
Using Synthetic Test Suites to Empirically Compare
Search-Based and Greedy Prioritizers

Zachary D. Williams
Department of Computer Science

Allegheny College
williaz@allegheny.edu

Gregory M. Kapfhammer
Department of Computer Science

Allegheny College
gkapfham@allegheny.edu

ABSTRACT
The increase in the complexity of modern software has led
to the commensurate growth in the size and execution time
of the test suites for these programs. In order to address
this alarming trend, developers use test suite prioritization
to reorder the test cases so that faults can be detected at
an early stage of testing. Yet, the implementation and eval-
uation of greedy and search-based test prioritizers requires
access to case study applications and their associated test
suites, which are often difficult to find, configure, and use
in an empirical study. This paper presents two types of
synthetically generated test suites that support this process
of experimentally evaluating prioritization methods. Using
synthetic test suites affords greater control over test case
characteristics and supports the identification of empirical
trends that contradict the established wisdom about search-
based and greedy prioritization. For instance, we find that
the hill climbing algorithm often exhibits a lower time over-
head than the greedy test suite prioritizer while producing
test orderings with comparable effectiveness scores.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Experimentation, Performance

Keywords: search-based and greedy test prioritization

1. INTRODUCTION
Software developers often introduce defects during the im-

plementation process. Regression testing methods establish
a confidence in the correctness of and isolate defects within
a program by running a collection of tests known as a test
suite. Since regression testing can be very time consuming,
testers use search-based and greedy prioritization techniques
to produce a test ordering that will reveal faults earlier in
the suite’s execution than would otherwise be possible.

Suppose that a test suite T = 〈t1, t2, t3, . . . , tn〉 covers the
set of requirements R(T) = {r1, r2, r3, . . . , rm}. Each test
case ti ∈ T is associated with the non-empty set R(ti) ⊆
R(T) [1, 5]. During the empirical study of search-based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10,July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0073-5/10/07 ...$10.00.

Prioritization Technique

E
xe

cu
tio

n
T

im
e

(s
ec

)

20
40
60
80

100

GRD HC

0.5 1 1.5
200

20
40
60
80
100

0.5 1 1.5
200

20
40
60
80

100
0.5 1 1.5

200

Figure 1: Execution Time - Fully Random.

and greedy test suite prioritizers, researchers often use the
T and R(T) associated with real-world case study applica-
tions. Yet, this practice can be difficult and time consuming
because of the need to tailor prototype test reordering tools
for complex real-world programs. Furthermore, some small
case study applications may not be representative of all real-
world programs, thus hindering empirical investigations of
the efficiency and effectiveness of approaches to testing. The
use of real-world programs also prohibits the experimenter
from easily controlling the size of the test suite T and the
coverage patterns within R(T). Ultimately, the lack of a
wide variety of test suites hinders the ability of researchers
to quickly compare and contrast the plethora of newly de-
veloped techniques for test prioritization (e.g., [1, 3, 4, 5]).

Synthetic Test Suites. Using efficiently generated syn-
thetic test suites to study search-based and greedy prioritiz-
ers enables experimenters to easily establish baseline results
and control the key characteristics of the tests [2]. As such,
this paper describes two simple methods for generating syn-
thetic test suites and demonstrates how they reveal funda-
mental trade-offs in test prioritization techniques. We used
two parameters to create the synthetic test suites: require-
ment factor Fr and coverage point factor Fc. For a chosen
test suite size, Fr controls how many requirements the gen-
erated test suite will have, such that |R(T)| = Fr × |T |.
After setting the size of the test suite and requirement set,
we use Fc to define the number of times the requirements
are covered, denoted C, as a fraction of the total number of
possible coverage points, so that C = Fc × |R(T)| × |T |.

Prioritization Technique

C
ov

er
ag

e
E

ffe
ct

iv
en

es
s

(C
E

)

0.80
0.85
0.90
0.95
1.00

GRD HC

0.5 1 1.5 2
50 100 200

GRD HC

0.5 1 1.5 2
50 100 200

GRD HC

0.5 1 1.5 2
50 100 200

GRD HC

0.5 1 1.5 2
50 100 200

0.5 1 1.5 2
50 100 200

0.5 1 1.5 2
50 100 200

0.5 1 1.5 2
50 100 200

0.80
0.85
0.90
0.95
1.00

0.5 1 1.5 2
50 100 200

0.80
0.85
0.90
0.95
1.00

0.5 1 1.5 2
50 100 200

0.5 1 1.5 2
50 100 200

0.5 1 1.5 2
50 100 200

0.5 1 1.5 2
50 100 200

0.1 0.25 0.5

Figure 2: Coverage Effectiveness Values for all Coverage Point Factors - Controlled Random.

