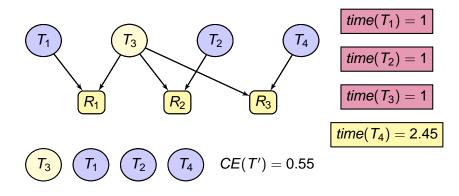


### Original ordering has low effectiveness score


## **Limitations of Greedy Methods**

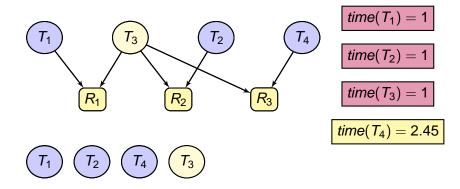


## Greedy method constructs suite with marginal improvement



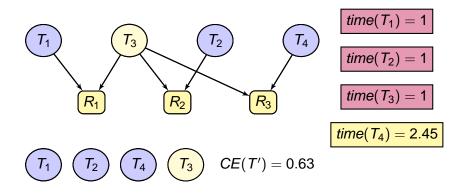

## **Limitations of Greedy Methods**




## Greedy method constructs suite with marginal improvement

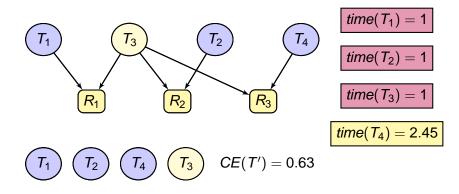
## **Limitations of Greedy Methods**




## Greedy can exhibit high run-times (Jiang et al. ASE 2009)

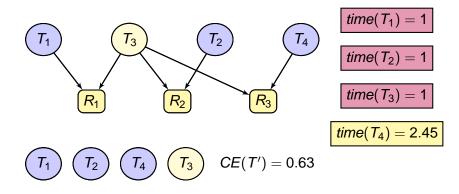
## **Limitations of Greedy Methods**




## Genetic algorithm finds a higher quality ordering

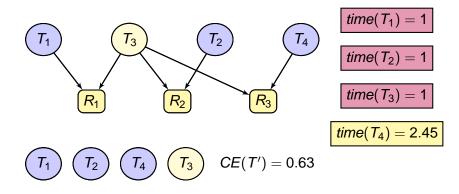
## **Limitations of Greedy Methods**




## Genetic algorithm finds a higher quality ordering

### **Limitations of Greedy Methods**




#### Genetic algorithm is amenable to parallelization

### **Limitations of Greedy Methods**



#### Genetic algorithm supports "human in the loop"

### **Limitations of Greedy Methods**



#### Genetic algorithm constructs diverse test orderings

### **Test Prioritization with Genetic Algorithms**



### **Randomly** create suites by repeatedly **shuffling** $\langle T_1, \ldots, T_n \rangle$

### **Test Prioritization with Genetic Algorithms**



#### Execute the phases until the genetic algorithm stagnates

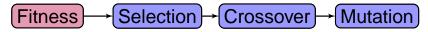
# **Test Prioritization with Genetic Algorithms**

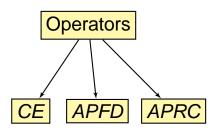


# Operators

#### Use coverage effectiveness in this study - others possible

# **Test Prioritization with Genetic Algorithms**




#### Use coverage effectiveness in this study - others possible

# **Test Prioritization with Genetic Algorithms**







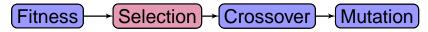
#### Use coverage effectiveness in this study - others possible

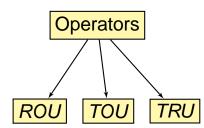
## **Test Prioritization with Genetic Algorithms**



#### Choose orderings to become parents of next generation

# **Test Prioritization with Genetic Algorithms**





# Operators

#### Choose orderings to become parents of next generation

# **Test Prioritization with Genetic Algorithms**







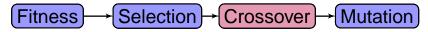
#### Choose orderings to become parents of next generation

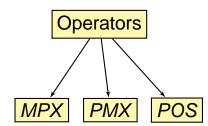
## **Test Prioritization with Genetic Algorithms**



#### Seven possible operators combine parents to produce children

# **Test Prioritization with Genetic Algorithms**





# Operators

### Seven possible operators combine parents to produce children

# **Test Prioritization with Genetic Algorithms**







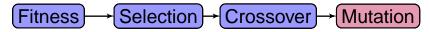
#### Seven possible operators combine parents to produce children

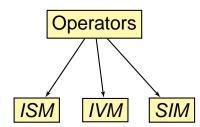
## **Test Prioritization with Genetic Algorithms**



