
Towards the Prioritization of Regression Test Suites
with Data Flow Information

Matthew J. Rummel
rummelm@allegheny.edu

Gregory M. Kapfhammer
gkapfham@allegheny.edu

Andrew Thall
athall@allegheny.edu

Department of Computer Science
Allegheny College

ABSTRACT
Regression test prioritization techniques re-order the execu-
tion of a test suite in an attempt to ensure that defects are
revealed earlier in the test execution phase. In prior work,
test suites were prioritized with respect to their ability to
satisfy control flow-based and mutation-based test adequacy
criteria. In this paper, we propose an approach to regression
test prioritization that leverages the all-DUs test adequacy
criterion that focuses on the definition and use of variables
within the program under test. Our prioritization scheme is
motivated by empirical studies that have shown that (i) tests
fulfilling the all-DUs test adequacy criteria are more likely
to reveal defects than those that meet the control flow-based
criteria, (ii) there is an unclear relationship between all-DUs

and mutation-based criteria, and (iii) mutation-based test-
ing is significantly more expensive than testing that relies
upon all-DUs.

In support of our prioritization technique, we provide a
formal statement of the algorithms and equations that we
use to instrument the program under test, perform test suite
coverage monitoring, and calculate test adequacy. Further-
more, we examine the architecture of a tool that implements
our novel prioritization scheme and facilitates experimenta-
tion. The use of this tool in a preliminary experimental eval-
uation indicates that, for three case study applications, our
prioritization can be performed with acceptable time and
space overheads. Finally, these experiments also demon-
strate that the prioritized test suite can have an improved
potential to identify defects earlier during the process of test
execution.

1. INTRODUCTION
After a software system experiences changes in the form

of bug fixes or additional functionality, a software main-
tenance activity known as regression testing can be used
to determine if these changes introduced defects. The cre-
ation, maintenance, and execution of a regression test suite
helps to ensure that the evolution of an application does
not result in lower quality software. However, as noted by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05, March 13–17, 2005, Santa Fe, New Mexico.
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

Beizer, many software development teams might choose to
omit some or all of the regression testing tasks because they
often account for as much as one-half the cost of software
maintenance [1]. Moreover, the high costs of regression test-
ing are often directly associated with the execution of the
test suite [16]. Since some of the most well-studied software
failures, such as the Ariane-5 rocket and the 1990 AT&T
outage, can be blamed on the failure to test changes in a
software system [9], many techniques have been developed
to support efficient regression testing.

Regression test prioritization attempts to re-order a re-
gression test suite so that those tests with the highest pri-
ority, according to some established criterion, are executed
earlier in the regression testing process than those with lower
priority [4, 16]. By prioritizing the execution of a regression
test suite, these methods hope to reveal important defects in
a software system earlier in the regression testing process.
Several current prioritization techniques have used either
control flow-based (e.g., “branch coverage”) or mutation-
based test adequacy criteria [5, 17]. Yet, experiments have
shown that (i) tests that fulfill the all-DUs test adequacy
criteria are more likely to reveal defects than those that
satisfy the control flow-based criteria [11], (ii) there is an
unclear relationship between all-DUs and mutation-based
criteria [7], and (iii) mutation-based testing is significantly
more expensive than testing that relies upon all-DUs [4, 7].

In light of these observations, there is a clear need for a
prioritization approach that has the potential to be more
effective than those techniques that rely upon control flow
and mutation-based adequacy and is less costly than the
mutation-based schemes. In this paper, we focus on the
definition and use of program variables by employing the
all-DUs test adequacy criteria to prioritize a regression test
suite. Our approach is implemented in a tool, called Kanon-

izo, that prioritizes JUnit test cases and subsequently eval-
uates the effectiveness of these prioritizations. In summary,
the important contributions of this paper are as follows:

1. The description of a technique that uses data flow in-
formation to prioritize a regression test suite.

2. The formal statement of the algorithms and equations
that are used to instrument the program under test,
monitor coverage during test suite execution, and cal-
culate test adequacy.

3. An empirical evaluation of (i) the time and space over-
heads of our approach and (ii) the effectiveness of the
resulting prioritized test suites.

Test Case Faults

f1 f2 f3 f4 f5

T1 × ×

T2 × ×

T3 × × ×

T4 × × ×

T5 × ×

Figure 1: The Faults Detected by a Test Suite.

