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Abstract—Test case prioritization has been extensively re-
searched as a means for reducing the time taken to discover
regressions in software. While many different strategies have been
developed and evaluated, prior experiments have shown them to
not be effective at prioritizing test suites to find real faults. This
paper presents a test case prioritization strategy based on defect
prediction, a technique that analyzes code features – such as the
number of revisions and authors — to estimate the likelihood
that any given Java class will contain a bug. Intuitively, if defect
prediction can accurately predict the class that is most likely to
be buggy, a tool can prioritize tests to rapidly detect the defects in
that class. We investigated how to configure a defect prediction
tool, called Schwa, to maximize the likelihood of an accurate
prediction, surfacing the link between perfect defect prediction
and test case prioritization effectiveness. Using 6 real-world Java
programs containing 395 real faults, we conducted an empirical
evaluation comparing this paper’s strategy, called G-clef, against
eight existing test case prioritization strategies. The experiments
reveal that using defect prediction to prioritize test cases reduces
the number of test cases required to find a fault by on average
9.48% when compared with existing coverage-based strategies,
and 10.5% when compared with existing history-based strategies.

Index Terms—Regression testing, Test case prioritization, De-
fect prediction, Continuous testing, Empirical studies

I. INTRODUCTION

Software regressions occur when new changes affect code
that was previously shown to be working correctly. For ex-
ample, if methodA changes its return value and methodB
relies on the return value from methodA, then it may no
longer function correctly. In order to detect regressions in
correctness, developers often create a test suite that executes
methods with example inputs and compares the expected result
to the actual result [1]. However, as software evolves and
becomes increasingly complex, the number of tests that are
required to ensure correct functionality also grows, leading to
a commensurate increase in the time taken to execute the test
suite. Since it often may take too much time to re-execute all of
the tests for every change made to the system, developers may
not know whether or not they have introduced regressions.

Aiming to reduce the time taken to detect regressions,
researchers have created a variety of regression testing tech-
niques [2]. These include test case selection, which uses
information about the current change set (i.e., the classes or
methods that have been modified) to define a subset of tests
that may discover any regressions. Test suite minimization
attempts to find test cases that are redundant or irrelevant
in light of new tests that may take similar actions. Finally,
test case prioritization aims to identify the tests that are

most likely to detect a fault, placing them first to allow for
the rapid detection of latent regressions. Importantly, recent
studies reveal that previously evaluated strategies may be less
effective at prioritizing test cases to detect real faults when
compared to other fault types (e.g., [3], [4]). This result is
due, in part, to the relative complexity of real faults and the
use of naı̈ve coverage-based approaches under the assumption
that high-coverage tests are more likely to detect faults.

Defect prediction estimates the likelihood of a file/function
within a software system as being faulty. Previous experiments
have shown that these methods are effective at highlighting the
location of real faults in complex software [5]–[8]. This paper
presents a test case prioritization strategy, called G-clef, that
uses bug prediction data to reorder a test suite so that it first
focuses on those classes that are most likely to contain faults.
Intuitively, the more accurate a defect predictor is, the smaller
the subset of the test suite needed to find potential bugs.

Since there are many ways to perform test case prioritiza-
tion, this paper considers three main groups of strategies for
comparison to G-clef. The first group of strategies are based
on a single-version of the subject program. These strategies
consider the current version of the program and order tests
according to some heuristic. Second, we study strategies,
based on the test history, which consider test cases that have
recently failed. This makes these strategies closely related to
defect prediction, which considers files that have been faulty.
Finally, strategies involving the software history have been
proposed. These approaches use features of the software under
test to predict which test cases should be executed. However,
previous work evaluating these strategies found they were less
effective [9]. Table I contains examples of single-version, test
history and software-history approaches to test prioritization.

Finally, this paper presents an empirical evaluation of G-
clef, using real faults from DEFECTS4J [10] to enhance the
study’s validity. First, we compare G-clef with four coverage-
based strategies, using 365 real faults. We also compare G-clef
to four test-history strategies. For this phase of experimenta-
tion, 82 faults of the DEFECTS4J set qualified for further use.
This experiment reveals that G-clef significantly outperforms
six of the eight strategies, reducing the average number of
test cases required to find a fault by 4.8-15.3%. In summary,
the contributions of this paper are twofold: 1) a new test case
prioritization strategy that uses defect prediction to reorder a
test suite, and 2) an empirical study on real faults to compare
the proposed strategy with nine previously proposed strategies.



