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Empirical Results

Automatically constructed tree models highlight the unique
role that the selection operator plays during prioritization
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Empirical Results

Genetic algorithm is superior to random search and hill
climbing and often suitable for many testing environments
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Empirical Results

Complete genetic algorithm -based prioritization framework is
available from http://gelations.googlecode.com/
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Re-prioritize each time the suite or program changes
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Use the same suite for multiple rounds of test execution
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Do et al. “the worst thing that JUnit users can do is not
practice some form of prioritization” (ISSRE 2004)
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Test Orderings

Original ordering exhibits poor effectiveness score - CE = 0.3789
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Test Orderings

1,2,3

1,3,2

Different ordering improves the effectiveness score - CE = 0.5053
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Some orderings have less improved scores - CE = 0.4316
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Best ordering shows a higher effectiveness scores - CE = 0.5789
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Greedy methods often produce high effectiveness orderings
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time(T2) = 1

time(T3) = 1

Execution time of the test cases may mislead greedy
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Greedy can exhibit high run-times (Jiang et al. ASE 2009)
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T1 T2 T3 T4T3 T1 T2 T4T1 T2 T4 T3 CE(T ′) = 0.63

Genetic algorithm is amenable to parallelization
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Genetic algorithm supports “human in the loop”
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Genetic algorithm constructs diverse test orderings
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Test Prioritization with Genetic Algorithms

Fitness

Initialize

Selection Crossover Mutation

Randomly create suites by repeatedly shuffling 〈T1, . . . ,Tn〉
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Six possible operators make random changes to orderings
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Configuration of the Genetic Algorithm

Mutation Rate

Possible Configurations

Child Density Population Stagnancy

Explored a wide variety of genetic algorithm configurations
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Possible Configurations
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Possible Configurations

Child Density Population Stagnancy

Parameter Values

0.10 0.33 0.67

How frequently do we modify individual test orderings ?
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Possible Configurations

Child Density Population Stagnancy

Parameter Values

0.50 0.75 1.00
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See the paper for further operator and configuration details
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0.9674
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Response Variable: Fitness of the final test ordering (CE score)
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Experimental Goals and Design

Name |T | |R(T )| CCN NCSS
DS 110 40 1.35 1243.00
GB 51 88 2.60 1455.00
JD 54 783 1.64 2716.00
LF 13 6 1.40 215.00
RM 13 19 2.13 569.00
SK 27 117 2.00 628.00
TM 27 46 2.21 748.00
RP 76 221 2.65 6822.00

Several applications and test suites - coverage reports derived from
call-tree based adequacy (McMaster and Memon ICSM 2005)
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Use additional case study applications and adequacy criteria as
future work in order to control threats to external validity
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Use random and hill climbing (first and steepest ascent) as control
methods for comparison to the genetic algorithm prioritizer
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Name |T | |R(T )| CCN NCSS
DS 110 40 1.35 1243.00
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JD 54 783 1.64 2716.00
LF 13 6 1.40 215.00
RM 13 19 2.13 569.00
SK 27 117 2.00 628.00
TM 27 46 2.21 748.00
RP 76 221 2.65 6822.00

See the paper for more details about the design of the empirical study
(e.g., configuration of random and hill climbing prioritizers)
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The sel_method variable is always the most important parameter
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sel_method

sel_method: TOU3, TOU4, TOU5GB

mutation_rate < 0.17 cross_operator: OX1, VR

sel_method

Importance of sel_method holds for all case study applications
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Results: Selection Method Importance

sel_method: TOU3, TOU4, TOU5RM

child_density < 0.875 0.9674

sel_method

sel_method: TOU3, TOU4, TOU5GB

mutation_rate < 0.17 cross_operator: OX1, VR

sel_method

How does the selection method impact the genetic algorithm?
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Results: Selection Intensity

Name ROUE ROUL TRU60 TRU40 TOU2 TOU5

DS 0.9742 0.9837 0.9893 0.9915 0.9514 0.9706
GB 0.9500 0.9572 0.9668 0.9700 0.9062 0.9402
JD 0.9247 0.9328 0.9431 0.9451 0.8993 0.9192
LF 0.9903 0.9903 0.9903 0.9903 0.9903 0.9903
RM 0.9665 0.9670 0.9681 0.9682 0.9328 0.9475
RP 0.9774 0.9824 0.9868 0.9879 0.9570 0.9705
SK 0.9859 0.9878 0.9911 0.9915 0.9667 0.9763
TM 0.9585 0.9605 0.9662 0.9672 0.9503 0.9579

