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Important Contributions

Technique Formulation
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Empirical Results

Design, implement and empirically evaluate test suite
prioritizers that leverage travelling salesperson problem (TSP)

solvers to efficiently find cost-effective orderings
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Regression Testing Techniques

Before After

Reduction Prunes the Test Suite

Before After

Prioritization Reorders the Tests

It may expensive to run a test suite T = 〈T1, . . . , Tn〉. Prioritization
searches through the n! = n × n − 1× . . .× 1 orderings for those that avoid

costly database restarts, Web service calls, or memory interactions.
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Prioritizing When Memory is ConstrainedPSfrag replacements
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High Testing Costs

Frequent reads and writes to memory may increase execution
time by as much as 600% when a Java application executes on

a virtual machine with a small heap

Solution: maximize memory reuse between test cases
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The Impact of Test Ordering

m1 m2 m3 m4 m5 m6 Test
30 30 30 30 30 30 Size

T1 • • • 90
T2 • • • 90
T3 • • • 90
T4 • • • 90
T5 • • 60

T = 〈T1, T2, T3, T4, T5〉 transfers 750 units to and from memory

T ′
= 〈T2, T4, T1, T3, T5〉 only loads and unloads 180 units
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Test Prioritization: Steps One and Two
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Collect method invocation and
size data using test coverage

monitor and profiler
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Formulate a complete graph
using equations that estimate

costs for all test pairs
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Test Prioritization: Steps Three and Four

PSfrag replacements
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Use TSP solvers to identify a
Hamiltonian path with low

estimated costs
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Evaluate the efficiency of the TSP
solvers and the effectiveness of

the test orderings
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Empirical Results
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Avoiding Database Restarts
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Use prioritization to avoid costly database restarts
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Concluding Remarks
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Initial Empirical Evaluation

Preliminary results with synthetic test suites indicate that it is
possible to prioritize test suites with TSP solvers

Use different methods for solving TSP instances (e.g., order-based
genetic algorithms) and include real-world applications

http://www.cs.allegheny.edu/~gkapfham/research/
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