II. BACKGROUND

A. Test Case Prioritization

Test case prioritization aims to decrease the cost of regres-
sion testing by finding a test case ordering that maximizes the
fault detection capability of the test suite [11], such that any
faults in a program can be quickly identified by running a
reduced number of tests. Definition 1 defines it as [12]:

Definition 1: Test Case Prioritization
Requirements:
T , a test suite
PT , the set of permutations of T
f , a function that gives a numerical score for T ′ ∈ PT
Problem: Find T ′ ∈ PT such that

(∀T ′′)(T ′′ ∈ PT )(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)]
In order to maximize the fault detection capability of the test

suite, an appropriate f function must be chosen to select the
permutation T ′ that finds all regressions as soon as possible.
Since we cannot know about either the existence or location
of faults prior to running the test suite, f can only be a
surrogate for actual fault detection. Most previous research
on test case prioritization has tried to find an implementation
of f that most closely approximates fault detection, using a
variety of strategies (e.g., [12]–[15]). In Table I, we categorize
a non-exhaustive, but representative, list of previous test case
prioritization research into three groups: strategies that are
based on a single version of the software under test (e.g., [12],
[13]), strategies based on the software history (e.g., [9], [16]),
and strategies based on the test history (e.g., [17], [18]).

B. Bug Prediction

One of the most explored topics in Mining Software Repos-
itories (MSR) is bug prediction [24]. Typically, bug prediction
(also known as fault prediction [25]) approaches predict the
likelihood of a component (e.g., file) being faulty in the future
based on historical data from a version control system [7].

As reported by Graves et al. [6], the two best predictors of
bugs are prior bugs and prior changes. As such, researchers
have proposed several techniques based on these two key
factors; due to space constraints we survey them briefly in
this section. For instance, Kim et al. [26] proposed a cache-
based approach in which files involved in a bug fix are stored
in a cache and used to predict future faults. Kim et al.’s
assumptions were that new changes are likely to be more
faulty than old changes and that a file that contained a
fault in the past is likely to contain further faults. Men-
zies et al. [8] proposed a prediction model based on static
code attributes. Moser et al. [27] and Kim et al. [28] used
machine learning techniques based on previous code changes
and Hassan et al. [29] used the complexity of previous code
changes, to predict future faults. Rahman et al. [30] proposed
an approach that ranks files by the number of times there
were involved in a fix commit. Although simple, it performed
similarly to more sophisticated and complex approaches (e.g.,

Kim et al. [26]) and the Google Engineering team has used
it1 [31]. We next discuss this approach and its enhancements.

1) Schwa: Given a Git2 repository of a Java project, the
Schwa tool3 [32] extracts information from each commit, such
as its message, author, timestamp, list of all modified files,
and the changes performed (i.e., the diff). It performs a bug
prediction computation based on three metrics that have been
shown to be effective at predicting bugs: 1) revisions [6] (how
often a Java class has been changed), 2) fixes [5] (how often
a Java class has been fixed), and 3) authors [33] (how often
a Java class has been modified by more than one developer).
Schwa is robust, readily available software that is not language
specific, making it a suitable choice for many subjects.

Schwa uses a ranked-based technique, Time-Weighted Risk
(TWR) [31], [32], to estimate how reliable a Java class is:

TWR(α) =
1

1 + e−12α+w
(1)

where α is a normalized timestamp of a bug-fixing commit in
the range 0.0 ≤ α ≤ 1.0, where 0.0 represents the first bug fix
commit’s timestamp and 1.0 is the timestamp of the last bug
fix commit; here w is used to weight the importance of newer
bug fix commits as opposed to older commits. Lewis et al. [31]
suggested w = 12 as a good value to score the files of two
Google projects by their bug-propensity. Rather than a fixed
value, Schwa uses w = 2 + ((1 − TR) × 10), where TR
represents the time-range of bug fix commits: TR values close
to 0.0 indicate that newer commits are more important than
older commits, whereas TR values close to 1.0 indicate the
inverse. It is important to note that if TR = 0.0, then w is
equal to 12, the original value suggested by Lewis et al. [31].

Schwa estimates the likelihood that a Java class c contains a
bug using Equation 2, in which each of the three factors (i.e.,
revisions, authors, and fixes) is calculated and modified by a
weight, where the sum of all weights must be equal to 1.

βc = RevisionsWeight ×
∑
Rc∈R

TWR(Rc)

+ AuthorsWeight ×
∑

Ac∈A

TWR(Ac)

+ FixesWeight ×
∑
Fc∈F

TWR(Fc)

(2)

∑
Rc∈R TWR(Rc) is the sum of all TWRs in which c has

been modified.
∑

Ac∈A TWR(Ac) is the sum of all TWRs
in which a new author has modified c.

