
Test Suite Reduction and Prioritization with Call Trees

Adam Smith, Joshua Geiger, and
Gregory M. Kapfhammer

Department of Computer Science
Allegheny College

gkapfham@allegheny.edu

Mary Lou Soffa
Department of Computer Science

University of Virginia
soffa@cs.virginia.edu

ABSTRACT
This paper presents a tool that (i) constructs tree-based
models of a program’s behavior during testing and (ii) em-
ploys these trees while reordering and reducing a test suite.
Using either a dynamic call tree or a calling context tree, the
test reduction component identifies a subset of the original
tests that covers the same call tree paths. The prioritiza-
tion technique reorders a test suite so that it covers the call
tree paths more rapidly than the initial test ordering. In
support of program and test suite understanding, the tool
also visualizes the call trees and the coverage relationships.
For a chosen case study application, the experimental re-
sults show that call tree construction only increases testing
time by 13%. In comparison to the original test suite, the
experiments show that (i) a prioritized suite achieves cover-
age much faster and (ii) a reduced test suite contains 45%
fewer tests and consumes 82% less time.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Experimentation, Languages, Verification

Keywords
regression testing, call trees

1. INTRODUCTION
Modern object-oriented programs exhibit complex pat-

terns of behavior during testing and execution. A call tree
contains nodes and edges that represent a program’s method
invocations. A dynamic call tree (DCT) includes a node for
each method call, preserving full execution context at the
expense of having unbounded depth and breadth. Alterna-
tively, a calling context tree (CCT) has bounded depth and
breadth because it coalesces nodes and uses back edges when
methods are recursively or iteratively invoked [1]. Even
though the DCT and CCT are normally used for program
profiling, recent approaches to regression testing use call
trees to reduce a test suite as well [4, 5].

This paper describes a comprehensive framework that
builds and analyzes call trees in order to perform both test

Copyright is held by the author/owner(s).
ASE’07,November 4–9, 2007, Atlanta, Georgia, USA.
ACM 978-1-59593-882-4/07/0011.

suite reduction and prioritization. The collection of testing
components includes a call tree constructor that instruments
the program under test with probes to create a DCT or a
CCT. In an effort to control both the size and execution
time of a test suite, the reduction technique identifies a sub-
set of the original tests that covers the same call tree paths.
The prioritization tool reorders a test suite so that it covers
the tree paths more effectively than the initial test order-
ing. The tool also visualizes the call trees and the coverage
relationships so that it is easier to understand the run-time
behavior of the program and the tests.

We distinguish our tool from prior testing techniques that
use call trees (e.g., [4, 5]) because our regression tester per-
forms reduction and prioritization for object-oriented pro-
grams. In contrast, McMaster and Memon focus on reduc-
ing the test suites for procedural and graphical user interface
(GUI) applications. The current implementation contains
five algorithms that perform both reduction and prioritiza-
tion: Harrold, Gupta, Soffa (HGS) [2], overlap-aware greedy
[9], non-overlap-aware greedy [7], delayed greedy [8], and
k-way greedy [3]. Our testing framework enhances these
previously developed schemes by considering each test’s ex-
ecution time. A reduced test suite is characterized by how
well it decreases both testing time and the total number of
tests. The framework evaluates a prioritization according to
a metric called coverage effectiveness.

2. REGRESSION TESTING TOOL
Figure 1 illustrates the use of call trees to reduce and pri-

oritize a test suite (a grey background highlights the mod-
ules that are important contributions). Currently, the tool
analyzes JUnit 3.8.1 test suites and programs written in the
Java 1.5 programming language. The call tree constructor
uses either static or dynamic instrumentation techniques to
insert probes into the program under test. These probes exe-
cute before and after all of the methods and tests in order to
build the call tree. We implemented the call tree constructor
with the Java 1.5 and AspectJ 1.5 programming languages.
The call tree construction procedure uses aspect-oriented
pointcuts and before and after advice in order to construct
either a DCT or a CCT. The tree constructor also employs
aspects to (i) initialize the call tree before the first test case
runs, (ii) store the tree prior to the conclusion of testing,
and (iii) measure the execution time of each test.