Avg. 0.9659 0.9702 0.9752 0.9765 0.9443 0.9591

Except for the smallest application (LF), the CE scores of the evolved
orderings are better than the initial and reverse test suites
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Study a type of operator as it increases in intensity , or the change in
average fitness due to selection (Blickle & Thiele, Evol Comp 1997)
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Increasing selection intensity improves the CE scores of test
orderings, even though it does not cause more rapid convergence
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Low intensity selection causes search to meander around low quality
test suite prioritizations, making fitness stagnate and the GA terminate
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High intensity selection focuses on a local optimum of high quality
instead of hunting for hard-to-find global optimum

11 / 15
Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization



Introduction Regression Testing Empirical Study Conclusion

Results: Selection Intensity

Name ROUE ROUL TRU60 TRU40 TOU2 TOU5

DS 0.9742 0.9837 0.9893 0.9915 0.9514 0.9706
GB 0.9500 0.9572 0.9668 0.9700 0.9062 0.9402
JD 0.9247 0.9328 0.9431 0.9451 0.8993 0.9192
LF 0.9903 0.9903 0.9903 0.9903 0.9903 0.9903
RM 0.9665 0.9670 0.9681 0.9682 0.9328 0.9475
RP 0.9774 0.9824 0.9868 0.9879 0.9570 0.9705
SK 0.9859 0.9878 0.9911 0.9915 0.9667 0.9763
TM 0.9585 0.9605 0.9662 0.9672 0.9503 0.9579

Avg. 0.9659 0.9702 0.9752 0.9765 0.9443 0.9591

One Explanation: the fitness landscape for coverage effectiveness
contains many local optima that are good test orderings
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Results: Comparison to Random
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GB: Random orderings have average CE scores around 0.6
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SK: Random orderings have average CE scores around 0.7
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Conclusion: Random is not as effective as the genetic algorithm
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Results: Comparison to Hill Climbing
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First Ascent: Across all applications, average CE score below 0.8
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Steepest Ascent: Larger neighborhoods slightly improve the CE scores
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Conclusion: Hill climber is not as effective as the genetic algorithm

13 / 15
Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization



Introduction Regression Testing Empirical Study Conclusion

GELATIONS Framework for Prioritization

http://gelations.googlecode.com/ provides our framework
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Conclusions and Future Work

Search-Based Prioritizers Empirical Results

Developed a genetic algorithm -based test prioritizer
supporting many evolutionary operators and configurations
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Empirical Results

Used automatically constructed tree models to highlight the
role that the selection operator plays during prioritization
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Conclusions and Future Work
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Empirical Results

Genetic algorithm is superior to random search and hill
climbing and thus suitable for certain testing environments
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Empirical Results

Future Work: After extending the genetic algorithm, use fitness
landscape analysis to understand impact of adequacy criteria
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Empirical Results

Future Work: Use additional applications (e.g., SIR, XML,
DBA) and test adequacy criteria (e.g., data and control flow)
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Empirical Results

Future Work: Comprehensive empirical study of all major
search-based and greedy algorithms for test suite prioritization

15 / 15
Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization



Introduction Regression Testing Empirical Study Conclusion

Conclusions and Future Work

Search-Based Prioritizers

Execution Time (in ms)

C
ov

er
ag

e 
E

ffe
ct

iv
en

es
s

0.92

0.94

0.96

0.98

0 1000 2000 3000 4000 5000

GB

CX
Control (RS)

MPX
OX1

OX2
PMX

POS
VR

Empirical Results

Get involved and stay in touch!
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Get involved and stay in touch! Read paper,
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Get involved and stay in touch! Read paper, download and use
GELATIONS,

15 / 15
Empirically Studying the Role of Selection Operators During Search-Based Test Suite Prioritization



Introduction Regression Testing Empirical Study Conclusion

Conclusions and Future Work

Search-Based Prioritizers

Execution Time (in ms)

C
ov

er
ag

e 
E

ffe
ct

iv
en

es
s

0.92

0.94

0.96

0.98

0 1000 2000 3000 4000 5000

GB

CX
Control (RS)

MPX
OX1

OX2
PMX

POS
VR

Empirical Results

Get involved and stay in touch! Read paper, download and use
GELATIONS, replicate experiments,
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Empirical Results

Get involved and stay in touch! Read paper, download and use
GELATIONS, replicate experiments, and share applications
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http://www.cs.allegheny.edu/~gkapfham/research/kano nizo/
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