2. MOTIVATION
Normally, a software tester is not aware of the defect loca-

tions within the program under test. However, to make our
discussion more concrete, suppose that program P is tested
with test suite T and a priori knowledge of the faults within
P is available. Figure 1 shows an example of a simple test
suite that was initially described in [12]. In this example,
there are five faults that are revealed by certain test cases.
In this test suite, some tests isolate more faults than other
test cases. In particular, tests T3 and T4 are able to reveal
all of the faults within the program under test. Intuitively,
it would be better if these two test cases are executed be-
fore the other tests within the suite. Over the entire execu-
tion of the test suite, the test tuple σ1 = 〈T1, T2, T3, T4, T5〉
yields a smaller weighted average percentage of isolated de-
fects than the tuple σ2 = 〈T3, T4, T1, T2, T5〉 (i.e., σ2 detects
faults faster than σ1). Alternatively, if the goal is to identify
all of the defects in the program while executing the small-
est number of tests, the second tuple σ2 fulfills this objective
better than the first tuple σ1.

Since the existence of a priori knowledge about the lo-
cation of faults within the program under test is unlikely,
regression test suite prioritization algorithms must use a
proxy for this complete knowledge. Current regression test
suite prioritization algorithms are motivated by the empiri-
cal investigations of the effectiveness of test adequacy crite-
ria which indicate that tests that are not highly adequate are
often less likely to reveal program defects [10, 11]. In light
of the correlation between low adequacy test suites and the
decreased potential to reveal a defect [11], a prioritization al-
gorithm might chose to execute highly adequate tests before
those with lower adequacy. Of course, since highly adequate
tests are not guaranteed to always reveal the most defects,
prioritization schemes can still fail to produce an optimal
ordering of the tests [11, 12].

3. TERMINOLOGY
Problem 1 characterizes the regression testing problem in

a fashion used in [15]. Furthermore, Definition 1 defines the
test suite T that is subject to prioritization. A test suite con-
tains a tuple of tests 〈T1, . . . , Tr〉 that execute in a specified
order. We require that each test is independent so that we
can guarantee that for all γ ∈ [1, r], ∆γ = ∆0 and thus there
are no test execution ordering dependencies [12, 13]. This
requirement enables our prioritization algorithm to re-order
the tests in any sequence that maximizes the suite’s ability
to isolate defects. The assumption of test independence is
acceptable because the JUnit test execution framework pro-
vides setUp and tearDown methods that execute before and
after a test case and can be used to clear application state.

Problem 1. (Rothermel and Harrold [15]) Given a pro-
gram P , its modified version P ′, and a test suite T that was
used to previously test P , find a way to utilize T to gain
sufficient confidence in the correctness of P ′. 2

4

6

1
def(x)

2
use(x)
use(y)

def(y)

3
use(x)

use(x)
use(y)
def(x)

use(x)
use(y)
def(y)

use(x)
use(y)

exitm

5

use(y)

menter

T F

Figure 2: Example of a Control Flow Graph.

Definition 1. A test suite T is a triple
〈∆0, 〈T1, . . . , Tr〉, 〈∆1, . . . , ∆r〉〉, consisting of an initial
external test state, ∆0, a test case sequence 〈T1, . . . , Tr〉 for
state ∆0, and expected external test states 〈∆1, . . . , ∆r〉
where ∆f = Tf (∆f−1) for f = 1, . . . , r. 2

Data flow testing is intuitively motivated by the realiza-
tion that a program will only be able to determine if the
definition of a variable is correct if it subsequently uses the
variable. The occurrence of a variable on the left hand side
of an assignment statement is called a definition of this vari-
able. The use of a variable occurs when it appears on the
right hand side of an assignment statement or in the pred-
icate of a conditional logic statement or an iteration con-
struct [11]. Figure 2 provides an intuitive depiction of a
control flow graph (CFG) for a method m that will be used
during our discussion of data flow-based test adequacy.

This paper focuses on intra-procedural definitions and
uses that occur in a single program method. For exam-
ple, the statement x = x + y uses the variables x and y and
then subsequently defines x. The node labeled with a “4” in
Figure 2 would represent the definition and uses of program
variables for the statement x = x + y. In order to formally
define the all-DUs criterion, we view a method in the pro-
gram under test as a control flow graph G = (N, E) where
N is the set of CFG nodes and E is the set of CFG edges.

