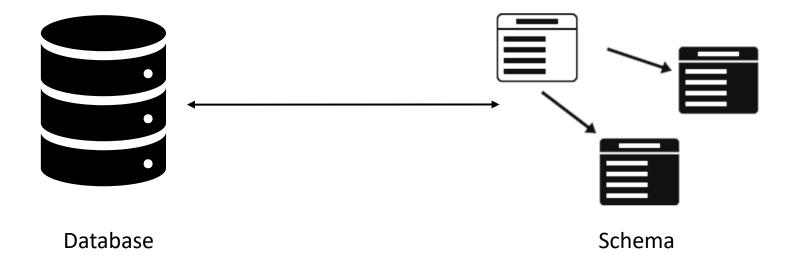
STICCER: Fast and Effective Database Test Suite Reduction Through Merging of Similar Test Cases

by Abdullah Alsharif(a.Alsharif@seu.edu.sa), Gregory M. Kapfhammer, and Phil McMinn



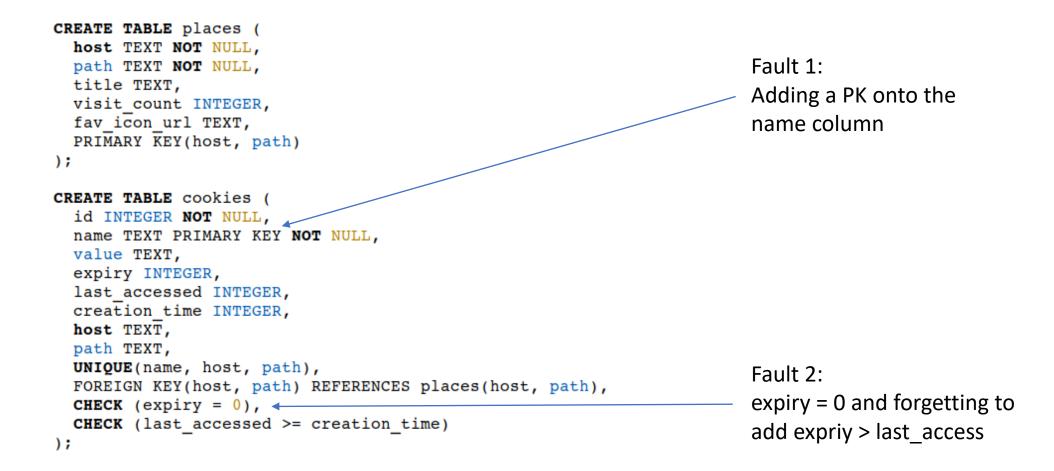
RELATIONAL DATABASES ARE EVERYWHERE AND THE BACKBONE OF MOST SOFTWARE SYSTEMS

Testing Relational Database Schemas

"A good [relational] database **schema** should have many **constraints**. [Therefore], you should **test** them" Szymon Guz, 2011

The Process

Too Many Test Cases

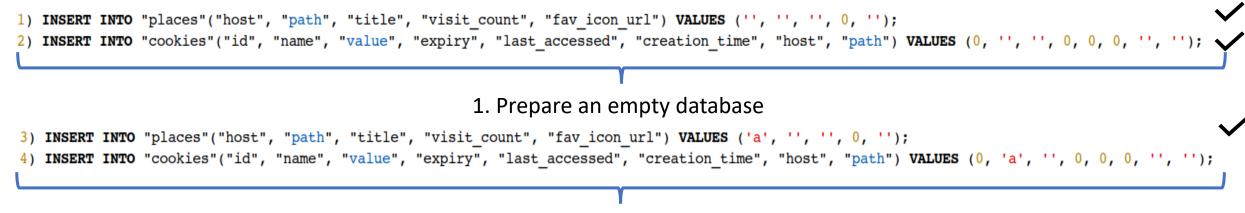


MANY CHANGES CAN INCREASES THE NUMBER OF TESTS RUNNING TESTS MIGHT CONSUME TIME INCREASE INSPECTION EFFORT (HUMAN ORACLE COST)

