
Automated and

Configurable

Programming Project

Checking with Chasten
Daniel Bekele, Jaclyn Pham, and Gregory M. Kapfhammer

May 15, 2025

PyCon Education Summit 2025



What Problem Are We Solving?
Students may struggle to write efficient, readable code

Manual project review is time-consuming and error-prone

Many courses face these challenges:

Data structures

Algorithm analysis

Software engineering

Existing tools focus on style, not semantic structure

Regex is brittle, and AST tools are hard to prototype

 Project Goal: Chasten enables scalable and structure-aware

feedback that effectively supports both instructors and students

PyCon Education Summit 2025



Avoid Time Complexity of O(n²)
# O(n) is acceptable1

seen = set()2

for item in items:3

    if item in seen:4

        return True5

    seen.add(item)6

# O(n²) is not okay1

for i in range(len(items)):2

    for j in range(len(items)):3

        if i != j 4

         and items[i] == items[j]:5

            return True6

 Goal: Automatically scan the source code that students submit to

confirm that there are no inefficient looping constructs

 Challenge: Linters like Ruff and Pylint don’t have rules to detect

nested control structures that either are or are not acceptable

 Build: An extensible tool allowing instructors to scan for

arbitrary code patterns without detailed AST knowledge

PyCon Education Summit 2025



Chasten to the Rescue!

 Uses XPath to search Python’s AST

 Rules written in simple YAML

 Structure-first, not just style

 Outputs to JSON, CSV, or SQLite

 Result: Instructors define checks once and use Chasten to easily

apply them at scale across all student submissions

- name: "nested-loops"1

  code: "PERF001"2

  pattern: "//For[descendant::For]"3

  description: "Detects doubly nested for-loops (e.g., O(n²))"4

PyCon Education Summit 2025



Let’s Run Chasten!

Install the Tool

pipx install chasten  # Install Chasten in venv1

pipx list             # Confirm installation2

chasten --help        # View available commands3

Run Chasten

chasten analyze time-complexity-lab \1

        --config chasten-configuration \2

        --search-path time-complexity-lab \3

        --save-directory time-complexity-results \4

        --save5

Save results to a JSON file and produce console output

Configure the return code for different detection goals

PyCon Education Summit 2025



Results from Running Chasten

Nested Loop Analysis

Check ID Check Name File Matches

PERF001 nested-loops analyze.py 1

PERF001 nested-loops display.py 7

PERF001 nested-loops main.py 0

 Check ID → A unique short rule code (e.g., PERF001)

 Check Name → The rule name that matched (e.g., nested-loops)

 File → The Python file that the tool scanned (e.g., analyze.py)

 Matches → Number of times the pattern was detected in that file (e.g., 1 match)

PyCon Education Summit 2025



Limitations and Future Directions

Limitations of the Chasten Tool

 Doesn’t handle style, formatting, or type inference

 Not optimized for fast use in continuous integration

 Pattern matches through use of XPath on Python’s AST

Empirical Study of Chasten

 Frequency of false positives or false negatives?

 How do students respond to the tool’s feedback?

 Differences in scores with varied feedback types?

PyCon Education Summit 2025



Key Takeaways

 Write declarative rules for AST-based code checks

 Focus on bespoke code structure patterns in Python

 Automated grading aligned with learning outcomes

 Generate data-rich insights into student code patterns

Try out Chasten and contribute to its development!

 GitHub: 

 PyPI: 

https://github.com/AstuteSource/chasten

https://pypi.org/project/chasten/

PyCon Education Summit 2025

https://github.com/AstuteSource/chasten
https://pypi.org/project/chasten/