We also define a definition clear path for variable var as
a path in a CFG 〈nρ, . . . , nτ 〉, such that none of the nodes
nρ, . . . , nτ contain a definition or undefinition of program
variable var [8]. Next, we define the def-use association as a
triple 〈nd, nu, var〉 where a definition of variable var occurs
in node nd and a use of var occurs in node nu [11]. For
example, 〈n1, n4, x〉 is one of the sixteen def-use associations
within the CFG provided in Figure 2.1 A complete path is
a path in a method’s control flow graph that starts at the
CFG’s entry node and ends at its exit node [8].

A complete path πvar covers a def-use association if
it has a definition clear sub-path, with respect to var

and the method’s CFG, that begins with node nd and
ends with node nu [8]. Therefore, the complete path

1
Due to space constraints, we do not list all of the def-use asso-

ciations. Both x and y are involved in eight associations.

Algorithm InstrumentAndEnumerate(P)
Input: Program Under Test P
Output: Instrumented Program Under Test PTCM ;

Sets of Test Requirements R(P)
1. PTCM ← P , R(P)← ∅
2. for m ∈ methods(PTCM)
3. do R(m)← ∅
4. GTCM ← GetControlF lowGraph(PTCM , m)
5. for var ∈ Uvar(m)
6. do for nu ∈ UseLocations(var,m)
7. do for nd ∈ ReachingDefinitionLocations(var,m)
8. do R(m)← R(m) ∪ {〈nd, nu, var〉}
9. nd

track ← CreateDefineTrackingStatement(var)
10. NTCM ← NTCM ∪ {n

d
track}

11. ETCM ← ETCM ∪ {(n
d
track, nd)}

12. for np ∈ pred(nd)
13. do ETCM ← ETCM ∪ {(np, nd

track)}
14. nu

track ← CreateUseTrackingStatement(var)
15. N ← N ∪ {nu

track}
16. ETCM ← ETCM ∪ {(n

u
track, nu)}

17. for np ∈ pred(nu)
18. do E ← E ∪ {(np, nu

track)}
19. R(P)← R(P) ∪ {R(m)}
20. SetControlF lowGraph(GTCM , PTCM , m)
21. return PTCM , R(P)

Figure 3: The Instrumentation and Test Requirement Enumeration Algorithm.

〈entrym, n1, n2, n3, n4, n6, exitm〉 would cover the def-use
association 〈n1, n4, x〉 for variable x. Finally, Definition 2
defines the all-DUs test adequacy criteria. In this definition,
we use Uvar(m) to denote the universe of program variables
within the method under test m. Since our CFGs include
nodes to define temporary variables that represent the for-
mal parameters of methods and global variables [3], Uvar(m)
contains these temporary variables and all local method vari-
ables. Intuitively, a test suite T is more adequate, with re-
spect to all-DUs, if it covers more of the def-use associations
within the program under test.

Definition 2. A test suite T for method m’s control flow
graph G = (N, E) satisfies the all-DUs test adequacy crite-
rion if and only if for each def-use association 〈nd, nu, var〉,
where var ∈ Uvar(m) and nd, nu ∈ N , there exists a test
in T to create a complete path πvar in G that covers the
association. 2

4. EVALUATION METRICS
All of the evaluation metrics used in this paper assume an

a priori knowledge of the faults that exist within the pro-
gram under test. During the empirical evaluation of regres-
sion test suite prioritization, techniques that create a prior-
itized test suite can be evaluated based upon the weighted
average of the percentage of faults detected over the life of
the test suite, or the APFD [5]. Intuitively, if one approach
to prioritization produces test suite orderings with higher
APFD values than another technique, then the first prioriti-
zation scheme should be preferred. Since the APFD metric
was used in early studies of regression test suite prioritiza-
tion techniques and because it can still be used as a basis
for more comprehensive prioritization approaches that use
cost-benefit thresholds [5], this paper uses it as one metric
to evaluate our prioritizations.

If we use a variant of the notation established in [6, 12]
and we have a test suite T with r total tests and a total
of g faults within program under test P , then Equation (1)
defines the APFD(T, P) ∈ [0.0, 1.0] [5]. We use reveal(i, T)
to denote the position within T of the first test that reveals
fault i. If we examine the test orderings proposed in Sec-
tion 2, then the APFD for a test suite T1 that contains σ1 is
APFD(T1, P) = 1− .4 + .1 = .7 and the APFD for T2 that
uses test tuple σ2 is APFD(T2, P) = 1 − .2 + .1 = .9. Fi-
nally, the percentage of the test suite that must be executed
in order to find all of the defects, or PTR(T,P) ∈ [0.0, 1.0],
is defined in Equation (2) [4]. In this equation, we use rg

to denote the number of test cases that must be executed
to find all g program defects for a test suite with a total of
r test cases. An examination of the same T1 and T2 shows
that PTR(T1, P) = 4

5
and PTR(T2, P) = 2

5
.

APFD(T, P) = 1−

Pg

i=1
reveal(i, T)

rg
+

1

2r
(1)

PTR(T,P) =
rg

r
(2)

5. PRIORITIZATION APPROACH
In order to prioritize a regression test suite, the set of test

requirements that are called for by the all-DUs test adequacy
metric must be enumerated. Furthermore, instrumentation
that records the test requirements that were covered during
the test execution phase must be introduced into the pro-
gram under test. The InstrumentAndEnumerate algorithm
in Figure 3 performs two key functions: (i) calculates the
set of test requirements for program P , denoted R(P), that
are necessitated by all-DUs and (ii) introduces test cover-
age monitoring instrumentation into P in order to produce
PTCM . The algorithm analyzes each method within P and

APFD
PTR

Tprior

P
TCM

Test
Runner Prioritizer

Test

P

P

T

Program
Instrumenter

Defect
Seeder

R(m) fTR(P) adeq()

Figure 4: Kanonizo’s Approach to Prioritization.

performs intra-procedural data flow analysis to identify each
def-use association within each method m. To this end,
R(P) is defined to be a set of the sets R(m) that exist for
each method m within the program under test.

In the InstrumentAndEnumerate algorithm, pred(nτ) is
used to denote the set of predecessor nodes for node nτ .
Using the node predecessor information, definition and use
“tracking statements” are introduced before each define and
use location within m’s control flow graph G. After all cover-
age monitoring statements have been properly inserted, the
initial control flow graph G for method m is replaced with
the instrumented CFG denoted GTCM . Upon completion
of the algorithm in Figure 3, PTCM can be used during the
execution of T in order to produce Rc(m), the set of covered
test requirements, for each method m that was tested by a
test case.

When a test case has caused the coverage of both nd and
nu for variable var, the tracking statements introduced into
PTCM add the def-use association 〈nd, nu, var〉 into Rc(m).
Once the test suite has executed, it is possible to calculate
the adequacy for each test case Tf ∈ 〈T1, . . . , Tr〉. To this
end, we use methodsTested(Tf) = {m1, . . . , mh} to denote
the set of methods that are tested by test Tf . For an arbi-
trary mk ∈ methodsTested(Tf), our test coverage monitoring
instrumentation reports Rc(mk). Equation (3) defines the
cumulative adequacy of a test case as the ratio between the
number of covered test requirements and the total number
of test requirements, for all of the methods under test. In
this paper, we use adeq(Tf) to prioritize a regression test
suite according to its ability to satisfy the all-DUs criterion.
For example, if Tf enters method m in Figure 2, executes
the true branch of node n3, and exits method m, then we
have adeq(Tf) = 7

16
= 43.75%.

adeq(Tf) =

Ph

k=1
|Rc(mk)|

Ph

k=1
|R(mk)|

(3)

Figure 4 depicts our approach to the prioritization of a
regression test suite. After the set of test requirements has
been computed for each method within P and PTCM has
been produced, the test runner can execute T and produce
adeq(Tf) for each Tf . In Figure 4, the inputs with a dashed
border are used during the first invocation of the test runner.
Upon completion of the first execution of the test suite, the
test adequacy values are input into the test prioritization
module that re-orders the test suite according to the ade-
quacies. Kanonizo also includes additional modules that are
used during the experimental evaluation of the prioritized

test suite Tprior. To this end, a defect seeder is responsible
for placing faults into the methods within program P that
are tested by T . For more details about the faults that were
seeded during experimentation, please refer to Section 6.
Finally, the inputs with the double border are used during
the second execution of the test runner and the APFD and
PTR metrics are calculated in order to evaluate the effec-
tiveness of the prioritization created by Kanonizo.

6. EXPERIMENT GOALS AND DESIGN
We used an implementation of our data flow-based prior-

itization scheme to conduct two types of experiments: (i)
the determination of the time and space overheads incurred
during the execution of InstrumentAndEvaluate and the use
of the test runner and (ii) the evaluation of the metrics de-
scribed in Section 4 in comparison to randomly ordered test
suites. All experiments were conducted on a GNU/Linux
workstation with kernel 2.4.18-14smp, dual 1 GHz Pentium
III Xeon processors, 512 MB of main memory, and a SCSI
disk subsystem. We used Soot 1.2.5 [18] to implement a tool
that can calculate the intra-procedural def-use associations
and introduce test coverage monitoring instrumentation into
all of an application’s methods. Our tool uses the Jimple
intermediate representation [18] to analyze the methods in
the candidate applications. Kanonizo also uses a modified
version of the JUnit test automation framework in order to
execute the test cases and report the metrics of test case
adequacy, APFD, PTR, and the time and space overhead.

Since the calculation of the metrics described in Section 4
requires a priori knowledge of the faults within P , we man-
ually seeded the program under test with defects. We ex-
amined the mutation operators that are currently available
for the Java programming language (e.g., [2, 14]) and ap-
plied these operators to the selected case study applica-
tions. For example, we inserted defects associated with
the values of programmer defined constants by changing
INVALID DEPOSIT = 5.00 to INVALID DEPOSIT = 9.0. We
also mutated the relational operators used in conditional
logic statements and the arithmetic operators used in as-
signment statements. In certain methods of the program
under test we removed lines of code or changed the return
value.2 Since the APFD metric requires the position of the

2
Due to space constraints, we do not describe every error that was

seeded in the program under test. We seeded the defects without
regard to the likelihood of their being revealed by a test that was
highly adequate according to the all-DUs metric. Seeded faults
did not modify the previously calculated adequacies.

Program Time (ms) Space (bytes)
Bank 3,210 1,084,648

Identifier 3,351 2,170,801
Money 9,176 4,984,648

Figure 5: InstrumentAndEnumerate Overheads.

first test case in suite T to expose fault i in order to calculate
reveal(i, T), we determined this before experimentation. To
this end, each fault was seeded in isolation from all other de-
fects, each test suite was executed for its application, and
the fault revealing test cases were noted.

Our experiments focused on the prioritization of test suites
for three applications written in the Java programming lan-
guage: Bank, Identifier, and Money. Since we did not
modify the JUnit test suite that was created for each appli-
cation, it was not possible to control the scope of a test case.
Thus, a “test” for one case study application might perform
considerably more or less testing operations than a test for
another program. The Bank application is a modification to
a class created by Cay Horstmann that was changed by an
undergraduate computer science student. The application
simulates the possible actions that can be performed on a
typical bank account system such as checking the balance,
making a deposit, and making a withdrawal. It contains 1
class, 53 def-use associations, 5 methods and 7 test cases.
Since this application is the smallest of those used, four
faults were seeded into the program and two randomized
orderings were run and compared with the prioritized suite.

The Identifier application was also written by under-
graduate computer science students. This case study pro-
gram uses the Flyweight and Visitor design patterns to rec-
ognize reserved and non-reserved words which are passed to
a text processing system. Identifier contains 3 classes, 81
def-use associations, 13 methods and 11 test cases. For this
application, we also used two random test suite orderings in
comparison to the prioritized suite in a two phase experi-
ment. In the first phase, three faults were seeded into the
program and the ordered suites were executed. This was fol-
lowed by a second phase where three additional faults were
added and the same three types of ordered test suites were
executed again. This approach resulted in a total of six
seeded defects in the second execution of the tests.

Finally, the Money application is a program that is pro-
vided with the JUnit framework written by Erich Gamma
and Kent Beck. This programs simulates the actions of
adding and removing specified types of currency into and
out of bags of money. It contains 3 classes, 302 def-use asso-
ciations, 33 methods and 21 test cases. In our experiments,
Money is the largest application of those tested in terms of
both the number of def-use associations and test suite size.
As in the previous experiments, two random orderings were
compared to the prioritized suite. However, in this exper-
iment the suites were executed three times with three ad-
ditional faults being added at each stage of test execution.
This approach resulted in a total of nine seeded faults in the
third execution of the test cases.