The tool builds a call tree that contains a node for every
test case invocation that occurs during testing. Each path
under a test case node is a unique test requirement because
it represents a series of method calls that took place during
testing. After the creation of the call tree, a reduction algo-

Test Suite
 and Program

Call Tree
 Construction

Call Tree

Reduction or
 Prioritization

Test
 Results

Modified Test Suite
 and Program

Test Suite
 Execution

 Repeat

Start Testing

End Testing

 Repeat

Figure 1: Reduction and Prioritization Tool.

rithm analyzes this tree in order to produced a modified test
suite that is guaranteed to cover all tree paths with (hope-
fully) fewer test cases. The HGS reducer analyzes the test
coverage information and initially selects all of the tests that
cover a single requirement [2]. In the next iteration, HGS
examines all of the requirements that are covered by two
tests and it selects the test case with the greatest coverage.
HGS continues to select tests until it obtains a minimized
suite that covers all of the tree paths.

The overlap-aware greedy reducer uses the approximation
algorithm for the minimal set cover problem [9]. Greedy re-
duction with overlap awareness iteratively selects the most
cost effective test case for inclusion in the reduced test suite
(i.e., evaluating each test according to the ratio of time to
coverage means that low values indicate good cost effective-
ness). During every successive iteration, the overlap-aware
greedy algorithm re-calculates the cost effectiveness for each
leftover test according to how well it covers the remain-
ing test requirements. This reduction technique terminates
when the reduced test suite covers all of the call tree paths
that the initial tests cover. The k-way greedy algorithm op-
erates in an analogous manner except that it considers every
possible group of k tests during each iteration [3].

The delayed greedy approach proceeds in a similar fash-
ion while also exploiting information concerning both the
requirements that a test case covers and the tests that cover
a specific call tree path [8]. Since each of these reduction
methods leaves the excess tests in the initial test suite, the
prioritization scheme identifies a test reordering by repeat-
edly reducing the residual tests. The prioritizer’s invoca-
tion of the overlap-aware reducer continues until the original
suite of tests is empty. The non-overlap-aware prioritizer
sorts the tests by cost, coverage, or cost effectiveness [7].
When provided with a target size for the reduced test suite,
the non-overlap-aware reducer selects from the sorted tests
until the modified test suite reaches the size limit (unlike
the other approaches to reduction, this method does not
guarantee the coverage of every call tree path).

The testing tool supports repetition at two distinct lo-
cations, as evidenced in Figure 1. The same modified test
suite can be leveraged whenever either the execution envi-
ronment is different or the changes to the program under
test are minimal. If the program modifications are likely

0 2000 4000 6000 8000
Time H ms L

0

20

40

60

80

C
o
v
e
r
e
d

P
a
t
h
s

Hcou
n
t

L GradeBook - Original

0 2000 4000 6000 8000
Time H ms L

0

20

40

60

80

C
o
v
e
r
e
d

P
a
t
h
s

Hcou
n
t

L GradeBook - Original

0 2000 4000 6000 8000
Time H ms L

0

20

40

60

80

GradeBook - Prioritized

0 2000 4000 6000 8000
Time H ms L

0

20

40

60

80

GradeBook - Prioritized

Figure 2: Coverage Functions.

to result in execution behavior that is significantly dissimi-
lar from past behavior, then the entire testing process can
be repeated. When evaluating the quality of the original
and prioritized test suites, the framework uses a coverage
function that shows how the tests cover the tree paths over
time. As shown in Figure 2, a point on a coverage function
curve corresponds to the number of tree paths covered at
that time. A test suite’s coverage effectiveness (CE) is the
ratio between the area under its coverage function and the
coverage area of an ideal test suite that immediately covers
all of the paths. The value of CE falls inclusively between 0
and 1, with a high value indicating a high quality test suite.

Due to space constraints, we focus on the reduction and
prioritization of the test suite for a GradeBook application
containing 1455 non-commented source statements (NCSS),
147 methods, and 10 classes. The experiments reveal that
the call tree construction probes increase test suite execu-
tion time by 12.3%. When using the overlap-aware greedy
algorithm, reduction decreases test suite size by 45% and
testing time by 82%. The results also demonstrate that
the coverage effectiveness of the original test suite was .38
while the prioritized test suite achieves a CE value of .96.
The coverage function plots in Figure 2 reveal that the pri-
oritized tests cover the ninety unique call tree paths much
more rapidly than the original suite. In summary, the exper-
iments suggest that this tool supports efficient and effective
regression testing. In future work, we intend to incorpo-
rate additional reduction and prioritization algorithms and
include new evaluation metrics such as the average percent-
age of faults detected (APFD) [6]. Evaluation of the tool
will continue as we test additional case study applications.