As an example, suppose that T = 〈t1, t2, t3, t4〉 and we set
Fr = 1, thereby stipulating that R(T) = {r1, r2, r3, r4}. If
we specify Fc = 0.5, then we know that C = 0.5× 4× 4 = 8
and thus |R(t1)|+|R(t2)|+|R(t3)|+|R(t4)| = 8. That is, we
use Fc to designate that the four requirements will be cov-
ered a total of eight times, with each test covering roughly
the same number of requirements. To complement this con-
trolled approach that necessitates the use of two parameters,
we also developed a fully random test suite generator that
only uses Fr to manage the size of T andR(T) and allows the
location and number of coverage points to vary randomly.

2. EMPIRICAL STUDY
Techniques. In order to demonstrate the utility of syn-

thetically generated coverage reports we used them to study
different prioritization methods. The experiment considered
a search-based hill climber (HC) and a greedy algorithm
(GRD) for prioritization because they are both simple to
implement and relatively efficient to execute, thus making
them widely used in practice [3]. These algorithms are a
good choice for an initial comparison because prior experi-
mental results showed that greedy methods commonly have
little variability in time overhead and often produce effec-
tive test orderings, while searched-based methods may lack
uniformity in their execution times and construct prioritiza-
tions with modest effectiveness ratings [1, 3, 5].

GRD iteratively selects the next-best test case according
to a metric that computes the ratio of cost and coverage for
each test, whereas HC employs a first ascent hill climbing
approach [1, 3, 4]. HC uses either a “swap-first” or “swap-
last” technique to generate a neighborhood for a given test
suite. Swap-first switches the first test with each remain-
ing test in the suite, thus creating a neighborhood of new
orderings (with the exception of focusing on the last test,
swap-last proceeds in an analogous fashion). After choosing
a starting test suite, the first ascent (FA) algorithm finds
the first neighbor with a higher effectiveness score and then
generates a new neighborhood from that ordering. This pro-
cess continues until no better ordering can be found. Pick-
ing swap-first, we consider FA instead of the steepest ascent
(SA) method that examines every neighbor because FA is
more efficient and only marginally less effective than SA [1].

Results. We used execution time to measure the effi-
ciency of the prioritization techniques and selected the higher-

is-better coverage effectiveness (CE) metric to gauge the
quality of the prioritized suite [5]. For both the fully ran-
dom and controlled random test suites, the empirical study
reveals that HC was often faster than GRD for suites with
more than 200 tests. Figure 1 shows this trend for the fully
random suites, with the error bars in the graph denoting
one standard deviation from the mean of the time to exe-
cute the prioritizers. The bars at the top of these graphs are
“shingles”designed to provide information about the charac-
teristics of the test suite. The upper level of shingles is the
number of tests, |T | = 200, while the lower level shows the
requirement factor, Fr ∈ {0.5, 1, 1.5}. This graph contra-
dicts the popular notion that greedy algorithms are faster
than search-based methods by showing that HC’s arithmetic
means for prioritization time are lower than those of GRD.

As in Figure 1, the shingles in Figure 2 display |T | on the
top and Fr below, with each shaded bar representing a differ-
ent coverage point factor Fc ∈ {0.1, 0.25, 0.5}. These graphs
demonstrate that when Fc = 0.1 and thus each test only cov-
ers a few requirements, GRD is more effective than HC. We
note that the same result generally holds for Fc = 0.25, al-
though the trend is less pronounced. Yet, when Fc increases
to 0.5, HC is competitive with GRD across a wide range of
values for |T | and |R(T)|. Since Figure 1 shows that HC can
often be more efficient than GRD, albeit with more variabil-
ity, these results suggest that search-based methods may be
gainfully employed by prioritizing moderate size suites that
repeatedly cover the requirements. Thus, we intend to de-
velop new generators and conduct additional experiments
since these outcomes suggest that synthetic suites support
the identification of meaningful trade-offs in the efficiency
and effectiveness of search-based and greedy prioritizers.

3. REFERENCES
[1] A. Conrad, R. S. Roos, and G. M. Kapfhammer. Empirically

studying the role of selection operators during search-based test
suite prioritization. In GECCO, 2010.

[2] F. Haftmann, D. Kossmann, and E. Lo. A framework for efficient
regression tests on database applications. The VLDB Journ.,
16(1), 2007.

[3] Z. Li, M. Harman, and R. M. Hierons. Search algorithms for
regression test case prioritization. Trans. on Softw. Eng., 33(4),
2007.

[4] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test cases
for regression testing. Trans. on Softw. Eng., 27(10), 2001.

[5] A. M. Smith and G. M. Kapfhammer. An empirical study of
incorporating cost into test suite reduction and prioritization. In
SAC, 2009.

