
Poster: Interactive Coverage Effectiveness Multiplots for Evaluating
Prioritized Regression Test Suites

Adam M. Smith† ∗ Joshua J. Geiger† Gregory M. Kapfhammer‡ Manos Renieris◦ G. Elisabeta Marai†

†Department of Computer Science
University of Pittsburgh

‡Department of Computer Science
Allegheny College

◦Google

ABSTRACT
Software testing increases confidence in the correctness of an ap-
plication’s source code. Altering a test suite’s execution order en-
ables earlier detection of defects and allows developers to fix errors
sooner. The many existing prioritization methods produce differ-
ent possible test suite orders from which to choose. We propose,
implement in a free and open source system, and informally eval-
uate Interactive Coverage Effectiveness Multiplots, an interactive
visualization technique that allows software testers to quickly filter,
appraise and compare the effectiveness of many test suite orders.
Preliminary results show that researchers, students, and practition-
ers in the field of software testing find the system useful.

1 INTRODUCTION
Developers may introduce errors while implementing software sys-
tems. In an attempt to isolate defects and gain confidence in the
correctness of a program, developers often run a test suite T =
〈t1, t2, t3, . . . , tn〉. If a test fails, then it is likely that a defect is
present in the source code executed by the test. As the program
grows in size and number of features, engineers write new tests. In
an effort to ensure that the new features do not negatively impact
correctness, developers perform regression testing by re-running a
suite containing both the existing and newly added tests.

The inclusion of new tests gradually increases the size of the test
suite until its execution time may become prohibitively expensive.
Test suite prioritization methods create an order of the tests that is
more likely to locate defects earlier in the test execution process
[6, 7]. Table 1 shows an example of a test suite with 4 tests and 5
requirements where a checkmark in a cell (ti, rj) means that test ti

covers the requirement rj . If we execute the test suite in the order
T = 〈t1, t2, t3, t4〉, then it does not cover all of the requirements
until 8 time units have passed. Yet, if the test suite runs in the re-
verse order, T = 〈t4, t3, t2, t1〉, it covers all of the requirements in
4 time units. Test orders that cover all of the requirements sooner
often support earlier fault detection, and are thus of particular inter-
est to software developers.

Normally leveraging static visualizations and tables of numerical
scores, testers use metrics like coverage effectiveness (CE) to rate a
test suite based on how fast it covers each requirement rj [4]. The
cumulative coverage step function, denoted C(T, l), allows testers
to determine how many requirements T covers after l time units
(Figures 1 and 2). The CE score is the area under C(T, l) divided
by the area under the ideal test suite function shown by a dashed
line in Figure 1 (i.e., an ideal suite immediately covers all require-
ments). Falling exclusively between 0 and 1, the “higher is better”
CE metric enables testers to compare different orders of T .

Since finding the optimal test suite by generating and evaluat-
ing all n! possible orders is too expensive, multiple prioritization
schemes have been proposed for efficiently constructing new test

∗e-mail: ams292@cs.pitt.edu

r1 r2 r3 r4 r5 Execution Time
t1 X X X X 4
t2 X X 1
t3 X 1
t4 X X 2

Table 1: Example of a Test Suite. Test orderings cover the require-
ments at different rates, leading to variations in fault detection.

Testing Time

. . .
Co

ve
re

d 
Te

st 
Re

qs

PSfrag replacements

t1 Done tn−1 Done

tn Done

Cover R(t1)Cover
Sn−1

i=1 R(ti)

Cover R(T )

Area =

Z time(T )

0

C(T, l)
C

(T
,l
)

(l)

Figure 1: Calculating Coverage Effectiveness (CE). The CE score is
the area under C(T, l) divided by the area under the ideal test suite
function (represented by a dashed line). R(ti) denotes the set of
requirements covered by a test case ti.

orders [7]. Yet, it is challenging for testers to pick the best priori-
tizer for a given test suite and set of requirements since these meth-
ods have many configurations (e.g., greedy choice metrics pick the
next test according to either test cost, coverage, or the cost to cov-
erage ratio). Testers often become overwhelmed when they solely
rely upon static cumulative coverage multiplots and/or large tables
of CE scores and test orders. Since the existing approaches to vi-
sualization assist during different development processes [2, 3, 5],
we introduce an interactive visualization system that aids testers in
evaluating and selecting a prioritized regression test suite.

2 VISUALIZATION AND INTERACTION

Figure 3 shows a screenshot of the visualization interface that uses
interactive CE multiplots to help testers to evaluate different orders
of a test suite. Drawing inspiration from features demonstrated by
Becker et al. [1] and a NY Times interactive visualization of mar-
ket statistics1, our tool allows users to interactively pick prioritizers
and compare the CE values and the actual order of the resulting
test suites. The visualization provides details on demand, thus ob-
viating the need for large and confusing legends and data tables.
In an effort to both (i) encourage empirical study on the use of vi-
sualization during test suite prioritization and (ii) enable software
testing practitioners to quickly find the best test suite order for their
own applications, we have made the free and open source Reduce
And prIoritize SuitEs (RAISE) system available for download at
http://raise.googlecode.com/.