Schema

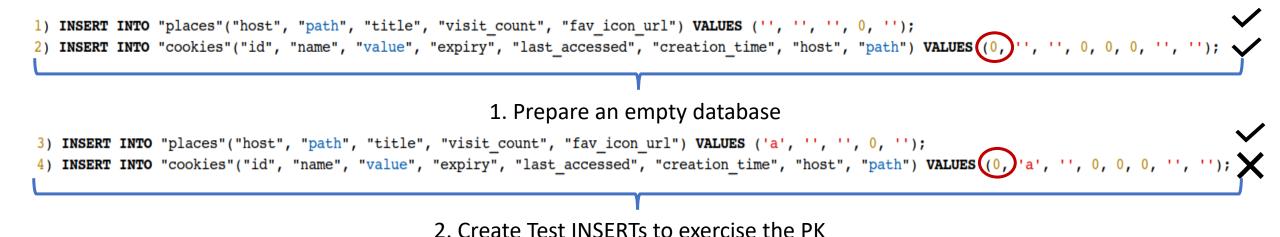
```
CREATE TABLE places (
  host TEXT NOT NULL,
  path TEXT NOT NULL,
 title TEXT,
  visit_count INTEGER, ←
                                                           Data Types
 fav_icon_url TEXT,
  PRIMARY KEY(host, path)
);
CREATE TABLE cookies (
 id INTEGER PRIMARY KEY NOT NULL,
  name TEXT NOT NULL,
 value TEXT,
  expiry INTEGER,
                                                                       Integrity
 last accessed INTEGER,
                                                                       Constraints
 creation_time INTEGER,
  host TEXT,
  path TEXT,
 UNIQUE(name, host, path),
  FOREIGN KEY(host, path) REFERENCES places(host, path),
 CHECK (expiry = 0 OR expiry > last accessed),
 CHECK (last accessed >= creation time)
);
```

An Example of Faults in a Database Schema

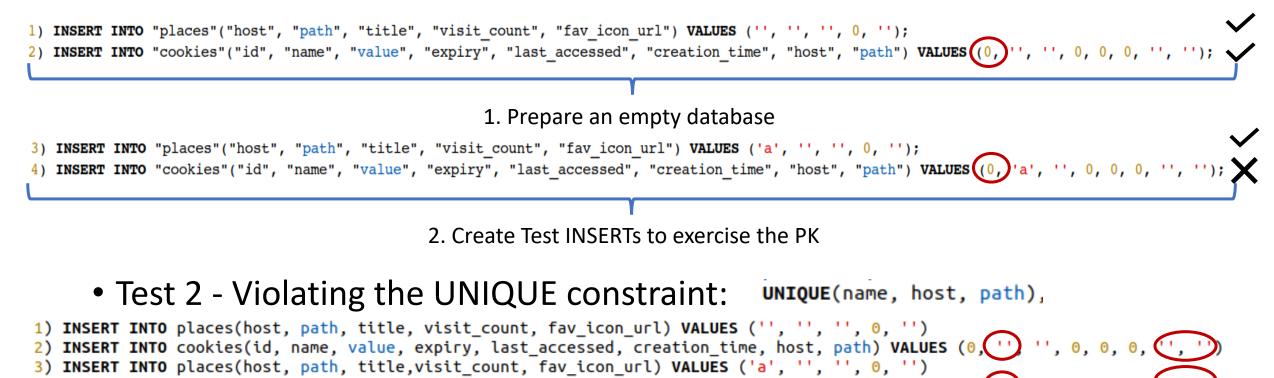


• Test 1 - Violating the PK constraint: id INTEGER PRIMARY KEY

1) INSERT INTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('', '', '', 0, '');
2) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, '', '', 0, 0, 0, '', '');