#### Six possible operators make random changes to orderings

# **Test Prioritization with Genetic Algorithms**





# Operators

#### Six possible operators make random changes to orderings

# **Test Prioritization with Genetic Algorithms**







#### Six possible operators make random changes to orderings

### **Configuration of the Genetic Algorithm**

**Possible Configurations** 










#### Explored a wide variety of genetic algorithm configurations

### **Configuration of the Genetic Algorithm**

**Possible Configurations** 










#### How frequently do we modify individual test orderings?

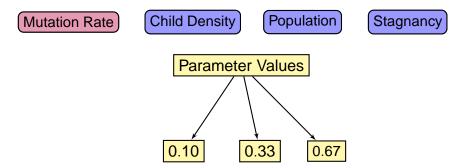
### **Configuration of the Genetic Algorithm**

**Possible Configurations** 










Parameter Values

#### How frequently do we modify individual test orderings?

# **Configuration of the Genetic Algorithm**

**Possible Configurations** 



#### How frequently do we modify individual test orderings?

### **Configuration of the Genetic Algorithm**

**Possible Configurations** 










#### How many children should be in the next population?

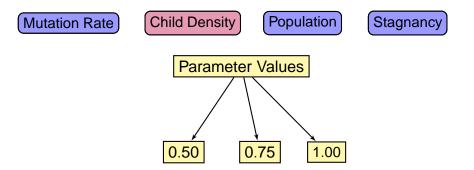
### **Configuration of the Genetic Algorithm**

**Possible Configurations** 










Parameter Values

#### How many children should be in the next population?

## **Configuration of the Genetic Algorithm**

**Possible Configurations** 



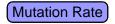
#### How many children should be in the next population?

### **Configuration of the Genetic Algorithm**

**Possible Configurations** 










#### How many test suites should exist in the population?

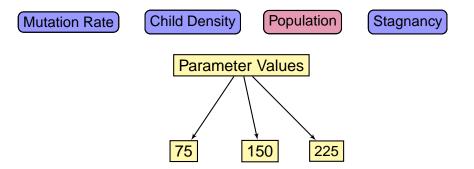
### **Configuration of the Genetic Algorithm**

**Possible Configurations** 










Parameter Values

#### How many test suites should exist in the population?

## **Configuration of the Genetic Algorithm**

**Possible Configurations** 



#### How many test suites should exist in the population?

### **Configuration of the Genetic Algorithm**

Possible Configurations









#### How many generations without fitness improvement?

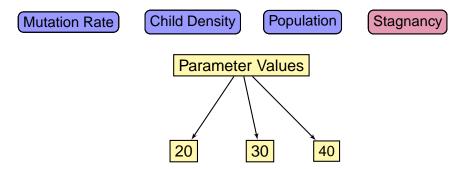
### **Configuration of the Genetic Algorithm**

**Possible Configurations** 





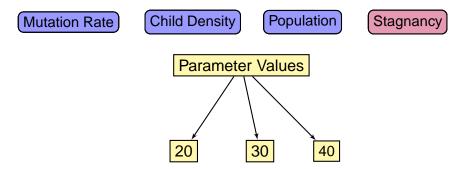





Parameter Values

#### How many generations without fitness improvement?

# **Configuration of the Genetic Algorithm**


**Possible Configurations** 

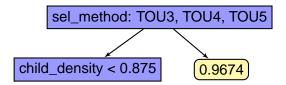


#### How many generations without fitness improvement?

# **Configuration of the Genetic Algorithm**

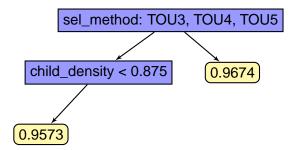
**Possible Configurations** 




#### See the paper for further operator and configuration details

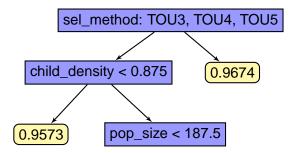
### **Analysis Techniques: Tree Models**

sel\_method: TOU3, TOU4, TOU5


#### Tree Models: Recursive partitioning creates hierarchical view of data

### **Analysis Techniques: Tree Models**




#### Tree Models: Recursive partitioning creates hierarchical view of data

### **Analysis Techniques: Tree Models**



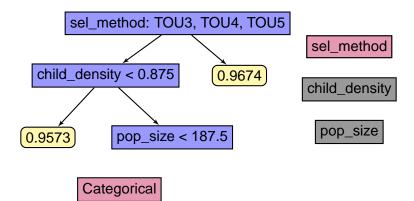
#### Tree Models: Recursive partitioning creates hierarchical view of data

### **Analysis Techniques: Tree Models**




#### Tree Models: Recursive partitioning creates hierarchical view of data

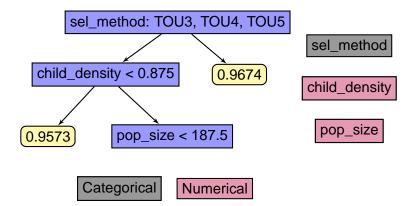
Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization


8 / 15

### **Analysis Techniques: Tree Models**

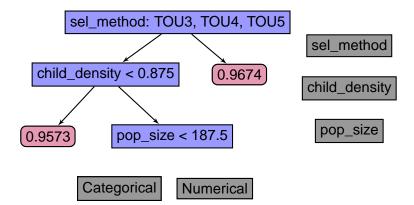


#### Explanatory Variable: Configuration of the genetic algorithm


## **Analysis Techniques: Tree Models**



#### Non-parametric techniques that handles different variable types


Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization

## **Analysis Techniques: Tree Models**



#### Non-parametric techniques that handles different variable types

## **Analysis Techniques: Tree Models**



#### Response Variable: Fitness of the final test ordering (CE score)

## **Experimental Goals and Design**

| Name | <i>T</i> | $ \mathcal{R}(T) $ | CCN  | NCSS    |
|------|----------|--------------------|------|---------|
| DS   | 110      | 40                 | 1.35 | 1243.00 |
| GB   | 51       | 88                 | 2.60 | 1455.00 |
| JD   | 54       | 783                | 1.64 | 2716.00 |
| LF   | 13       | 6                  | 1.40 | 215.00  |
| RM   | 13       | 19                 | 2.13 | 569.00  |
| SK   | 27       | 117                | 2.00 | 628.00  |
| TM   | 27       | 46                 | 2.21 | 748.00  |
| RP   | 76       | 221                | 2.65 | 6822.00 |

Several applications and test suites - coverage reports derived from call-tree based adequacy (McMaster and Memon ICSM 2005)

## **Experimental Goals and Design**

| Name | <i>T</i> | $ \mathcal{R}(T) $ | CCN  | NCSS    |
|------|----------|--------------------|------|---------|
| DS   | 110      | 40                 | 1.35 | 1243.00 |
| GB   | 51       | 88                 | 2.60 | 1455.00 |
| JD   | 54       | 783                | 1.64 | 2716.00 |
| LF   | 13       | 6                  | 1.40 | 215.00  |
| RM   | 13       | 19                 | 2.13 | 569.00  |
| SK   | 27       | 117                | 2.00 | 628.00  |
| TM   | 27       | 46                 | 2.21 | 748.00  |
| RP   | 76       | 221                | 2.65 | 6822.00 |

Several applications and test suites - coverage reports derived from call-tree based adequacy (McMaster and Memon ICSM 2005)

## **Experimental Goals and Design**

| Name | <i>T</i> | $ \mathcal{R}(T) $ | CCN  | NCSS    |
|------|----------|--------------------|------|---------|
| DS   | 110      | 40                 | 1.35 | 1243.00 |
| GB   | 51       | 88                 | 2.60 | 1455.00 |
| JD   | 54       | 783                | 1.64 | 2716.00 |
| LF   | 13       | 6                  | 1.40 | 215.00  |
| RM   | 13       | 19                 | 2.13 | 569.00  |
| SK   | 27       | 117                | 2.00 | 628.00  |
| TM   | 27       | 46                 | 2.21 | 748.00  |
| RP   | 76       | 221                | 2.65 | 6822.00 |

Several applications and test suites - coverage reports derived from call-tree based adequacy (McMaster and Memon ICSM 2005)

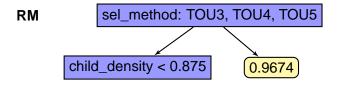
## **Experimental Goals and Design**

| Name | <i>T</i> | $ \mathcal{R}(T) $ | CCN  | NCSS    |
|------|----------|--------------------|------|---------|
| DS   | 110      | 40                 | 1.35 | 1243.00 |
| GB   | 51       | 88                 | 2.60 | 1455.00 |
| JD   | 54       | 783                | 1.64 | 2716.00 |
| LF   | 13       | 6                  | 1.40 | 215.00  |
| RM   | 13       | 19                 | 2.13 | 569.00  |
| SK   | 27       | 117                | 2.00 | 628.00  |
| TM   | 27       | 46                 | 2.21 | 748.00  |
| RP   | 76       | 221                | 2.65 | 6822.00 |

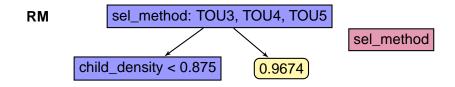
## Use **additional** case study **applications** and adequacy **criteria** as future work in order to **control** threats to external **validity**

## **Experimental Goals and Design**

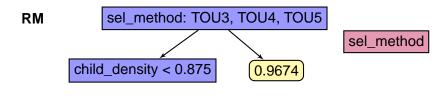
| Name | <i>T</i> | $ \mathcal{R}(T) $ | CCN  | NCSS    |
|------|----------|--------------------|------|---------|
| DS   | 110      | 40                 | 1.35 | 1243.00 |
| GB   | 51       | 88                 | 2.60 | 1455.00 |
| JD   | 54       | 783                | 1.64 | 2716.00 |
| LF   | 13       | 6                  | 1.40 | 215.00  |
| RM   | 13       | 19                 | 2.13 | 569.00  |
| SK   | 27       | 117                | 2.00 | 628.00  |
| TM   | 27       | 46                 | 2.21 | 748.00  |
| RP   | 76       | 221                | 2.65 | 6822.00 |