∑
Fc∈F TWR(Fc) is

the sum of all TWRs in which c has been involved in a fix
operation. R, A, and F represent the revisions’, authors’, and
fixes’ timestamps in which c has been involved. The value βc
is normalized to [0, 1] and estimates the defect probability of
c, defectc = 1− e−βc . Intuitively, a Java class c with a higher
defectc value is less reliable (i.e., is more likely to contain a
bug) than those classes with a low defectc value.

1http://google-engtools.blogspot.co.uk/2011/12/, accessed January 25, 2019.
2https://git-scm.com/, accessed January 25, 2019.
3https://github.com/andrefreitas/schwa, accessed January 25, 2019.
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Table I: Existing strategies for test case prioritization based on single versions of software, software history, and test history.
This technique listing in the table is not exhaustive, but includes a representative sample of previous research categorized as either single-version, software history, or test history.

Ref. Category No. Subjects No. Faults Fault Type Name/Description

[12] Single Version 7 Unknown Seeded

Random Prioritization — Completely random ordering. Often used as a baseline
Total Statement — Selects test cases based on the total number of lines covered.
Additional Statement — As above, but only considers previously unseen lines
Total Fault-Exposing Potential (FEP) — Selects tests that kill the most mutants
(small modifications introduced programmatically designed to simulate real faults).
Additional FEP — As above, but with previously unkilled mutants.

[13] Single Version 11 11 Seeded Adaptive Random — Enhances purely random ordering by continually selecting
the test case that is most different from the already selected test cases.

[14] Single Version 6 None N/A Genetic Algorithm (GA) — A GA makes continuous small modifications to the
test suite and keep those that result in a positive outcome.

[16] Software History 1 3 Real Singular Value Decomposition — Identifies the test cases for files that frequently
change together using change set information from version control.

[9] Software History 8 167 Seeded Fault Index — Uses a set of standardized measurable code attributes to estimate
the likelihood of each function in a given file containing a bug.
Diff — Uses syntactic differences between two versions of a program, specifically
the number of lines inserted, deleted, or changed at the function level.

[19]
[20]

Software History None None N/A History-based Recommendations for Testing — Uses information from version
control systems about files that frequently change together and association between
files to identify likely areas in which regressions may occur.

[17] Test History Unknown Unknown Unknown [Elbaum et al.] — Assigns each test case a priority score based on whether the test
case has (a) not been run recently, (b) failed recently, or (c) is new. Test cases that
match any of these criteria are assigned higher priority.

[18] Test History 1 Unknown Unknown ROCKET — Assigns each test case a priority score based on the total number of
failures observed in its history, with weighting to favor more recent failures, and
deducts priority for longer running test cases.

[21] Test History 5 25 Seeded MCCTCP — Maximizes the APFDc [22] score of the previous test case execution
by placing the test cases that detected the “most severe” (according to function
criticality) faults at the start of the prioritized suite.

[23] Test History 2 Unknown Real AFSAC — Creates a probability that a test case will fail based on the minimum,
average and maximum number of times we have observed this test case to fail
consecutively, as well as the current number of consecutive failures.

III. G-CLEF

Algorithm 1 illustrates the procedure of G-clef, which inte-
grates defect prediction into a test case prioritization strategy.
In order to prioritize test cases using Schwa, G-clef first orders
the classes in a program by the bug prediction score produced
by Schwa (line 1). For each of the classes c ∈ C, G-clef then
identifies the tuple of test cases T ′′ ⊆ T that execute lines
in c (line 4). Since this process returns many test cases, G-
clef applies a secondary objective g (line 5), discussed in the
following subsection, to order T ′′ using an alternative heuristic
(e.g., coverage). Finally, G-clef places the ordered test cases
into the prioritized suite (T ′) (line 5). Since G-clef starts with
the class that is most likely to be faulty, and selects all tests
that cover this class, better bug prediction will directly result
in faster fault detection during test suite execution.

To illustrate how G-clef works, we introduce a small ex-
ample program with 3 classes — ClassA has 100 test cases
and a defectc score of 0.8. ClassB has 30 test cases and a
defectc score of 0.35, while ClassC has 1000 test cases and
a defectc score of 0.1. G-clef starts by selecting all the test
cases for ClassA, since this is the most likely to contain a
bug. Following this, the secondary objective decides how the
100 tests for ClassA should be ordered. A good secondary
objective will place first the test case that detects the fault.