7. RESULTS ANALYSIS
Figure 5 shows the time and space overheads associated

with running the InstrumentAndEnumerate algorithm on
the three case study applications. These results clearly indi-
cate that the time and space overheads increase as the size

of the application increases. However, it is important to ob-
serve that all of these overheads are relatively minimal since
the largest application only incurs a time overhead of 9, 176
ms and 4, 984, 648 bytes. Thus, for the selected case study
applications, the InstrumentAndEnumerate algorithm that
is at the core of our prioritization approach can be executed
in an efficient fashion.

Our experiments revealed no noticable difference in the
time overheads associated with test execution. For exam-
ple, the execution of the test suite against the instrumented
and non-instrumented version of Money both took approxi-
mately 64 ms. Finally, the execution of the tests on the in-
strumented Money only required the consumption of 102, 936
bytes more than the non-instrumented ones. For our case
study applications, we can conclude that the test coverage
monitoring instrumentation does not introduce any signifi-
cant overheads into test suite execution.

Figure 6 provides the results from our preliminary exper-
iments to measure the effectiveness of Kanonizo’s prioriti-
zation scheme.3 In each graph in this figure, the three bars
correspond to the values for APFD and PTR for two ran-
dom orderings with different seeds (e.g., label “Random1”
or “Random2”) and the prioritization with respect to all-

DUs (e.g., label “Prior”). Figure 6(a) and Figure 6(d) show
that our technique prioritizes more effectively than random
prioritization for the Bank application. However, our exper-
iments with the Identifier and Money applications reveal
that all-DUs is not always an effective criterion to aid pri-
oritization. For example, Figure 6(b) and Figure 6(e) reveal
that our prioritized test suites for Identifier perform worse
than random prioritization and require the execution of the
entire test suite. This is due to the fact that the three test
cases with the highest all-DUs test adequacy do not reveal
any of the seeded defects.

Finally, Figure 6(c) and Figure 6(f) demonstrate that
Kanonizo’s prioritization can perform better than some ran-
dom orderings and slightly worse than other random order-
ings. In light of the knowledge that highly adequate test
suites do not necessarily have a high likelihood of revealing
a defect [11], these results are not particularly surprising.
Yet, since the usage of Kanonizo incurs very minimal time
and space overheads it can be applied on a per-application
basis in order to determine if it is useful. For example, if all
or a portion of the defect history of a program is known, our
test prioritization approach can be efficiently compared to
other techniques in order to determine if it is appropriate to
execute the highly all-DUs adequate test cases before other
tests within the test suite.

8. CONCLUSIONS AND FUTURE WORK
This paper investigates whether the all-DUs test adequacy

criterion can be used to prioritize the execution of a regres-
sion test suite. To this end, we formally describe the Instru-

mentAndEnumerate algorithm that introduces test coverage
monitoring instrumentation into the program under test and
identifies the test requirements that are necessitated by all-

DUs. We also provide an equation to calculate the ade-

3
The experimental results described in this paper focus on a lim-

ited number of random prioritizations that typify the results from
prioritization experiments. Using the framework described in this
paper, we are currently analyzing all permutations of the test
suites in order to make statistically significant claims about the
effectiveness of prioritization using the all-DUs criterion.

4
Seeded Errors

0.2

0.4

0.6

0.8

1

A
P
F
D

4

Random1 Random2 Prior

(a) APFD Bank

3 6
Seeded Error Groups

0.2

0.4

0.6

0.8

1

A
P
F
D

3 6

Random1 Random2 Prior

(b) APFD Identifier

3 6 9
Seeded Error Groups

0.2

0.4

0.6

0.8

1

A
P
F
D

3 6 9

Random1 Random2 Prior

(c) APFD Money

4
Seeded Errors

0.2

0.4

0.6

0.8

1

P
T
R

4

Random1 Random2 Prior

(d) PTR Bank

3 6
Seeded Error Groups

0.2

0.4

0.6

0.8

1

P
T
R

3 6

Random1 Random2 Prior

(e) PTR Identifier

3 6 9
Seeded Error Groups

0.2

0.4

0.6

0.8

1

P
T
R

3 6 9

Random1 Random2 Prior

(f) PTR Money

Figure 6: Measurements of Prioritization Effectiveness.