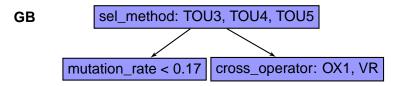

## Use **random** and **hill climbing** (first and steepest ascent) as control methods for comparison to the genetic algorithm prioritizer

## **Experimental Goals and Design**


| Name | <i>T</i> | $ \mathcal{R}(T) $ | CCN  | NCSS    |
|------|----------|--------------------|------|---------|
| DS   | 110      | 40                 | 1.35 | 1243.00 |
| GB   | 51       | 88                 | 2.60 | 1455.00 |
| JD   | 54       | 783                | 1.64 | 2716.00 |
| LF   | 13       | 6                  | 1.40 | 215.00  |
| RM   | 13       | 19                 | 2.13 | 569.00  |
| SK   | 27       | 117                | 2.00 | 628.00  |
| TM   | 27       | 46                 | 2.21 | 748.00  |
| RP   | 76       | 221                | 2.65 | 6822.00 |

See the **paper** for more details about the **design** of the empirical study (e.g., configuration of random and hill climbing prioritizers)

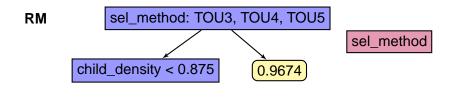

## **Results: Selection Method Importance**

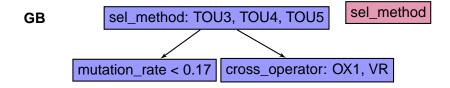


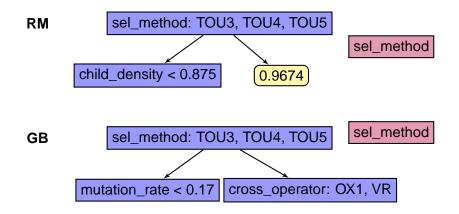

Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization



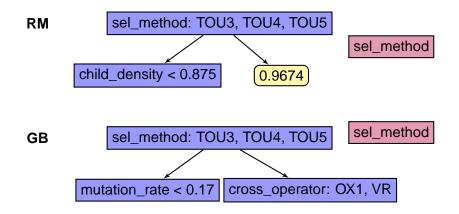




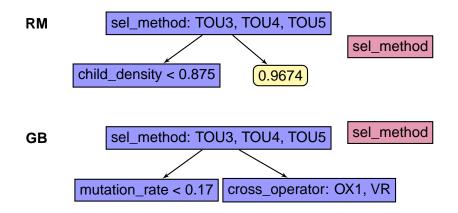




10/15


## **Results: Selection Method Importance**








#### The sel\_method variable is always the most important parameter



#### Importance of sel\_method holds for all case study applications



#### How does the selection method impact the genetic algorithm?

## **Results: Selection Intensity**

| Name | ROUE   | ROUL   | TRU60  | TRU40  | TOU2   | TOU5   |
|------|--------|--------|--------|--------|--------|--------|
| DS   | 0.9742 | 0.9837 | 0.9893 | 0.9915 | 0.9514 | 0.9706 |
| GB   | 0.9500 | 0.9572 | 0.9668 | 0.9700 | 0.9062 | 0.9402 |
| JD   | 0.9247 | 0.9328 | 0.9431 | 0.9451 | 0.8993 | 0.9192 |
| LF   | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 |
| RM   | 0.9665 | 0.9670 | 0.9681 | 0.9682 | 0.9328 | 0.9475 |
| RP   | 0.9774 | 0.9824 | 0.9868 | 0.9879 | 0.9570 | 0.9705 |
| SK   | 0.9859 | 0.9878 | 0.9911 | 0.9915 | 0.9667 | 0.9763 |
| TM   | 0.9585 | 0.9605 | 0.9662 | 0.9672 | 0.9503 | 0.9579 |
| Avg. | 0.9659 | 0.9702 | 0.9752 | 0.9765 | 0.9443 | 0.9591 |

Except for the smallest application (LF), the CE scores of the **evolved** orderings are **better** than the **initial** and **reverse** test suites

