
Empirically Identifying the Best Genetic Algorithm for

Covering Array Generation

Liang Yalan1, Changhai Nie1, Jonathan M. Kauffman2,

Gregory M. Kapfhammer2, Hareton Leung3

1Department of Computer Science and Technology, Nanjing University
2Department of Computer Science, Allegheny College

3Department of Computing, Hong Kong Polytechnic University

lyl-49@163.com, changhainie@nju.edu.cn, {kauffmj, gkapfham}@allegheny.edu,

cshleung@inet.polyu.edu.hk

1 Introduction

With their many interacting parameters, modern software systems are highly

configurable. Combinatorial testing is a widely used and practical technique that can

detect the failures triggered by the parameters and their interactions. One of the key

challenges in combinatorial testing is covering array generation,

an often expensive process that is not always amenable to

automation with greedy methods. The 2-way covering array is the

most common and can be defined as follows [1]:

Definition (2-way covering array): If an N × n array has the

following properties: (1) each column i (1 ≤ i ≤ n) contains only

elements from the set Vi with ai = |Vi | and (2) the rows of each N

× 2 sub-array cover all 2-tuples of values from the 2 columns at

least once, then it is called a 2−way covering array (CA).

During combinatorial testing, each row of a CA represents a

test case. In order to more clearly describe the concept of a

covering array, we develop a concrete example. Suppose there are 4 parameters (pa1,

pa2, pa3, and pa4) in a system under test (SUT), each with 3 values (0, 1, 2). If we

want to cover all 54 pair-wise interactions between every 2 parameters in the SUT,

then only 9 test cases are needed in Table 1’s covering array. In real-world testing

efforts, covering arrays can save testing time while still detecting many failures.

Researchers have proposed many techniques to generate covering arrays. As one of

the evolutionary search methods, the genetic algorithm often has been effectively

applied to solve many complex optimization problems in this and other fields.

However, the performance of a genetic algorithm is not always stable and thus

significantly impacted by its configurable parameters. Previous studies [2][3][4] have

not considered either the exploration of the genetic algorithm’s optimal configuration

or ways to improve its performance for covering array generation.

In order to close this knowledge gap, we designed three classes of experiments

(i.e., a pair-wise, base choice, and hill climbing experiment) to systemically examine

the impacts of and interactions between the genetic algorithm’s five configurable

parameters (i.e., population size, number of generations, crossover probability,

mutation probability, and genetic algorithm variant).

Overall, the goal of this paper is to answer the following two questions: (1) Is there

an improved configuration of a genetic algorithm for a particular pair-wise SUT? and

(2) Is there a common improved configuration for all pair-wise SUTs? In

confirmation of the prevailing wisdom about genetic algorithms, the empirical results

Table 1. Covering

array of the SUT.

pa1 pa2 pa3 pa4

0 0 0 0

1 0 2 1

2 1 2 0

2 0 1 2

1 1 0 2

0 1 1 1

2 2 0 1

1 2 1 0

0 2 2 2

mailto:lyl-49@163.com
mailto:changhainie@nju.edu.cn
mailto:gkapfham%7D@allegheny.edu

Empirically Identifying the Best Genetic Algorithm for Covering Array Generation 2

affirm the first question and refute the second one. Moreover, this paper provides a

comprehensive overview of the empirical trade-offs associated with a genetic

algorithm’s performance on covering array generation and highlights circumstances

that lead to interesting and counter-intuitive results. Since our experiments use

discrete values for the genetic algorithm’s parameters, in future work we plan to

employ another type of genetic algorithm to further improve these configurations in a

continuous value space, as discussed in greater detail in Section 4.

2 Genetic Algorithm for Covering Array Generation

As one of the typical evolutionary search methods, the genetic algorithm is an

effective technique that can search for the optimal solution for a wide variety of

complex optimization problems [2][3][4]. This paper applies the genetic algorithm

described in Figure 1 to the problem of 2-way covering array generation.

Figure 1. Description of the genetic algorithm for covering array generation.

Since the goal of this experiment is to improve the performance of a genetic

algorithm, we extract the five most important parameters and discuss them in detail.

(1) Population size m

The population of a genetic algorithm consists of m chromosomes. In general, if m is

too small, then the algorithm may prematurely converge. However, if m is too large,

then the increased computation time will delay the algorithm’s completion.

(2) Number of generations G
The parameter G is the number of repetitions for which the GA’s main loop will run.

The algorithm will terminate quickly and not converge on a good solution when G is

too small and the computation will incur a high time overhead when G is too large.

(3) Crossover probability Pc

Chromosome crossover is a mechanism for generating new individuals by combining

the characteristics of two parents. If Pc is too large, the chromosomes in the

population will crossover so frequently that the operator will break the existing

chromosomes possessing good characteristics. If Pc is too small, then crossover will

rarely be performed, often causing the algorithm not to converge on a good solution.

(4) Mutation probability Pm

The mutation operation can help to increase the diversity of the population. However,

mutation will be performed rarely if Pm is too small, and the genetic algorithm will

degrade into a random search if Pm is too large.

Input: The description of the SUT like 3
13

 (13 parameters in a SUT, each with 3 values), the specified variant of the genetic

algorithm VGA, the population size m, the number of generations G, crossover probability Pc, and mutation probability Pm.

Output: The covering array generated by the specified variant of the genetic algorithm.

Step 1: Initialize the test suite TG that can be null or include some test cases. Initialize the set of pair-wise interactions S that

need to be covered in the SUT. Randomly generate an initial population of m chromosomes corresponding to m candidate

test cases for the SUT.

Step 2: Calculate the fitness of each chromosome in the current generation. The fitness value is the number of pair-wise

interactions uncovered by TG in each chromosome, implying that the higher the fitness value, the better the chromosome.

Step 3: Crossover and mutate (Pc and Pm give the probability of using these operators) the chromosomes in the current

generation and then select (selection strategies differ in the various VGAs) the ones possessing the good characteristics

into the next generation of the population. Search for the satisfied chromosome chrox (all pairs in chrox are uncovered by

the test cases in TG) in the new population by calculating the fitness of all chromosomes. If chrox exists, put it into TG and

jump to Step 5; otherwise, repeat Steps 2 and 3 until the number of repetitions accumulates to G and then jump to Step 4.

Step 4: Select the chromosome chroy with the highest fitness value in the current generation and put chroy into TG.

Step 5: Delete the pair-wise interactions that have been covered by chrox or chroy from S. If S is null, then the test suite TG is

the desired covering array; otherwise, go back to Step 3.

Empirically Identifying the Best Genetic Algorithm for Covering Array Generation 3

(5) Genetic algorithm variants VGA

The selection strategy and the fitness function of a genetic algorithm have a

substantial impact on its performance. In order to investigate their effect, we alter

these two operators in a systematic way to produce five variants of the genetic

algorithm. The explanations of the original genetic algorithm, denoted GA, and these

five varied algorithms are presented as follows:
GA: In GA, the covering array is constructed by generating the test cases one by one. In the

process of evolution in the GA, the chromosome that has the highest fitness value will be

selected into the next generation of the population immediately while the roulette-wheel

operator, one of the typical selection strategies, will pick the others. The fitness of each

chromosome is the number of uncovered pair-wise interactions that it contains. Both the

crossover and the mutation strategies are multipoint which means that crossover and

mutation will be performed on every gene of the chromosome with a certain probability.

GA-: The fitness function of GA- differs from the fitness function of GA in that it calculates

the pair-wise interactions in every chromosome which have been covered by TG, changing

the selection strategy from "select the superior and eliminate the inferior" to "select the

inferior and eliminate the superior." The changed fitness function only operates when the

chromosomes are selected into the next generation of the population. However, when the

chosen test case is put into the covering array, the fitness function is still the same as GA.

GAr: In GAr, chromosomes are randomly selected for the population of the next generation.

GA climb: GA climb is a GA variant that includes elitism. In GA climb, the chromosome with

the highest fitness in every generation is protected from crossover and mutation

operations. It is only replaced by the chromosome with a higher fitness value in the next

generation. Following the principle of elitism, GA climb guarantees that the good

characteristics of the chromosome with the highest fitness in each generation will be

continually improved instead of being destroyed by the crossover and mutation operations.

GA- climb: GA- climb is a GA- variant that includes the elitism from GA climb.

GAr climb: GAr climb is a GAr variant that includes the elitism from GA climb.

By studying the performance of GA-, GAr, GA climb, GA- climb, and GAr climb,

we can determine whether the selection strategy and the fitness function have an

impact on the efficiency and effectiveness of the genetic algorithm for CA generation.

3 Experimental Design and Results Analysis

3.1 Experimental Design

We chose 15 representative SUTs for the experiment in consideration of the following

points: (1) the time consumed by the experiments must be reasonable, (2) the

experiments must consider both the SUTs with large (e.g., 1011) and small (e.g., 313)

covering arrays, and (3) the SUTs should have parameters with different numbers of

values. In order to identify an improved configuration, we will first consider the

configuration that can make the algorithm generate the smallest-size covering array.

But when more than one configuration meets this condition, we will select the one

that causes the algorithm to exhibit the shortest execution time.

Before conducting the main experiment, we performed a preliminary study to

choose a suitable set of candidate values for the five parameters. This exploratory

investigation showed that the GA's execution time increased markedly without a

commensurate increase in effectiveness when m was over 6000 or G was over 1000.

Furthermore, since the GA was often unstable when m or G was less than 100 and the

value of Pc and Pm did not have an apparent impact on the GA, we ultimately selected

the candidate value set shown in Table 2 for the GA’s five parameters.

Empirically Identifying the Best Genetic Algorithm for Covering Array Generation 4

Table 2. The value set of the genetic algorithm’s five configurable parameters.

As stated in Section 1, we designed three classes of experiments to explore the

improved configuration that can greatly reduce the cost of both performing future

empirical studies and using GAs in practice. In addition, for ease of representation,

we denote the values of the five parameters with ordered natural numbers. For

instance, {0, 1, 2, 3} will be used to represent the four values of population size in

Table 2. We designed the experiment to first use a pair-wise method to produce a

2-way covering array. Then, this array is used as input to the base choice and hill

climbing techniques to create two final and improved covering arrays. Additional

details about the experimental procedure are as follows:

(1) Pair-wise experiment

In order to create an improved configuration with less cost than exhaustively

evaluating all GA configurations, suppose that there exist pair-wise interactions

between the parameters of the genetic algorithm in Table 2. With the goal of covering

these interactions, this procedure produces a 2-way covering array containing a set of

34 configurations. A comparison of the performance of the genetic algorithms in these

configurations leads to the best configuration Cp among them.

(2) Base choice experiment

The base choice procedure is as follows [5]: first, it chooses Cp from the pair-wise

experiment as its basic configuration. To generate a set of configurations, it changes

the value of one parameter of the basic configuration while leaving the other four

parameters unchanged. By choosing one of the other four parameters and repeating

this process until all the values of the five parameters have been covered, this method

produces a new set of configurations. This experiment allows for the separate

exploration of the impact of each of the five parameters.

(3) Hill climbing experiment

As in base choice, the first step of the hill climbing experiment is to choose Cp as its

basic configuration C0. For example, if C0 is <5, 0, 2, 1, 4> (which corresponds to

<VGA=GAr climb, m=100, G=1100, Pc=0.8, Pm=0.2>), it creates six different

configurations (<0, 0, 2, 1, 4>, <1, 0, 2, 1, 4>, <2, 0, 2, 1, 4>, <3, 0, 2, 1, 4>, <4, 0, 2,

1, 4>, and <5, 0, 2, 1, 4>) by changing the value of the first parameter VGA and

leaving the other four parameters unchanged. By comparing the performance of the

algorithms in these six configurations, the method gets the best configuration C1. If

Table 3. The configurations of 15 SUTs improved by the three experiments.

SUT VGA m G Pc Pm
CA

Size

Run

Time
SUT VGA m G Pc Pm

CA

Size

Run

Time

4
10

 GAr climb 100 100 0.2 0.2 28 0.234s 6
30

 GA climb 100 1100 0.2 0.2 87 52.6s

3
13

 GAr climb 100 1100 0.8 0.2 17 2.28s 10
11

 GA climb 100 1100 0.8 0.2 154 19.8s

6
10

 GA climb 6100 1100 0.2 0.2 58 402s 7
6
6

7
5

6
 GAr climb 100 1100 0.8 0.2 82 23.5s

4
20

 GAr climb 100 1100 0.8 0.2 35 10.1s 8
2
7

2
6

2
5

2
 GA- climb 2100 600 0.8 0.6 70 277s

8
10

 GA climb 2100 600 0.6 0.2 98 604s 6
1
5

1
4

6
3

8
2

3
 GAr climb 4100 1100 0.8 0.4 36 568.1s

3
20

 GA- climb 100 600 0.2 0.2 21 3.31s 6
4
 GAr climb 100 100 0.6 0.2 41 0.03s

6
20

 GA climb 100 1100 0.8 0.2 74 22.9s 5
1
3

8
2

2
 GAr climb 100 100 0.8 0.2 20 0.43s

4
30

 GAr climb 100 600 0.2 0.2 40 12.4s

Parameters Configurations

Algorithm (VGA) GA, GA-, GAr, GA climb, GA- climb, GAr climb

Population size (m) 100, 2100, 4100, 6100

Number of generations (G) 100, 600, 1100

Crossover probability (Pc) 1.0, 0.8, 0.6, 0.4, 0.2

Mutation probability (Pm) 1.0, 0.8, 0.6, 0.4, 0.2

Empirically Identifying the Best Genetic Algorithm for Covering Array Generation 5

the algorithm performs best when the value of the first parameter is 2, it selects <2, 0,

2, 1, 4> as C1. Then, based on C1, configuration C2 can be obtained by changing the

value of the second parameter and comparing the efficiency and effectiveness values

of the corresponding algorithms. Iteratively refining the genetic algorithm’s

configuration, this process repeats until it gets the best value of the fifth parameter

and obtains C5, the improved configuration generated by this experiment.

3.2 Experimental Results

After performing the experiments described in Section 3.1, we synthesized the results

by choosing the best configuration for each SUT from the base choice and hill

climbing experiments. We present these improved configurations in Table 3 and draw

the following conclusions for this empirical study:

1) Across all of the SUTs, the genetic algorithm for covering array generation has

different configurations and efficiency (i.e., run time) and effectiveness (i.e., covering

array size) values. We can identify the improved configuration for covering array

generation of each SUT in Table 3. However, these enhanced configurations are

different from each other, indicating that, for the chosen SUTs, covering array

generation does not have a common improved configuration.

2) By separately measuring the impact of the five configurable parameters in the

base choice experiment and in consideration of the results in Table 3, we find that the

configurable parameters have a differing impact on covering array generation:

VGA: The selection strategy and fitness function both have an impact on the

efficiency and effectiveness of the GA. Counter to the prevailing intuition, pairing the

GA- and random selection strategies with an elitist method (i.e., GA- climb and GAr

climb) yields the best configuration for CA generation in ten out of the fifteen SUTs.

Moreover, the VGAs of all the improved configurations in Table 3 use a climbing GA,

showing that the efficiency and effectiveness of the elitist array generators are better

than the other three genetic algorithm variants (i.e., GA, GA-, and GAr).

G: For all of the 15 SUTs, every possible value of G is evident in Table 3, with a

concentration of values near a greater number of generations, confirming the intuition

that a lengthier evolutionary process will improve covering array generation.

Pm: The value of Pm is 0.2 for all but two of the SUTs in Table 3, suggesting that

creating fewer mutated individuals leads to better covering arrays and motivating

more study of the way in which smaller values for Pm will impact the GA.

