
Introduction Resource-Constrained Testing Conclusions and Future Work

Prioritizing Test Suites by Finding Hamiltonian Paths:
Preliminary Studies and Initial Results

Suvarshi Bhadra and Gregory M. Kapfhammer

Department of Computer Science
Allegheny College, Pennsylvania, USA

http://www.cs.allegheny.edu/~gkapfham/

TAIC PART 2008, Fast Abstract Track, August 2008

Featuring images from www.pdclipart.org

1 / 10
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results



Introduction Resource-Constrained Testing Conclusions and Future Work

Important Contributions

Technique Formulation

NCO JCO TCO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overlap Metric

O
ve

rla
p 

S
co

re

sss − covers

NCO JCO TCO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overlap Metric

O
ve

rla
p 

S
co

re

ssm − covers

NCO JCO TCO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overlap Metric

O
ve

rla
p 

S
co

re

ssl − covers

Empirical Results

Design, implement and empirically evaluate test suite
prioritizers that leverage travelling salesperson problem (TSP)

solvers to efficiently find cost-effective orderings

2 / 10
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results



Introduction Resource-Constrained Testing Conclusions and Future Work

Regression Testing Techniques

Before After

Reduction Prunes the Test Suite

Before After

Prioritization Reorders the Tests

It may expensive to run a test suite T = 〈T1, . . . , Tn〉. Prioritization
searches through the n! = n × n − 1× . . .× 1 orderings for those that avoid

costly database restarts, Web service calls, or memory interactions.

3 / 10
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results



Introduction Resource-Constrained Testing Conclusions and Future Work

Prioritizing When Memory is ConstrainedPSfrag replacements

N0

N1

N2

N3

N4

N5

Frequent Memory Rewrites

PSfrag replacements

N0

N1

N2
N3

N4

N5

High Testing Costs

Frequent reads and writes to memory may increase execution
time by as much as 600% when a Java application executes on

a virtual machine with a small heap

Solution: maximize memory reuse between test cases

4 / 10
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results



Introduction Resource-Constrained Testing Conclusions and Future Work

The Impact of Test Ordering

m1 m2 m3 m4 m5 m6 Test
30 30 30 30 30 30 Size

T1 • • • 90
T2 • • • 90
T3 • • • 90
T4 • • • 90
T5 • • 60

T = 〈T1, T2, T3, T4, T5〉 transfers 750 units to and from memory

T ′
= 〈T2, T4, T1, T3, T5〉 only loads and unloads 180 units

5 / 10
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results



Introduction Resource-Constrained Testing Conclusions and Future Work

Test Prioritization: Steps One and Two

Program

Instrumentation

Adequacy 
 Criterion

Residual Test 
 Requirements

Cummulative 
 Adequacy Calculator

Instrumented 
 Program

Test Suite 
 Execution

Covered 
 Requirements

PSfrag replacements

N0

N1

N2

N3

N4

N5

Collect method invocation and
size data using test coverage

monitor and profiler

553

256

553
256

256

0

256

553 256

256

O

553

553
256

256

234

553

256

256

256 678

553

256

553

234

234

553

256

553
256

PSfrag replacements

N0

N1N2

N3 N4

N5

Formulate a complete graph
using equations that estimate

costs for all test pairs

6 / 10
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results



Introduction Resource-Constrained Testing Conclusions and Future Work

Test Prioritization: Steps Three and Four

PSfrag replacements

N0

N1

N2
N3

N4

N5

Use TSP solvers to identify a
Hamiltonian path with low

estimated costs

10 20 30 40 50 60 70 80 90 100

1.
0

1.
5

2.
0

2.
5

Size of the Test Suite (n)

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

PSfrag replacements

N0

N1

N2
N3

N4

N5

Evaluate the efficiency of the TSP
solvers and the effectiveness of

the test orderings

7 / 10
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results



Introduction Resource-Constrained Testing Conclusions and Future Work

Empirical Results

0 200 400 600 800 1000

0.
00

0.
05

0.
10

0.
15

0.
20

NN

RNN

NI

FI

CI

AI

Time v No of Test Cases

(n)

(t
)PSfrag replacements

N0

N1

N2
N3

N4

N5

Efficient Prioritizers

10 20 30 40 50

50
60

70
80

90
10

0

Score v No of Test Cases − NN

(n)
(s

co
re

)PSfrag replacements

N0

N1

N2
N3

N4

N5

High Percentile Rankings

8 / 10
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results



Introduction Resource-Constrained Testing Conclusions and Future Work

Avoiding Database Restarts

T0
T1

T2

T9

T13

T15

T5

T8

T12

T3

T7

T11

T14

T16

T10T4

T6

PSfrag replacements

N0

N1

N2
N3

N4

N5

Use prioritization to avoid costly database restarts

9 / 10
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results



Introduction Resource-Constrained Testing Conclusions and Future Work

Concluding Remarks

Program

Analysis 
 Technique

Test Suite

Reduction

Prioritization

PSfrag replacements

N0

N1

N2

N3

N4

N5

Test Suite Prioritizers

NCO JCO TCO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overlap Metric

O
ve

rla
p 

S
co

re

sss − covers

NCO JCO TCO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overlap Metric

O
ve

rla
p 

S
co

re

ssm − covers

NCO JCO TCO

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Overlap Metric

O
ve

rla
p 

S
co

re

ssl − covers

PSfrag replacements

N0

N1

N2

N3

N4

N5

Initial Empirical Evaluation

Preliminary results with synthetic test suites indicate that it is
possible to prioritize test suites with TSP solvers

Use different methods for solving TSP instances (e.g., order-based
genetic algorithms) and include real-world applications

http://www.cs.allegheny.edu/~gkapfham/research/

10 / 10
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results


	Introduction
	Resource-Constrained Testing
	Conclusions and Future Work