Algorithm 1 G-clef
Input: Classes Under Test C = {c1, c2, ..., cn}

Test Suite T = 〈t1, t2, ..., tm〉
Function to return defectc score for class ci, b(ci)
Function to determine classes covered by test tj , s(tj)
Secondary Objective Function g

Output: Prioritzed Test Suite T ′

1: C ← SORT(C, b)
2: T ′ ← ∅
3: for all ci ∈ C do
4: T ′′ ← 〈tj ∈ T |ci ∈ s(tj)〉
5: T ′ ← UNIQUE(T ′ ∪ SORT(T ′′, g))
6: end for
7: return T ′

Now consider a bug report that incorrectly assigns ClassC
a defectc score of 0.9. Since G-clef takes all the tests for
ClassC first, there are now 1000 test cases being executed
before they detect a bug. To address this problem, our approach
groups classes together based on their likelihood of containing
a fault. In this instance, a group size of 2 would include
ClassC and ClassA in the first group of classes, meaning
the secondary objective has the combined set of tests from
ClassC and ClassA (i.e., 1100 tests) from which to choose.



A. Secondary Objective

G-clef utilizes a secondary objective to determine the or-
dering of test cases given a set of tests that cover a target
class. For this paper, we investigate the use of four secondary
objectives to prioritize test cases once we have established a
subset based on bug prediction: greedy (or total statement)
orders test cases by the total number of statements covered,
additional greedy (or additional statement) keeps a track of
the combined set of lines covered by the prioritized suite,
selecting the test that covers the most previously uncovered
lines, random returns a purely random ordering for test cases,
ensuring diversity of the prioritized test cases. Finally, similar
to the work by Hao et al. [34] and Campos and Abreu [35],
we apply a constraint solver, representing the lines of code
as constraints that must be covered by one or more test cases
and finding the minimal set of tests that satisfies all of the
constraints, thereby covering all of the lines of code.

B. Grouping Classes

In addition to the secondary objective, G-clef may also need
to group classes together. If a bug prediction report incorrectly
assigns a high defectc score to a class with many test cases,
G-clef may suffer as a result. In this paper, we investigate
four different settings for grouping classes, with the default
behavior of G-clef being the use of a single class. In addition,
we run experiments using 5%, 10%, and 25% of the total
classes that exist in each subject program. To avoid bias for or
against subject programs that contain more classes than others,
we use a percentage of the classes in the chosen project.

IV. EMPIRICAL EVALUATION

In order to evaluate G-clef against the existing test case
prioritization strategies described in Section II-A, we con-
ducted experiments using real programs, tests, and faults. The
experiments aim to answer the following research questions:
RQ1: Which configuration of G-clef is the most effective?

With this RQ, we aim to identify the best parameters
for initializing G-clef, based on the weights for Schwa,
secondary objectives, and the grouping of classes.

RQ2: How does G-clef compare to previously proposed
coverage-based test case prioritization strategies at pri-
oritizing manually-written test cases?
With this RQ, we evaluate G-clef against existing
coverage-based strategies for test case prioritization.

RQ3: How does G-clef compare to previously proposed
history-based test case prioritization strategies at priori-
tizing manually-written test cases?
With this RQ, we evaluate G-clef against existing history-
based strategies for test case prioritization.

A. Experimental Setup

1) Subject Programs: To automatically perform our exper-
imental analysis, the selection of subject programs used in our
empirical evaluations adhered to the following requirements:
1) the programs used should be developed in Java (as the
test prioritization tools used only support Java), 2) it must

be possible to “roll-back” changes from the repository (i.e.,
obtain previous versions of the source code) in order to
support the collection of test history data for the history-
based strategies, and 3) it must be possible to detect faulty
behavior in the current version of the program using a test
suite. One particular collection of subject programs that meets
all of the aforementioned requirements is DEFECTS4J [10], a
collection of 395 reproducible and isolated real software faults
from six Java large open-source programs. All DEFECTS4J
projects were collected from version control systems, meaning
that it is possible to identify, check-out, and execute tests on
previous versions of the software using a version control tool
such as Git. Finally, DEFECTS4J provides a developer-written
test suite for each program in the repository, which includes
at least one test that triggers the faulty behavior of the current
version of the software, which we refer to as the trigger tests.