3. REFERENCES
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware

performance counters with flow and context sensitive
profiling. In Proc of PLDI, pages 85–96, 1997.

[2] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Transactions on
Software Engineering and Methodology, 2(3):270–285, 1993.

[3] Z. Li, M. Harman, and R. Hierons. Search algorithms for
regression test case prioritization. IEEE Transactions on
Software Engineering, 33(4):225–237, 2007.

[4] S. McMaster and A. Memon. Call stack coverage for test
suite reduction. In Proc of 21st ICSM, pages 539–548, 2005.

[5] S. McMaster and A. Memon. Call stack coverage for GUI
test-suite reduction. In Proc of 17th ISSRE, pages 33–44,
2006.

[6] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test
cases for regression testing. IEEE Transactions on Software
Engineering, 27(10):929–948, 2001.

[7] M. Rummel, G. M. Kapfhammer, and A. Thall. Towards the
prioritization of regression test suites with data flow
information. In Proc of 20th SAC, pages 1499–1504, 2005.

[8] S. Tallam and N. Gupta. A concept analysis inspired greedy
algorithm for test suite minimization. In Proc of 6th
PASTE, pages 35–42, 2005.

[9] V. V. Vazirani. Approximation Algorithms. Springer-Verlag
New York, Inc., New York, NY, USA, 2001.

Start Testing

Before
 Probe

End Testing

 Continue
 Testing

Call Tree
 Storage

Call Tree

Call Tree

Update

Method or Test
 Invocation

After
 Probe

Update

Call Tree
 Initialization

Figure 3: Call Tree Construction Probes.

APPENDIX

A. DEMONSTRATION OVERVIEW
The demonstration will use slides, animations, and full

color graphics in order to explain call trees and regression
testing. The slides will motivate the need for call tree-based
reduction and prioritization. During the demonstration, we
will show how the instrumentation probes construct a dy-
namic call tree and a calling context tree. We will furnish
animations that explain how the reduction and prioritiza-
tion algorithms create the modified test suite. The presen-
tation will also include insights into the goals that guided
the design and implementation of the testing framework.

During the testing of several case study applications, we
will explain the relevant configurations and commands. Fi-
nally, the presentation will conclude by reviewing the ex-
perimental results that highlight the trade-offs in the effi-
ciency and effectiveness of the regression testing techniques.
We will point out important empirical trends with appropri-
ate data visualizations such as bar charts and scatter plots.
Throughout the demonstration, we will regularly use visual-
izations (e.g., call trees, coverage reports, and graphs) that
were automatically generated by the testing framework.

B. REGRESSION TESTING DETAILS

B.1 Instrumentation Techniques
The presentation will furnish insights into our approach

to assembling call trees with aspect-oriented programming
(AOP) techniques and AspectJ. The call tree constructor
uses instrumentation probes that are inserted in either a
static or a dynamic fashion. The static instrumentor places
the probes into the program under test before test suite exe-
cution whereas dynamic instrumentation inserts the probes
during testing. The static instrumentor can operate in a
batch mode that inserts the probes into multiple applica-
tions during a single run. Static instrumentation must occur
each time the program under test changes. The load-time
dynamic instrumentor introduces the probes on a per-class
basis with either the JVM tools interface (JVMTI) or a cus-
tom class loader. The use of dynamic instrumentation im-
proves the flexibility of testing at the cost of a potential
increase in the time overhead of test suite execution.

A

C F B B H

D E G

G

G

I

H

Number of Nodes = 13, Number of Edges = 12

(a)

A

C F B H

D E G I

Number of Nodes = 9, Number of Edges = 10

(b)

Figure 4: Examples of the (a) DCT and (b) CCT.

B.2 Call Trees
Using Figure 3, the demonstration will illustrate how the

probes build a call tree. Upon completing the call tree’s
initialization, the tree constructor executes a probe before
and after the execution of each method and test case. The
testing tool can construct either a DCT or a CCT. The
DCT records the complete execution context while incur-
ring low probe overhead and moderate to high tree storage
costs. Alternatively, the CCT reduces tree space overhead
at the expense of slightly increasing the execution time of
the probes. Even though the CCT coalesces certain nodes
in order to minimize space overhead, it still preserves all
unique method calling contexts.

Figure 4(a) provides an example of a DCT with thirteen
nodes and twelve edges. In this tree a node with the label
“A” corresponds to the invocation of the method A and the
edge A → B indicates that method A invokes method B.
The existence of the two DCT edges A → B reveals that
method A repeatedly invokes method B. In the example
from Figure 4(a), the DCT represents the recursive invo-

T1

P1 P4

T2

P2

T3

P3

T4 T5

P5

T6

P7

T7T8 T9

P6

T10T11T12

Ti → Pj means that test Ti covers path Pj

Figure 5: Overlap in the Coverage of Call Tree Paths.

cation of method G by chaining together edges of the form
G → G. The CCT in Figure 4(b) coalesces the DCT nodes
and yields a 30.8% reduction in the number of nodes and a
16.7% decrease in the number of edges. For example, the
CCT combines the two B nodes in the DCT into a single
node. The CCT also coalesces nodes and introduces back
edges when a method calls itself recursively (e.g., the DCT
path G → G → G) or a method is repeatedly executed (e.g.,
the DCT path H → I → H). Figure 4(b) shows that the tool
depicts a CCT back edge with a dashed line.1

B.3 Reduction and Prioritization Examples
A test suite often consists of test cases that overlap in their

coverage of the unique call tree paths. The presentation will
use Figure 5 to show how seven separate test requirements
are covered by twelve unique test cases. The testing tool
automatically analyzes the call tree in order to construct this
type of tree-based summary of the coverage relationships. In
this tree, a directed edge from a test case Ti to a tree path Pj

indicates that Pj is covered by Ti (or, that Ti covers Pj). For
example, an edge between test case T8 and path P2 indicates
that P2 is covered by T8 (alternatively, T8 covers P2). Since
the test suite in Figure 5 contains a significant amount of
overlap in test requirement coverage, it is a candidate for
reduction. Inspection of Figure 5 reveals that executing a
reduced test suite containing T2, T3, T6, and T9 instead of
the original twelve tests will still cover all of the seven paths
(other reductions are also possible for this test suite).

Using graphical and tabular examples, the demonstra-
tion will also explain each of the reduction and prioriti-
zation techniques. For example, suppose that the non-
overlap-aware greedy prioritizer reorders a test suite T =
〈T1, T2, T3〉, as described in Figure 6(a). Reordering T ac-
cording to cost gives the initial ordering 〈T1, T2, T3〉 since T1

consumes one time unit and T2 and T3 both consume two
time units (for this example, we resolve ties by creating the
order 〈Ti, Tk〉 when i ≤ k or 〈Tk, Ti〉 if i > k). Prioriti-
zation according to tree path coverage yields the ordering
〈T3, T1, T2〉 because T3 covers six requirements and T1 and
T2 both cover five. Figure 6(b) also shows that prioritization
by the cost to coverage ratio creates the ordering 〈T1, T3, T2〉.

B.4 Coverage Effectiveness
Using a different test suite T = 〈T1, T2, T3〉 that covers

a total of five call tree paths, the presentation will illus-
trate how the tool calculates coverage effectiveness. Fig-
ure 7 shows that test T2 takes ten seconds to execute while

1The introduction of one or more back edges into a CCT forms
cycle(s). Even though a CCT is not strictly a tree, the tree edges
are distinguishable from the back edges [1].

Test Case Cost Coverage Ratio
T1 1 5 1/5
T2 2 5 2/5
T3 2 6 2/6

(a)

Effectiveness Metric Test Case Order
Cost T1, T2, T3

Coverage T3, T1, T2

Ratio T1, T3, T2

(b)

Figure 6: The Cost and Coverage of a Test Suite.

Test Case Execution Time (sec)
T1 5
T2 10
T3 4

Total Testing Time = 19 seconds

Figure 7: Test Suite Execution Time.

T1 and T3 respectively consume five and four seconds during
test suite execution. In this example, we assume that test
T2 covers four requirements and T3 and T1 cover three and
two requirements, respectively. There are 3! = 3× 2× 1 = 6
different orderings in which we could execute this simple test
suite. In order to characterize the coverage effectiveness of a
test suite prioritization, Figure 8 plots the cumulative num-
ber of covered test requirements during the execution of T .
The shaded area under these coverage curves highlights the
effectiveness of a test ordering (i.e., a large shaded area sug-
gests that an ordering is highly effective).

We construct a coverage function with the assumption
that the tool marks a tree path as covered when one of
the path’s covering test cases terminates. For example, Fig-
ure 8(a) shows that the execution of T1 leads to the coverage
of two test requirements (i.e., P1 and P2) after five seconds
of test suite execution. Under the assumption that an ideal
test suite immediately covers all of the test requirements, we
define the coverage effectiveness of a test suite as the ratio
between its coverage area and the ideal coverage area.

The demonstration will employ the example in Figures 7
through 10 to demonstrate that prioritization can improve
the effectiveness of testing. For example, we see that the
test suite ordering T = 〈T1, T2, T3〉 yields a coverage area
of 36 and an effectiveness value of only .3789. Yet, visual

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T1 T2 T3

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T1 T2 T3

(a)

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T1 T3 T2

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T1 T3 T2

(b)

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T2 T1 T3

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T2 T1 T3

(c)

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T2 T3 T1

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T2 T3 T1

(d)

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T3 T1 T2

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T3 T1 T2

(e)

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T3 T2 T1

0 5 10 15 20
Time H sec L

0

1

2

3

4

5

C
o
v
e
r
e
d

T
e
s
t

R
e
q
s

Hcou
n
t

L T3 T2 T1

(f)

Figure 8: Coverage Effectiveness of Regression Test Suite Prioritizations.

inspection of the plots in Figures 8(e) and (f) suggest that
the test orderings T = 〈T3, T1, T2〉 and T = 〈T3, T2, T1〉 both
cover the requirements faster than any of the other order-
ings. Indeed, Figure 10 shows that these orderings have a
coverage effectiveness of .5789. The results also show that
different test orderings can lead to the same effectiveness
value. For example, Figure 10 indicates that the orderings
T = 〈T1, T2, T3〉 and T = 〈T2, T1, T3〉 have the same low
coverage effectiveness.

B.5 Design and Implementation Goals
Following the lead of successful software engineering tools

(e.g., Daikon [2]), we designed and implemented the testing
framework as a series of command-line tools. The presenta-
tion will discuss how we incorporated existing free and open
source software so that we could focus on the implemen-
tation and evaluation of the core testing techniques. For
example, the tool uses Graphviz [3] to show the call trees
and the coverage relationships. The framework leverages the
R package [4] to visualize the efficiency and effectiveness re-
sults with bar charts and scatter plots. R is also used to (i)
calculate the CE values for a test ordering and (ii) perform a
statistical analysis of the results with hypothesis testing and
linear regression. The tool executes a test suite with the JU-
nit framework. We implemented the testing techniques with
Java and used the eXtensible Markup Language (XML) for
all of the configuration files.

C. USING THE TESTING TOOL
The demonstration will also include a walk through of

the relevant configuration files and command-lines for run-
ning the testing components. First, we will run the orig-
inal test suite and note its execution time. Next, we will
execute the test suite while performing call tree construc-
tion. After storing the call tree, we will use a module that
analyzes the tree and invokes a reduction or prioritization
algorithm. Figure 11 provides an excerpt from the config-

Test Case Call Tree Paths
P1 P2 P3 P4 P5

T1 X X
T2 X X X X
T3 X X X

Figure 9: Path Coverage for a Test Suite.

Ordering Cov Area Cov Effectiveness
T1 T2 T3 36 .3789
T1 T3 T2 48 .5053
T2 T1 T3 36 .3789
T2 T3 T1 41 .4316
T3 T1 T2 55 .5789
T3 T2 T1 55 .5789

Ideal Coverage Area = 95

Figure 10: Test Coverage Effectiveness.

uration file for the regression testing component. In this
example, the tool stores the call tree in an XML file called
tree.TestGradeBook.xml.cct. This configuration will re-
duce GradeBook’s test suite with the overlap-aware greedy
algorithm. The useActualTestCosts tag indicates that the
time overhead for running each test case should be used dur-
ing reduction. Upon completion of the reduction procedure,
the demonstration will run the reduced test suite and show
the decrease in test suite execution time. Similar steps will
be taken to demonstrate the use of prioritization.

D. EMPIRICAL EVALUATION
We conducted experiments with the intent of measuring

the (i) time overhead of statically inserting the probes, (ii)
impact that static instrumentation has on the space over-
head of an application, (iii) time overhead associated with
assembling the call trees, and (iv) benefits associated with

FF PI RM ST TM GB All
Application

2

4

6

8

10

S
t
a
t
i
c

I
n
s
t
r
u
m
e
n
t
a
t
i
o
n

T
i
m
e

Hsec
L

FF PI RM ST TM GB All

4.391 4.404 4.396 4.394

5.169
5.583

8.687

(a)

Norm Sta -CCT Sta -DCT Dyn -CCT Dyn -DCT
Instrumentation Technique - Tree Type H GB L

2

4

6

8

10

12

14

T
C
M

T
i
m
e

Hsec
L

Norm Sta -CCT Sta -DCT Dyn -CCT Dyn -DCT

6.939

7.626
8.026

11.084
11.435

(b)

Figure 12: The Costs of Static and Dynamic Instrumentation.

<PerformReductionConfiguration>

<callTreeName>tree.TestGradeBook.xml.cct

</callTreeName>

<performType>ReduceGreedy</performType>

<useOverlap>true</useOverlap>

<useActualTestCosts>true</useActualTestCosts>

</PerformReductionConfiguration>

Figure 11: Excerpt from a Configuration File.

reduction and prioritization. The empirical study used six
Java applications that range in size from 548 to 1455 non-
commented source statements (NCSS). We always executed
the static instrumentor and the call tree constructor in ten
separate trials for each case study application and we re-
port an arithmetic mean and a standard deviation. We per-
formed all of the experiments on a GNU/Linux workstation
with kernel 2.6.11-1.1369, a dual core 3.0 GHz Pentium IV
processor with 1 MB of L1 cache, and 2 GB of memory.

In this appendix, we focus on analyzing the costs associ-
ated with constructing the call trees. During the demonstra-
tion, we will also furnish additional graphs about the perfor-
mance of the reduction and prioritization components. Fig-
ure 12(a) presents the time overhead associated with stat-
ically instrumenting the case study applications. Ten exe-
cutions of the instrumentor on the small StudentTracker

(ST - 622 NCSS) application yields a mean instrumentation
time of 4.4 seconds with a standard deviation of .04 seconds.
Figure 12 reveals that the static instrumentation of a large
case study application such as GradeBook takes 5.6 seconds.
Since we can instrument all six of the applications in less
than 9 seconds, the results in Figure 12(a) also suggest that
the batch mode is efficient.

Using Figure 12(b), the demonstration will compare the
costs of constructing the call tree with different types of in-
strumentation techniques. In this graph, “Norm” labels the
time required to execute GradeBook without instrumenta-
tion. The other bars in this graph show how the variation
of the instrumentation technique and the type of the call
tree impacts test suite execution time. The results indicate
that testing time only increases by 12.3% when the tool uses
statically inserted probes to create a CCT. It is also efficient

to assemble a DCT with static instrumentation since this
approach only raises the time overhead to about 8 seconds.
Finally, Figure 12(b) reveals that the flexibility of dynami-
cally inserting the probes comes at a cost (i.e., the Dyn-CCT
and Dyn-DCT configurations cause testing time to increase
by 59.7% and 64.7%, respectively).

E. CONCLUSIONS
During the conclusion of the demonstration, we will re-

view the important contributions of our regression testing
tool. In particular, our comprehensive framework is the first
to integrate a call tree constructor with five important al-
gorithms for performing test suite reduction and prioritiza-
tion. Since the tool handles JUnit test suites, we judge that
it will be very valuable to software engineering practitioners.
The testing tool will also be useful to researchers because it
contains modules that analyze and visualize the empirical
results. We intend to release the entire testing framework
under a free and open source license. We will make the
source code, binary distribution, and documentation of our
regression testing tool available for download after the Auto-
mated Software Engineering (ASE) 2007 conference. Please
consult the following Web site for more information about
the regression testing framework:

http://cs.allegheny.edu/~gkapfham/research/kanonizo/

Acknowledgments Robert S. Roos and Andrew Thall
provided valuable suggestions that improved the presenta-
tion and content of the paper.

F. APPENDIX REFERENCES
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware

performance counters with flow and context sensitive
profiling. In Proc of PLDI, pages 85–96, 1997.

[2] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants. Science of
Computer Programming, 2006.

[3] E. R. Gansner and S. C. North. An open graph visualization
system and its applications to software engineering. Software
— Practice and Experience, 30(11):1203–1233, 2000.

[4] R. Ihaka and R. Gentleman. R: A language for data analysis
and graphics. Journal of Computational and Graphical
Statistics, 5(3):299–314, 1996.