1. Prepare an empty database

• Test 1 - Violating the PK constraint: id INTEGER PRIMARY KEY



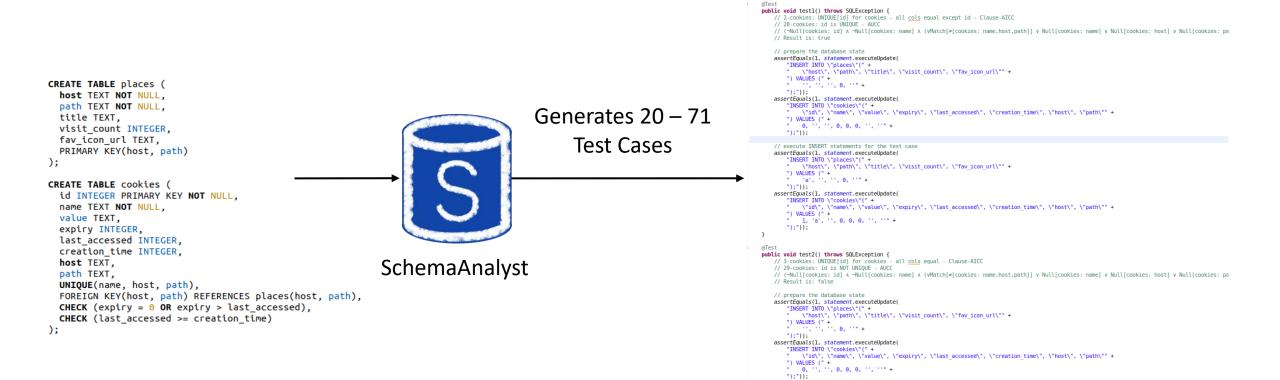
2. Create Test INSERTs to exercise the PK

• Test 1 - Violating the PK constraint: id INTEGER PRIMARY KEY

• Test 1 - Violating the PK constraint: id INTEGER PRIMARY KEY

4) INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path) VALUES (1,('') '', 0, 0, 0, (', '')

We Can Generate Tests Automatically


```
CREATE TABLE places (
 host TEXT NOT NULL,
  path TEXT NOT NULL,
 title TEXT.
 visit_count INTEGER,
 fav icon url TEXT,
 PRIMARY KEY(host, path)
);
CREATE TABLE cookies (
 id INTEGER PRIMARY KEY NOT NULL,
 name TEXT NOT NULL,
 value TEXT,
  expiry INTEGER,
  last_accessed INTEGER,
  creation_time INTEGER,
  host TEXT,
  path TEXT,
 UNIQUE(name, host, path),
 FOREIGN KEY(host, path) REFERENCES places(host, path),
 CHECK (expiry = 0 OR expiry > last_accessed),
 CHECK (last accessed >= creation time)
);
```

We Can Generate Tests Automatically

14

CREATE TABLE places (host TEXT NOT NULL, path TEXT NOT NULL, title TEXT. visit_count INTEGER, fav icon url TEXT, PRIMARY KEY(host, path)); **CREATE TABLE** cookies (id INTEGER PRIMARY KEY NOT NULL, name TEXT NOT NULL, value TEXT, expiry INTEGER, last_accessed INTEGER, creation_time INTEGER, host TEXT, SchemaAnalyst path TEXT, UNIQUE(name, host, path), FOREIGN KEY(host, path) REFERENCES places(host, path), CHECK (expiry = 0 OR expiry > last_accessed), CHECK (last accessed >= creation time));

Generating Tests Automatically

Test data wrapped into INSERTs and

// execute INSERT statements for the test case
assertEquals(1, statement.executeUpdate(
 "INSERT INTO \"places\"(" +

") VALUES (" + " 'a', '', '', 0, ''" +

");"));