2) Coverage Analysis: Some of the algorithms described in
Table I rely on the collection of code coverage (e.g., greedy
and additional greedy [12]). Thus, for each subject program,
we had to collect the code coverage of the developer written
test suite. For this, we used GZoltar [36], [37]. One of the
important features of GZoltar is that it executes the test cases
using the same build tools that developers would be using (e.g.,
ANT, MAVEN, and GRADLE), meaning that the code coverage
collected is as similar as is possible to a “natural” execution of
test cases by a developer. Additionally, since GZoltar produces
a serialized coverage file, we can use the same file across test
case prioritization strategies to better ensure consistency.

3) Test History Analysis: As shown in Table I, the history-
based approaches require the collection of information from
previous versions of the program, including how many times
each test case has been executed, how many times each test
case has failed, and how recently a test case failed, amongst
other information. To collect this information, we wrote a
script that uses version control details to iteratively checkout
previous versions of the program, compile it, execute the
test cases and record their results, execution times and, if
necessary, cause of failure, in a history file. In some cases,
previous versions of the program may not compile due to ei-
ther mistakes made in particular commits or missing libraries.
In these instances, since the code does not compile, it is not
possible for us to run the tests. In experiments with history-
based methods, if we encounter a version of the code that does
not compile, we continually retry for five preceding versions.
If we cannot compile any of the preceding five versions, we
terminate the history analysis for the subject at that point.
Depending on the subject, we were able to collect test case
execution data for up to 2522 previous versions (in Math-1).

4) Schwa: The default configuration of Schwa uses these
weights: 0.25 for revisions and authors, 0.5 for fixes, and
0.4 for TR. As each software project is unique in terms
of, for instance, repository history and development model,
these weights may vary in suitability for different projects.
For example, the “authors” metric is irrelevant if only a single
developer contributed to a project. For RQ1, we performed
a tuning study of Schwa’s weights and the TR value. As



Schwa’s feature weights and TR value are in the range of 0.0
and 1.0, we chose all values in this range with interval 0.1.
Although there are 13310 different combinations, the sum of
all weights must be equal to 1, leaving 726 valid combinations.

To assess the effectiveness of each combination at ranking
a class that is buggy, we randomly selected 5 faults of each of
DEFECTS4J’s [10] projects (a total of 30 faults), and executed
Schwa on the repository history of those faults. As Schwa
returns a defectc value for each class of the software under
test, we ranked all classes by this value value and identified,
for each combination, the ranking position of the known buggy
class. The best combination of weights and TR would rank
the known buggy class first, on the other hand, the worst
combination of parameters would rank the buggy class last.

5) Test Case Prioritization: For RQ2 and RQ3, we used the
test case prioritization tool KANONIZO (https://github.
com/kanonizo/kanonizo). KANONIZO already has an
implementation of four coverage-based strategies: greedy, ad-
ditional greedy, genetic algorithm, and random search [3].
These coverage-based strategies will be used to answer RQ2.
We extended the KANONIZO tool with four history-based
strategies for RQ3: ROCKET [18], MCCTCP [21], AF-
SAC [23], and Elbaum et al. [17]. These strategies were se-
lected to be a representative sample of previous history-based
strategies, and importantly, each strategy requires information
that is possible to collect using the DEFECTS4J framework.

For ROCKET, higher priority is given to newer failures over
older failures. In this method’s paper, Marijan et al. adopt a
variable ω where ω = 0.7 if the test failed on its most recent
execution, ω = 0.2 if the test failed on the execution before
that, and ω = 0.1 for any failures on executions further back.

For MCCTCP, the authors use the APFDc metric, which is
the cost-cognizant version of the Average Percentage of Faults
Detected (APFD) metric described in Section IV-A6. APFDc

prioritizes test cases that a) discover faults that are more
“severe” and b) run in the least amount of time. In their study,
Huang et al. use a function criticality metric to determine how
severe faults are, based on how many times buggy functions
are used elsewhere in the code base. In our implementation, we
assign priority to failing test cases according to the severity of
the failure cause (e.g., NullPointerExceptions are very
serious). Notably, Sabor et al. showed that using stack traces
to model failure severity is an effective method [38].

AFSAC uses four weights, distinct from the Schwa pa-
rameters of Section II-B1, to model the likelihood that tests
fail again, given the average number of times a test has
consecutively failed in the past. It uses the weight α if, in the
history of the test, it has always failed more consecutive times
than the current streak. β represents consecutive failures that
are higher than the minimum but below the average number
of consecutive failures. γ is used when the current number
of failures is above average but lower than the maximum
number of consecutive failures observed for the test, and δ is
used when the current number of failures is more than has ever
been observed. Since Cho et al. state that α ≥ β ≥ γ ