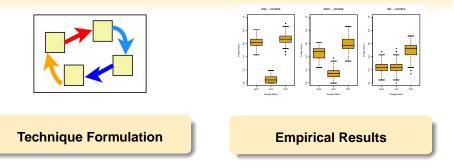
Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results

Suvarshi Bhadra and Gregory M. Kapfhammer


Department of Computer Science Allegheny College, Pennsylvania, USA http://www.cs.allegheny.edu/~gkapfham/

TAIC PART 2008, Fast Abstract Track, August 2008

Featuring images from www.pdclipart.org

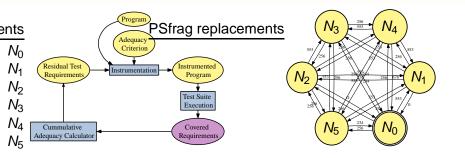
Important Contributions

Design, **implement** and empirically **evaluate** test suite prioritizers that leverage travelling salesperson problem (TSP) solvers to **efficiently** find **cost-effective** orderings

Regression Testing Techniques

It may **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Prioritization** searches through the $n! = n \times n - 1 \times ... \times 1$ orderings for those that **avoid** costly database **restarts**, Web service **calls**, or memory **interactions**.

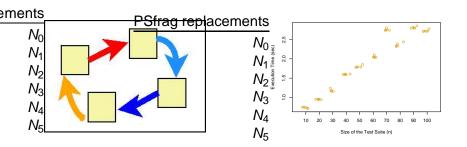
Frequent **reads** and **writes** to memory may **increase** execution time by as much as **600%** when a Java application executes on a virtual machine with a **small heap**


Solution: maximize memory reuse between test cases

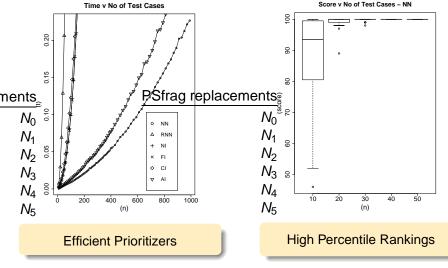
The Impact of Test Ordering

	m_1	m_2	m_3	m_4	m_5	m_6	Test
	30	30	30	30	30	30	Size
<i>T</i> ₁	•	•	•				90
<i>T</i> ₂				•	٠	٠	90
<i>T</i> ₃	•	•	•				90
T_4				•	•	•	90
T_5	٠	٠					60

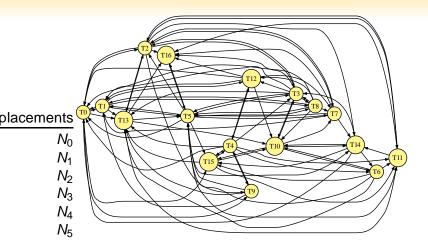
T = ⟨T₁, T₂, T₃, T₄, T₅⟩ transfers **750** units to and from memory
T' = ⟨T₂, T₄, T₁, T₃, T₅⟩ only loads and unloads **180** units


Test Prioritization: Steps One and Two

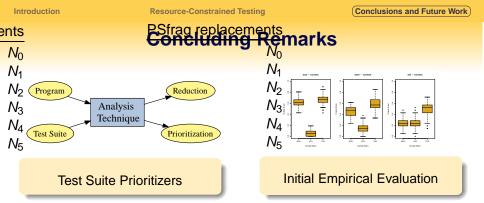
Collect method **invocation** and **size** data using test coverage **monitor** and **profiler**


Formulate a **complete graph** using equations that estimate costs for all **test pairs**

Test Prioritization: Steps Three and Four


Use **TSP solvers** to identify a **Hamiltonian path** with low estimated costs Evaluate the efficiency of the TSP solvers and the effectiveness of the test orderings

Empirical Results



Conclusions and Future Work

Avoiding Database Restarts

Use prioritization to avoid costly database restarts

- Preliminary results with synthetic test suites indicate that it is possible to prioritize test suites with TSP solvers
- Use different methods for solving TSP instances (e.g., order-based genetic algorithms) and include real-world applications

http://www.cs.allegheny.edu/~gkapfham/research/

Prioritizing Test Suites by Finding Hamiltonian Paths: Preliminary Studies and Initial Results

10/10