\"host\", \"path\", \"title\", \"visit_count\", \"fav_icon_url\"" +

into JUnit test cases ¹⁵

The Solution

TO USE TRADITIONAL TEST SUITE REDUCTION TECHNIQUES

Test Suite Reduction Background

	r1	r2	r3	r4	r5	r6
t1	Х	X	Х			
t2	Х			Х		
t3		X			Х	
t4			Х			Х
t5					Х	

- We can use the following approaches:
 - Random Reduction randomly select test case until all the requirements covered
 - Additional Greedy (or called greedy in TSR literature)
 - HGS (an approach by Harrold, Gupta, and Soffa)

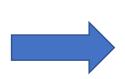
	r1	r2	r3	r4	r5	r6
t1	Х	Х	X			
t2	Х			Х		
t3		Х			Х	
t4			Х			Х
t5					Х	
	r1	r2	r3	r4	r5	r6

	r1	r2	r3	r4	r5	r6
t1	Х	Х	X			
t2	Х			Х		
t3		Х			Х	
t4			Х			Х
t5					X	
	r1	r2	r3	r4	r5	r6
t1	Х	Х	X			


	r1	r2	r3	r4	r5	r6
t1	Х	Х	Х			
t2	Х			Х		
t3		Х			Х	
t4			Х			Х
t5					Х	
	r1	r2	r3	r4	r5	r6
t1	Х	Х	X			
t3		Х			Х	

	r1	r2	r3	r4	r5	r6
t1	Х	Х	X			
t2	Х			Х		
t3		Х			X	
t4			Х			Х
t5					X	
	r1	r2	r3	r4	r5	r6
t1	Х	Х	X			
t3		Х			Х	
t2	Х			Х		

	r1	r2	r3	r4	r5	r6
t1	Х	Х	Х			
t2	Х			Х		
t3		Х			Х	
t4			Х			Х
t5					Х	
	r1	r2	r3	r4	r5	r6
t1	Х	Х	X			
t3		Х			Х	
t2	Х			X		
t4			Х			Х


	r1	r2	r3	r4	r5	r6	-	Т	R	tn	Cardinality
t1	Х	Х	Х					T1	r1	{t1, t2}	2
t2	Х			Х				T2	r2	{t1, t3}	2
t3		Х			Х			Т3	r3	{t1, t4}	2
t4			Х			Х		T4	r4	{t2}	1
t5					Х			T5	r5	{t3, t5}	2
	T1	Т2	Т3	Т4	T5	Т6		Т6	r6	{t4}	1

Т	R	tn	Cardinality
T1	r1	{t1, t2}	2
T2	r2	{t1, t3}	2
Т3	r3	{t1, t4}	2
T 4	r4	{t2}	1
T5	r5	{t3, t5}	2
T6	r6	{t4}	1

	r1	r2	r3	r4	r5	r6
t2	Х			X		
t4			Х			Х

т	R	tn	Cardinality
71	r1	{t1, t2}	2
T2	r2	{ t1 , t3}	2
13	rЗ	{t1, t4}	2
T4	r4	{t2}	1
T5	r5	{t3, t5}	2
T6	r6	{t4}	1

	r1	r2	r3	r4	r5	r6
t2	Х			X		
t4			Х			Х

т	R	tn	Cardinality
71	r1	{t1, t2}	2
T2	r2	{ t1 , t3 }	2
T3	r3	{t1, t4}	2
T4	r4	{t2}	1
T5	r5	{ t3 , t5}	2
T6	r6	{t4}	1

	r1	r2	r3	r4	r5	r6
t2	Х			Х		
t4			Х			Х
t3		X			X	

What is missing?

	r1	r2	r3	r4	r5	r6
t2	Х			Х		
t4			Х			Х
t3		X			X	

Can we merge similar test cases (decreasing the data restarts)? Can we decrease the number of INSERTs (decreasing database interactions)? Can we remove any extra redundancy?