quacy of a test case and describe the architecture of our
prioritization tool called Kanonizo. Our experiments reveal
that test suites can be prioritized according to all-DUs with
minimal time and space overhead. However, these prelimi-
nary results also indicate that data flow-based prioritizations
are not always more effective than random prioritizations.
Given the existence of a proven tool that prioritizes accord-
ing to all-DUs, we plan to investigate the following areas: (i)
the incorporation of control flow-based and mutation-based
adequacy into Kanonizo, (ii) the comparison of our prioriti-
zation approach to other schemes beyond random, (iii) the
calculation of APFD and PTR for all permutations of an
application’s test suite, (iv) the experimentation with ad-
ditional case study applications that have larger program
segments and test suites, and (v) the investigation of pri-
oritization techniques for test suites that must be executed
within a specified time constraint.

9. REFERENCES
[1] Boris Beizer. Software Testing Techniques. Van Nostrond

Reinhold, New York, NY, 1990.

[2] James Bieman, Sudipto Ghosh, and Roger Alexander. A
technique for mutation of Java objects. In Proceedings of the
16th IEEE International Conference on Automated Software

Engineering, November 2001.

[3] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A
demand-driven analyzer for data flow testing at the integration
level. In Proceedings of the 18th International Conference on

Software Engineering, pages 575–584, 1996.

[4] Sebastian Elbaum, Alexey G. Malishevsky, and G. Rothermel.
Prioritizing test cases for regression testing. In Proceedings of
the International Symposium on Software Testing and

Analysis, pages 102–112. ACM Press, August 2000.

[5] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and
Alexey G. Malishevsky. Selecting a cost-effective test case
prioritization technique. Technical Report 03-01-01,
Department of Computer Science and Engineering, University
of Nebraska – Lincoln, January 2003.

[6] Sebastian G. Elbaum, Alexey G. Malishevsky, and Gregg
Rothermel. Incorporating varying test costs and fault severities
into test case prioritization. In International Conference on

Software Engineering, pages 329–338, 2001.

[7] Phyllis G. Frankl, Stewart N. Weiss, and Cang Hu. All-uses vs
mutation testing: an experimental comparison of effectiveness.
J. Syst. Softw., 38(3):235–253, 1997.

[8] Phyllis G. Frankl and Elaine J. Weyuker. An applicable family
of data flow testing criteria. IEEE Transactions on Software
Engineering, 14(10):1483–1498, October 1988.

[9] Dick Hamlet and Joe Maybee. The Engineering of Software.
Addison Wesley, Boston, MA, 2001.

[10] Michael Harder, Jeff Mellen, and Michael D. Ernst. Improving
test suites via operational abstraction. In Proceedings of the
24th International Conference on Software Engineering,
pages 60–71, 2003.

[11] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas
Ostrand. Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proceedings of the

16th International Conference on Software Engineering,
pages 191–200. IEEE Computer Society Press, 1994.

[12] Gregory M. Kapfhammer. The Computer Science Handbook,
chapter Software Testing. CRC Press, June 2004.

[13] Gregory M. Kapfhammer and Mary Lou Soffa. A family of test
adequacy criteria for database-driven applications. In
Proceedings of the 9th European Software Engineering
Conference and the 11th ACM SIGSOFT Symposium on
Foundations of Software Engineering, 2003.

[14] Yu-Seung Ma, Yong-Rae Kwon, and Jeff Offutt. Inter-class
mutation operators for Java. In Proceedings of the Twelfth
International Symposium on Software Reliability
Engineering, November 2002.

[15] G. Rothermel and M. J. Harrold. A framework for evaluating
regression test selection techniques. In Proceedings of the 16th
International Conference on Software Engineering, pages
201–210. IEEE Computer Society Press, May 1994.

[16] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test
case prioritization: An empirical study. In Proceedings of the
International Conference on Software Maintenance, pages
179–188, August 1999.

[17] G. Rothermel, Roland H. Untch, Chengyun Chu, and M. J.
Harrold. Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering, 27(10):929–948,
October 2001.

[18] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick
Lam, Etienne Gagnon, and Phong Co. Soot - a Java
optimization framework. In Proceedings of CASCON 1999,
pages 125–135, 1999.