## **Results: Selection Intensity**

| Name | ROUE   | ROUL   | TRU60  | TRU40  | TOU2   | TOU5   |
|------|--------|--------|--------|--------|--------|--------|
| DS   | 0.9742 | 0.9837 | 0.9893 | 0.9915 | 0.9514 | 0.9706 |
| GB   | 0.9500 | 0.9572 | 0.9668 | 0.9700 | 0.9062 | 0.9402 |
| JD   | 0.9247 | 0.9328 | 0.9431 | 0.9451 | 0.8993 | 0.9192 |
| LF   | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 |
| RM   | 0.9665 | 0.9670 | 0.9681 | 0.9682 | 0.9328 | 0.9475 |
| RP   | 0.9774 | 0.9824 | 0.9868 | 0.9879 | 0.9570 | 0.9705 |
| SK   | 0.9859 | 0.9878 | 0.9911 | 0.9915 | 0.9667 | 0.9763 |
| TM   | 0.9585 | 0.9605 | 0.9662 | 0.9672 | 0.9503 | 0.9579 |
| Avg. | 0.9659 | 0.9702 | 0.9752 | 0.9765 | 0.9443 | 0.9591 |

Study a type of operator as it **increases** in **intensity**, or the change in average fitness due to selection (Blickle & Thiele, *Evol Comp* 1997)

## **Results: Selection Intensity**

| Name | ROUE   | ROUL   | TRU60  | TRU40  | TOU2   | TOU5   |
|------|--------|--------|--------|--------|--------|--------|
| DS   | 0.9742 | 0.9837 | 0.9893 | 0.9915 | 0.9514 | 0.9706 |
| GB   | 0.9500 | 0.9572 | 0.9668 | 0.9700 | 0.9062 | 0.9402 |
| JD   | 0.9247 | 0.9328 | 0.9431 | 0.9451 | 0.8993 | 0.9192 |
| LF   | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 |
| RM   | 0.9665 | 0.9670 | 0.9681 | 0.9682 | 0.9328 | 0.9475 |
| RP   | 0.9774 | 0.9824 | 0.9868 | 0.9879 | 0.9570 | 0.9705 |
| SK   | 0.9859 | 0.9878 | 0.9911 | 0.9915 | 0.9667 | 0.9763 |
| TM   | 0.9585 | 0.9605 | 0.9662 | 0.9672 | 0.9503 | 0.9579 |
| Avg. | 0.9659 | 0.9702 | 0.9752 | 0.9765 | 0.9443 | 0.9591 |

Increasing selection intensity improves the CE scores of test orderings, even though it does not cause more rapid convergence

## **Results: Selection Intensity**

| Name | ROUE   | ROUL   | TRU60  | TRU40  | TOU2   | TOU5   |
|------|--------|--------|--------|--------|--------|--------|
| DS   | 0.9742 | 0.9837 | 0.9893 | 0.9915 | 0.9514 | 0.9706 |
| GB   | 0.9500 | 0.9572 | 0.9668 | 0.9700 | 0.9062 | 0.9402 |
| JD   | 0.9247 | 0.9328 | 0.9431 | 0.9451 | 0.8993 | 0.9192 |
| LF   | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 |
| RM   | 0.9665 | 0.9670 | 0.9681 | 0.9682 | 0.9328 | 0.9475 |
| RP   | 0.9774 | 0.9824 | 0.9868 | 0.9879 | 0.9570 | 0.9705 |
| SK   | 0.9859 | 0.9878 | 0.9911 | 0.9915 | 0.9667 | 0.9763 |
| TM   | 0.9585 | 0.9605 | 0.9662 | 0.9672 | 0.9503 | 0.9579 |
| Avg. | 0.9659 | 0.9702 | 0.9752 | 0.9765 | 0.9443 | 0.9591 |

Increasing selection intensity improves the CE scores of test orderings, even though it does not cause more rapid convergence



## **Results: Selection Intensity**

| Name | ROUE   | ROUL   | TRU60  | TRU40  | TOU2   | TOU5   |
|------|--------|--------|--------|--------|--------|--------|
| DS   | 0.9742 | 0.9837 | 0.9893 | 0.9915 | 0.9514 | 0.9706 |
| GB   | 0.9500 | 0.9572 | 0.9668 | 0.9700 | 0.9062 | 0.9402 |
| JD   | 0.9247 | 0.9328 | 0.9431 | 0.9451 | 0.8993 | 0.9192 |
| LF   | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 |
| RM   | 0.9665 | 0.9670 | 0.9681 | 0.9682 | 0.9328 | 0.9475 |
| RP   | 0.9774 | 0.9824 | 0.9868 | 0.9879 | 0.9570 | 0.9705 |
| SK   | 0.9859 | 0.9878 | 0.9911 | 0.9915 | 0.9667 | 0.9763 |
| TM   | 0.9585 | 0.9605 | 0.9662 | 0.9672 | 0.9503 | 0.9579 |
| Avg. | 0.9659 | 0.9702 | 0.9752 | 0.9765 | 0.9443 | 0.9591 |

Increasing selection intensity improves the CE scores of test orderings, even though it does not cause more rapid convergence