Test 1

1) INSERT INTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('', '', '', 0, '');
2) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, '', '', 0, 0, 0, '', '');
3) INSERT INTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('a', '', 0, 0, '');
4) INSERT INTO "cookies"("id", "name", "value", "expiry", "last accessed", "creation time", "host", "path") VALUES (0, 'a', '', 0, 0, 0, '', '');

Test 2

1) INSERT INTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('', '', '', 0, '');
2) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, '', '', 0, 0, 0, '', '');
3) INSERT INTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('a', '', '', 0, '');
4) INSERT INTO "cookies"("id", "name", "value", "expiry", "last accessed", "creation_time", "host", "path") VALUES (1, '', '', 0, 0, 0, 0, '', '');

Test 1

2) INSERT I 3) INSERT I	NTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('', '', '', 0, ''); NTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, '', '', 0, 0, 0, 0, '', ''); NTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('a', '', '', 0, ''); NTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, 'a', '', 0, 0, 0, 0, '', ''); NTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, 'a', '', 0, 0, 0, 0, '', '');	Equal
Test 2		
1) INSERT I	NTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('', '', '', 0, '');	
2) INSERT I	NTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, '', '', 0, 0, 0, '', '');	
3) INSERT I	NTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('a', '', '', 0, '');	
4) INSERT I	NTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (1, '', '', 0, 0, 0, '', '');	

29

Test 1

1) INSERT INTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('', '', '', 0, '');
2) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, '', '', 0, 0, 0, 0, '', '');
3) INSERT INTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('a', '', '', 0, '');
4) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, 'a', '', 0, 0, 0, 0, '', '');

Test 2

INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (1, '', '', 0, 0, 0, '', '');

Remove

Test 1

1) INSERT INTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('', '', '', 0, '');
2) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, '', '', 0, 0, 0, 0, '', '');
3) INSERT INTO "places"("host", "path", "title", "visit count", "fav icon url") VALUES ('a', '', '', 0, '');
4) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, 'a', '', 0, 0, 0, 0, '', '');
4) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, 'a', '', 0, 0, 0, 0, '', '');

Test 2

4) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (1, '', '', 0, 0, 0, '', '');

Test 1

1) INSERT INTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('', '', '', 0, '');

2) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, '', '', 0, 0, 0, '', '');

4) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, 'a', '', 0, 0, 0, '', '');

Test 2

4) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (1, '', '', 0, 0, 0, '', '');

Remove

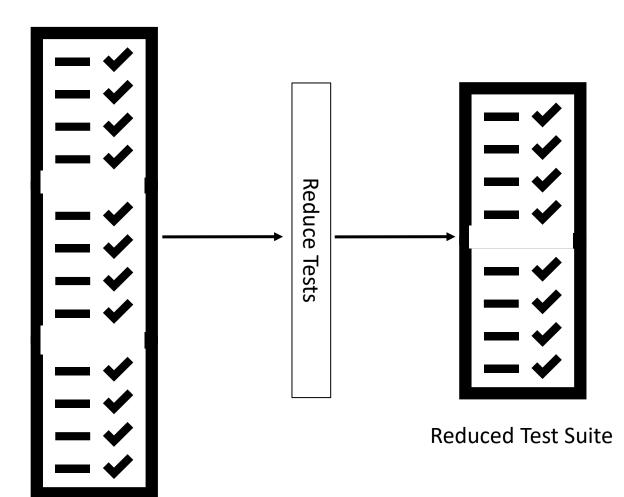
Test 1

Test 2

1) INSERT INTO "places"("host", "path", "title", "visit_count", "fav_icon_url") VALUES ('', '', 0, '');
2) INSERT INTO "cookies"("id", "name", "value", "expiry", "last accessed", "creation time", "host", "path") VALUES (0, '', '', 0, 0, 0, '', '');