Pc and m: The improved configurations for each SUT have different values of Pc

and m, which indicates that there is no common best value of Pc or m for the chosen

SUTs. Thus, these two parameters do not have an obvious impact on CA generation.

4 Conclusions and Future Work

This paper focuses on the improvement of a genetic algorithm’s efficiency and

effectiveness for covering array generation. By three different experiments (pair-wise,

base choice, and hill climbing experiment), we explored the differing impacts of the

five parameters (i.e., population size, number of generations, crossover probability,

mutation probability, and genetic algorithm variant) and their interactions.

Meanwhile, we answered the questions raised at the beginning of the paper and

obtained the improved configurations of 15 SUTs, as shown in Table 3. Interestingly,

Empirically Identifying the Best Genetic Algorithm for Covering Array Generation 6

the results indicate that counter-intuitive selection strategies and elitist methods are

important components of a genetic algorithm for covering array generation.

Since we defined the value ranges of the five configurable parameters to be

discrete, the improved configuration obtained may not be the optimal one for CA

generation with a genetic algorithm. To address this problem and to further optimize

the configurations, in future work we will use another genetic algorithm called GA´.

This method will evolve the improved configurations with continuous value ranges

for the five configurable parameters and thus be more likely to find the optimal 2-way

covering array for each SUT. GA´ adopts the configurations of the genetic algorithm

for covering array generation as its chromosomes. The fitness of a chromosome is

constructed as <f1, f2>, where f1 is the size of the covering array generated by a GA

with this chromosome and f2 is the corresponding execution time for covering array

generation. GA´ will initially favor chromosomes with smaller values of f1, breaking

ties by selecting the chromosome with a smaller value of f2. Moreover, since the

results of the base choice experiment show that, for CA generation, roulette-wheel

selection (e.g., GA climb) has no obvious superiority over random selection (e.g.,

GAr climb), GA´ will first incorporate truncation and tournament selection, other

operators that may enable the achievement of improved efficiency. Following the

design of the GA in this paper, GA´ will employ multipoint crossover and mutation.

Since the execution of GA´ will be extremely time-consuming, we plan to run this

experiment on a parallel computing platform such as Hadoop [6].

Ultimately, the combination of the results from running GA´ with the insights

revealed in this paper will lead to a full-featured understanding of and a

comprehensive framework for generating covering arrays with genetic algorithms.

We anticipate that this will yield well-understood, efficient, and effective methods for

performing combinatorial testing on highly configurable, modern software systems.

Since the approaches presented in this paper and proposed as part of future work are

generally applicable, we also intend to use them to improve other search-based

techniques (e.g., simulated annealing [7]), thus enabling us to complement and extend

prior work that uses other difficult-to-configure methods for combinatorial testing.

References

1 Changhai Nie, Hareton Leung, A Survey of Combinatorial Testing, ACM Computing

Surveys, 43(2), 2011.

2 Syed A. Ghazi, Moataz A. Ahmed, Pair-wise Test Coverage Using Genetic Algorithms, In

Proc. of the Congress on Evolutionary Computation, 2003.

3 Toshiaki Shiba, Tatsuhiro Tsuchiya, Tohru Kikuno, Using Artificial Life Techniques to

Generate Test Cases for Combinatorial Testing, In Proc. of the 28th Annual International

Computer Software and Applications Conference, 2004.

4 James D. McCaffrey, An Empirical Study of Pairwise Test Set Generation Using a Genetic

Algorithm, In Proc. of the 7th International Conference on Information Technology, 2010.

5 Mats Grindal, Birgitta Lindström, Jefferson Offutt, Sten F. Andler, An Evaluation of

Combination Strategies for Test Case Selection, Empirical Software Engineering, 11(4),

2006.

6 Apache Hadoop, http://hadoop.apache.org/, Date accessed: July 22, 2011.

7 Brady J. Garvin, Myra B. Cohen, Matthew B. Dwyer, Evaluating Improvements to a

Meta-heuristic Search for Constrained Interaction Testing, Empirical Software Engineering,

16(1), 2011