## **Results: Selection Intensity**

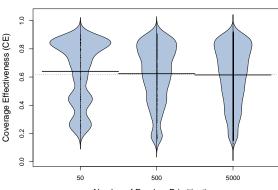
| Name | ROUE   | ROUL   | TRU60  | TRU40  | TOU2   | TOU5   |
|------|--------|--------|--------|--------|--------|--------|
| DS   | 0.9742 | 0.9837 | 0.9893 | 0.9915 | 0.9514 | 0.9706 |
| GB   | 0.9500 | 0.9572 | 0.9668 | 0.9700 | 0.9062 | 0.9402 |
| JD   | 0.9247 | 0.9328 | 0.9431 | 0.9451 | 0.8993 | 0.9192 |
| LF   | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 |
| RM   | 0.9665 | 0.9670 | 0.9681 | 0.9682 | 0.9328 | 0.9475 |
| RP   | 0.9774 | 0.9824 | 0.9868 | 0.9879 | 0.9570 | 0.9705 |
| SK   | 0.9859 | 0.9878 | 0.9911 | 0.9915 | 0.9667 | 0.9763 |
| TM   | 0.9585 | 0.9605 | 0.9662 | 0.9672 | 0.9503 | 0.9579 |
| Avg. | 0.9659 | 0.9702 | 0.9752 | 0.9765 | 0.9443 | 0.9591 |

Low intensity selection causes search to meander around low quality test suite prioritizations, making fitness stagnate and the GA terminate

## **Results: Selection Intensity**

| Name | ROUE   | ROUL   | TRU60  | TRU40  | TOU2   | TOU5   |
|------|--------|--------|--------|--------|--------|--------|
| DS   | 0.9742 | 0.9837 | 0.9893 | 0.9915 | 0.9514 | 0.9706 |
| GB   | 0.9500 | 0.9572 | 0.9668 | 0.9700 | 0.9062 | 0.9402 |
| JD   | 0.9247 | 0.9328 | 0.9431 | 0.9451 | 0.8993 | 0.9192 |
| LF   | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 |
| RM   | 0.9665 | 0.9670 | 0.9681 | 0.9682 | 0.9328 | 0.9475 |
| RP   | 0.9774 | 0.9824 | 0.9868 | 0.9879 | 0.9570 | 0.9705 |
| SK   | 0.9859 | 0.9878 | 0.9911 | 0.9915 | 0.9667 | 0.9763 |
| TM   | 0.9585 | 0.9605 | 0.9662 | 0.9672 | 0.9503 | 0.9579 |
| Avg. | 0.9659 | 0.9702 | 0.9752 | 0.9765 | 0.9443 | 0.9591 |

#### High intensity selection focuses on a local optimum of high quality instead of hunting for hard-to-find global optimum


## **Results: Selection Intensity**

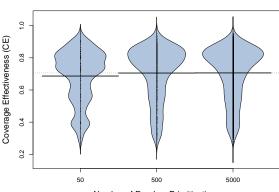
| Name | ROUE   | ROUL   | TRU60  | TRU40  | TOU2   | TOU5   |
|------|--------|--------|--------|--------|--------|--------|
| DS   | 0.9742 | 0.9837 | 0.9893 | 0.9915 | 0.9514 | 0.9706 |
| GB   | 0.9500 | 0.9572 | 0.9668 | 0.9700 | 0.9062 | 0.9402 |
| JD   | 0.9247 | 0.9328 | 0.9431 | 0.9451 | 0.8993 | 0.9192 |
| LF   | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 | 0.9903 |
| RM   | 0.9665 | 0.9670 | 0.9681 | 0.9682 | 0.9328 | 0.9475 |
| RP   | 0.9774 | 0.9824 | 0.9868 | 0.9879 | 0.9570 | 0.9705 |
| SK   | 0.9859 | 0.9878 | 0.9911 | 0.9915 | 0.9667 | 0.9763 |
| TM   | 0.9585 | 0.9605 | 0.9662 | 0.9672 | 0.9503 | 0.9579 |
| Avg. | 0.9659 | 0.9702 | 0.9752 | 0.9765 | 0.9443 | 0.9591 |

**One Explanation:** the fitness landscape for coverage effectiveness contains many local optima that are good test orderings

## **Results: Comparison to Random**

GB




Number of Random Prioritizations

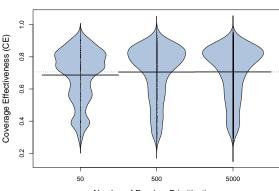
#### GB: Random orderings have average CE scores around 0.6

Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization

## **Results: Comparison to Random**

SK




Number of Random Prioritizations

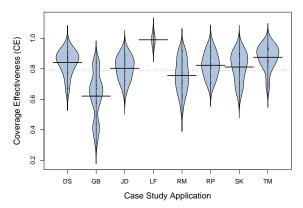
#### SK: Random orderings have average CE scores around 0.7

Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization

## **Results: Comparison to Random**

SK

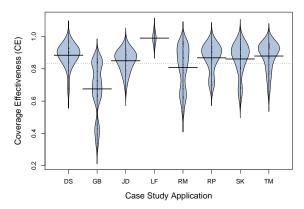



Number of Random Prioritizations

#### Conclusion: Random is not as effective as the genetic algorithm

Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization

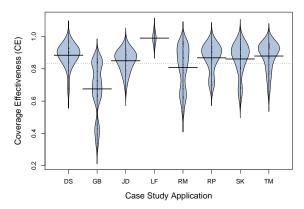
## **Results: Comparison to Hill Climbing**


HC-FA-FN



#### First Ascent: Across all applications, average CE score below 0.8

## **Results: Comparison to Hill Climbing**


HC-SA-FN



Steepest Ascent: Larger neighborhoods slightly improve the CE scores

## **Results: Comparison to Hill Climbing**

HC-SA-FN



#### Conclusion: Hill climber is not as effective as the genetic algorithm

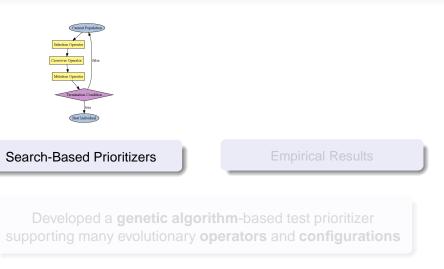
14/15

## **GELATIONS Framework for Prioritization**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t <b>ions</b><br>aLgorithm bAsed 1 | Γest sulte μ | orlOritizatioN | System | Γ |                                                                                    |                                                                                                                                                                                                                            | Search projects |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|----------------|--------|---|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| Project Home<br>Summary   Upd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Downloads                          | Wiki         | Issues         | Source |   |                                                                                    |                                                                                                                                                                                                                            |                 |  |
| Summary   Opu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ates   People                      |              |                |        |   |                                                                                    |                                                                                                                                                                                                                            |                 |  |
| Gelations is a research prototype system for regression test suite prioritization using genetic<br>algorithms. This system is written entirely in version 1.6 of the Java SE programming language,<br>and is accompanied by its own regression test suite written using the JUnit unit testing<br>tramework.<br>Software testing is a crucial part of the software development lifecycle. Regression testing is a<br>form of testing in which all of the old test cases written to cover different parts of a program are<br>combined into a single test suite and executed. This form of testing helps to reveal regressions,<br>or instances in which code that had formerly functioned correctly is broken by later changes to<br>the system. For real-world applications, however, regression test suites can take days or even<br>weeks to execute. One solution to this problem of execution time overhead is to reduce the |                                    |              |                |        |   | language,<br>ng<br>esting is a<br>ogram are<br>gressions,<br>anges to<br>s or even | Activity: *I Low<br>Code license:<br>GNU General Public License v3<br>Labels:<br>testing, regression, genetic, java, junit,<br>R, evolutionary, metaheuristic,<br>softwareengineering, prioritization,<br>geneticalgorithm |                 |  |
| suite, removing test cases that are redundant or unlikely to detect faults. This approach,<br>however, can compromise the ability of a suite to detect faults. Another approach to this<br>problem is test suite prioritization. Prioritization does not reduce the total execution time of a<br>test suite, but instead reorders the test suite so that faults are more likely to be detected early<br>in the execution of the test suite. This allows engineers to discover faults sooner and begin<br>work to correct them earlier than would otherwise be possible, without sacrificing fault detection<br>ability of the test suite.                                                                                                                                                                                                                                                                                         |                                    |              |                |        |   | ch,<br>his<br>ne of a<br>ted early<br>begin                                        | Featured downloads:<br>gelations: 1_0.tar.gz<br>gelations: 1_1.zip<br>Show all >:                                                                                                                                          |                 |  |
| This system implements a number of different selection, crossover, mutation, and fitness<br>transformation operators, and is designed so that new or preexisting operators matching a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |              |                |        |   | Feeds:<br>Project feeds                                                            |                                                                                                                                                                                                                            |                 |  |

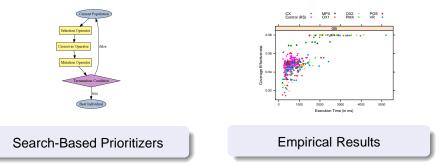
#### http://gelations.googlecode.com/ provides our framework

## **Conclusions and Future Work**


Search-Based Prioritizers

**Empirical Results** 

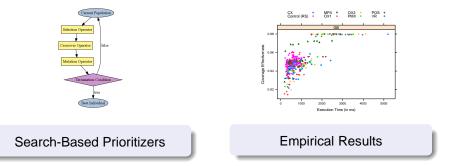
Developed a genetic algorithm-based test prioritizer supporting many evolutionary operators and configurations


Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization

## **Conclusions and Future Work**



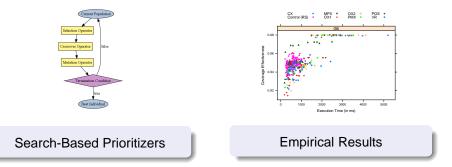
Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization


## **Conclusions and Future Work**



Developed a **genetic algorithm**-based test prioritizer supporting many evolutionary **operators** and **configurations** 

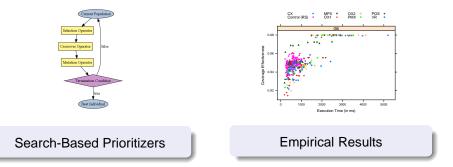
Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization


## **Conclusions and Future Work**



# Developed a **genetic algorithm**-based test prioritizer supporting many evolutionary **operators** and **configurations**

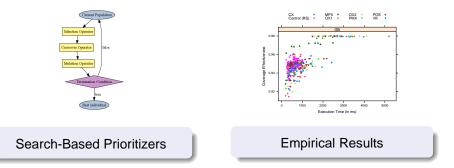



## **Conclusions and Future Work**



## Used automatically constructed **tree models** to highlight the role that the **selection** operator plays during **prioritization**

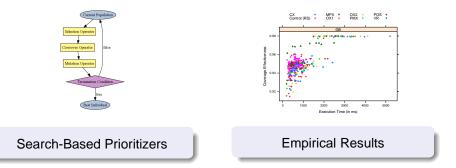



## **Conclusions and Future Work**



# Genetic algorithm is superior to random search and hill climbing and thus suitable for certain testing environments

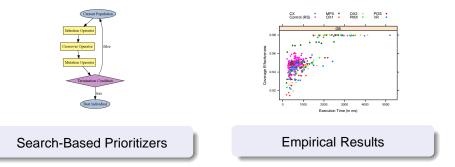



## **Conclusions and Future Work**



## **Future Work:** After extending the genetic algorithm, use fitness landscape analysis to understand impact of adequacy criteria

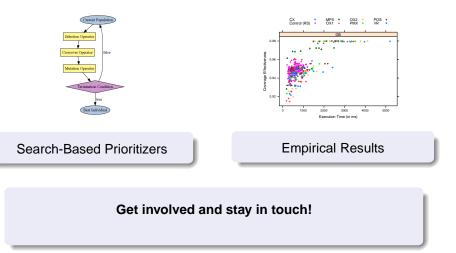



## **Conclusions and Future Work**



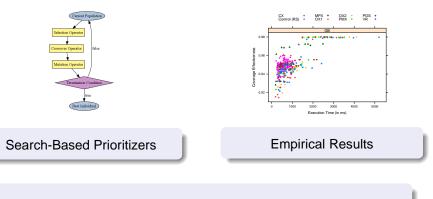
# **Future Work:** Use additional applications (e.g., SIR, XML, DBA) and test adequacy criteria (e.g., data and control flow)




## **Conclusions and Future Work**



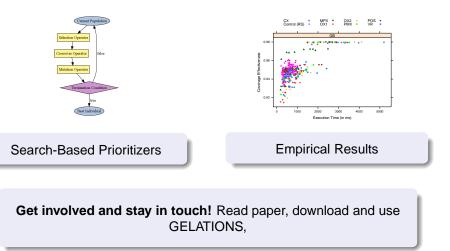
# Future Work: Comprehensive empirical study of all major search-based and greedy algorithms for test suite prioritization



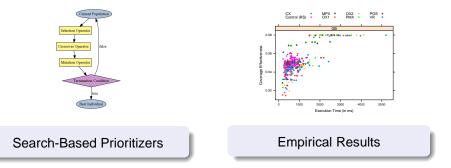

## **Conclusions and Future Work**



Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization


### **Conclusions and Future Work**

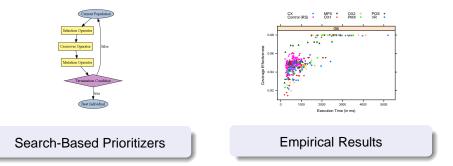



#### Get involved and stay in touch! Read paper,

Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization

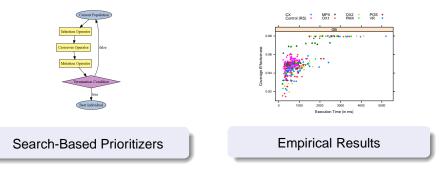
## **Conclusions and Future Work**




## **Conclusions and Future Work**



## Get involved and stay in touch! Read paper, download and use GELATIONS, replicate experiments,




## **Conclusions and Future Work**



**Get involved and stay in touch!** Read paper, download and use GELATIONS, replicate experiments, and share applications

## **Conclusions and Future Work**



#### http://www.cs.allegheny.edu/~gkapfham/research/kanonizo/