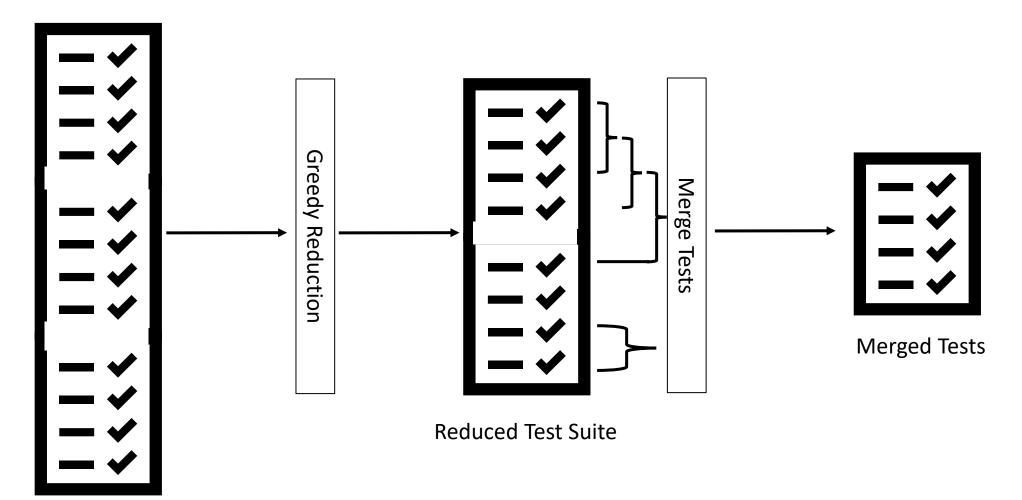
4) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (0, 'a', '', 0, 0, 0, '', '');

Merge


4) INSERT INTO "cookies"("id", "name", "value", "expiry", "last_accessed", "creation_time", "host", "path") VALUES (1, '', '', 0, 0, 0, '', '');

Test 1 & Test 2
1) INSERT INTO places(host, path, title, visit_count, fav_icon_url) VALUES ('', '', '', 0, '')
2) INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path) VALUES (0, '', '', 0, 0, 0, 0, '', '')
3) INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path) VALUES (0, 'a', '', 0, 0, 0, 0, '', '')
4) INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path) VALUES (1, '', '', 0, 0, 0, 0, '', '')

Schema Test Integrity Constraints Combination for Efficient Reduction (STICCER)



Schema Test Integrity Constraints Combination for Efficient Reduction (STICCER)

Full Test Suite

Schema Test Integrity Constraints Combination for Efficient Reduction (STICCER)

Full Test Suite

کر

RQ1: Reduction Effectiveness - How effective is STICCER at *reducing the number of test cases and INSERTs?*

Research Questions

RQ2: Impact on Fault Finding Capability -How is the *fault-finding capability* of the test suites affected?

RQ3: Impact on Test Suite and Mutation Analysis Runtime - How are the *running times* of the reduced test suites on mutation analysis affected?

34 schemas

- 1-42 tables
- 3 309 columns

1 – 134 integrity constraints

Two test data generators

30 runs

Four reduction techniques

Mutation analysis

Methodology

- iTrust schema includes 42 tables, 309 columns, 134 Integrity Constraints
 - Highest merge count = 539 merges.

- iTrust schema includes 42 tables, 309 columns, 134 Integrity Constraints
 - Highest merge count = 539 merges.

Metric	OTS	STICCER	Random	Greedy	HGS
Test Cases	1517	85% (235)	44% (849)	49% (776)	50% (754)
INSERTs	2204	57% (940)	45% (1212)	50% (1101)	52% (1064)

- iTrust schema includes 42 tables, 309 columns, 134 Integrity Constraints
 - Highest merge count = 539 merges.