1http://www.nytimes.com/interactive/2008/10/11/business/20081011 BEARMARKETS.html



Figure 2: Static Coverage Effectiveness Multiplot. Multiple lines
severely clutter the visualization, making evaluation and comparison
of the prioritized test suites nearly impossible.

The visualization interface uses two panels (Figure 3). The left
panel provides information about the test suite and lets the user se-
lect which prioritizer’s results will be displayed in the multiplot.
Clicking on a toggle button in the cell table enables or disables the
display of information about the test suite order resulting from the
use of a specific greedy choice metric (organized horizontally) and
prioritization method (shown vertically). To support rapid identifi-
cation of details about the test order, each toggle button in the cell
table is color coded to match its cumulative coverage step function
in the multiplot. Below the table, the system contains a slider bar
that allows a tester to choose a number of random prioritizations
that appear as thin gray lines in the multiplot. The region below the
slider bar gives the average CE value and standard deviation of CE
scores for the current random sample. The user interface accesses
CE values from all of the previously generated test suites in order
to give the running average and standard deviation.

The right panel provides a multiplot of cumulative coverage step
functions for all of the currently chosen methods. As in Figures 1
and 2, the multiplot uses the vertical axis to display the number of
covered requirements and the horizontal axis to show the test suite
execution time. Since all of the toggle buttons in the left panel
matrix are currently filled in Figure 3, the multiplot contains cover-
age functions for all greedy choice metrics and prioritization tech-
niques. Since a multiplot of too many functions severely clutters the
visualization, RAISE highlights a line and shades the area under it
when a user performs a mouse-over on a function curve. Mouse-
over events also reveal the chosen prioritization method, greedy
choice metric, and final coverage effectiveness score.

3 EVALUATION

We conducted two informal studies to gather preliminary evidence
about the benefits and drawbacks associated with the use of inter-
active visualization during regression testing. In the first study, a
senior researcher in regression testing was asked to use the tool and
answer a series of questions. The researcher correctly answered
questions such as “How does the use of different greedy choice
metrics impact the CE score of orderings produced by the four pri-
oritizers?” Feedback gathered during this study included:

“It was challenging for me to analyze the raw data set and the
large collection of static plots. RAISE helped me to quickly

Figure 3: Interactive Coverage Effectiveness Multiplot in RAISE. Vi-
sualization using interactive multiplots and details-on-demand allows
the user to quickly filter, evaluate and compare prioritized test suites.

identify the prioritizer that produced the test suite with the high-
est CE score. I think that my students and industrial colleagues
would benefit from applying this tool to their test suites.”

During the second study, we asked two master’s level students
doing research in software testing to independently download, in-
stall, and use RAISE. After learning how to use the interactive visu-
alization, the students abandoned their static graphs and data tables
and used RAISE until the completion of their master’s thesis. The
students often employed the interactive visualization to determine
the best configuration of new regression testing methods for pro-
grams that process eXtensible Markup Language (XML) files.

4 CONCLUSION AND FUTURE WORK
This paper presents an interactive visualization that assists software
developers during the evaluation of a prioritized regression test
suite. We proposed, implemented in a system, and informally eval-
uated Interactive Coverage Effectiveness Multiplots, a visualization
technique that allows software developers to quickly filter, appraise
and compare prioritized test suites. Available as a free and open
source tool, the system supports the activities of researchers, stu-
dents, and practitioners in the field of software testing. Encouraged
by the anecdotal evidence demonstrating that users find RAISE to
be helpful, we intend to add new features and conduct more experi-
mental studies (e.g., integrating and studying the use of test metrics
besides CE). Ultimately, we anticipate that RAISE will serve as a
simple and valuable tool in a comprehensive framework supporting
all of the phases in the regression testing process.

REFERENCES
[1] R. A. Becker, S. G. Eick, and A. R. Wilks. Visualizing Network Data.

IEEE Trans. on Visual. and Comput. Graph., 1:16–28, 1995.
[2] J. A. Cottam, J. Hursey, and A. Lumsdaine. Representing unit test data

for large scale software development. In Proc. of 4th SoftVis, 2008.
[3] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test informa-

tion to assist fault localization. In Proc. of 24th ICSE, 2002.
[4] G. M. Kapfhammer and M. L. Soffa. Using coverage effectiveness to

evaluate test suite prioritizations. In Proc. of WEASELTech, 2007.
[5] S. Mukherjea and J. T. Stasko. Toward visual debugging: integrating

algorithm animation capabilities within a source-level debugger. ACM
Trans. Comput.-Hum. Interact., 1(3), 1994.

[6] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test
cases for regression testing. IEEE Trans. on Soft. Engin., 27(10):929–
948, 2001.

[7] A. M. Smith and G. M. Kapfhammer. An empirical study of incorpo-
rating cost into test suite reduction and prioritization. In Proc. of 24th
SAC, 2009.