Metric	OTS	STICCER	Random	Greedv	HGS
Test Cases	1517	85% (235)	44% (849)	49% (776)	50% (754)
INSERTs	2204	57% (940)	45% (1212)	50% (1101)	52% (1064)

On Average:

Metric	STICCER	Random	Greedy	HGS
Test Cases	74%	42%	48%	50%
INSERTs	59%	43%	49%	51%

• No loss of coverage

- iTrust schema includes 42 t Constraints
 - Highest mer

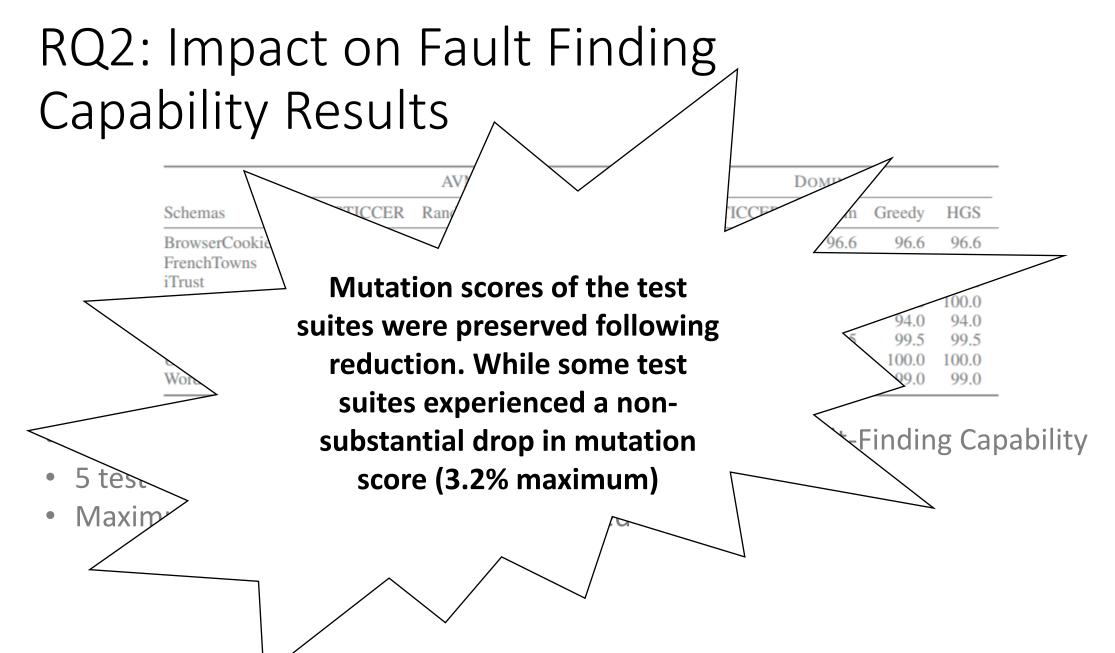
Metric

INSERTs

Test

Test

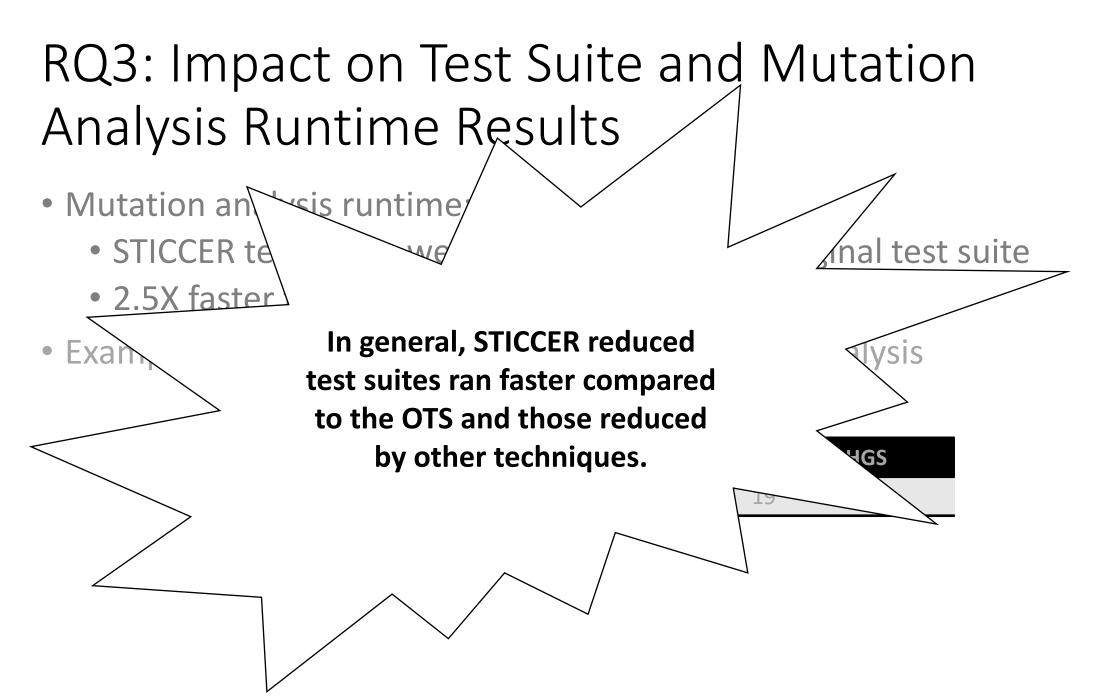
STICCER is the most effective at reducing the number of test cases and the overall number of INSERT statements in a test suite


hs, 134 Love grity

51%

RQ2: Impact on Fault Finding Capability Results

	AVM-D				Domino					
Schemas	OTS	STICCER	Random	Greedy	HGS	OTS	STICCER	Random	Greedy	HGS
BrowserCookies	86.5	▼86.5	86.5	▼86.5	▼86.5	96.6	96.6	96.6	96.6	96.6
FrenchTowns	83.3	*▼80.3	*▼80.3	*▼80.3	*▼81.8	95.5	95.5	95.5	95.5	95.5
iTrust	83.6	*▼83.6	*▼83.6	*▼83.6	*▼83.6	99.2	99.2	99.2	99.2	99.1
NistWeather	93.8	*▼90.6	93.8	*▼90.6	93.8	100.0	100.0	100.0	100.0	100.0
NistXTS749	92.0	92.0	▼92.0	92.0	*▼88.0	94.0	94.0	94.0	94.0	94.0
RiskIt	89.3	89.3	▼89.3	89.3	*▼88.8	99.5	99.5	99.5	99.5	99.5
UnixUsage	98.2	98.2	98.2	98.2	*▼97.3	100.0	100.0	100.0	100.0	100.0
WordNet	87.4	* ▼86.3	▼87.4	* ¥86.3	*▼86.3	99.0	99.0	99.0	99.0	99.0


- AVM-D generated and reduced test case impacted the Fault-Finding Capability
- 5 test suites were impacted by STICCER reduction
- Maximum impact was only 3.2% compared to OTS

RQ3: Impact on Test Suite and Mutation Analysis Runtime Results

- Mutation analysis runtime:
 - STICCER test suites were 5X faster than the original test suite
 - 2.5X faster than other traditional reduction techniques
- Example: iTrust test suites and running mutation analysis

Unit	OTS	STICCER	Random	Greedy	HGS
Minutes	38	7 (+2 reduction)	21	19	18.5

- STICCER = Reduce + Merge
- Outperforms other reduction techniques and maintains coverage
- A maximum of 3.2% loss of fault-finding capabilities (mutation)
- Conclusions and Future Work
- Mutation analysis execution:
 - 5X faster than the original test suite
 - 2.5X faster than other traditional reduction techniques
- Future Work:
 - Integrate STICCER within the test data generator
 - Enhance STICCER with multi-objective test data generators
 - Adapt STICCER into traditional programs that manipulate complex state in other formats

github.com/schemaanalyst/schemaanalyst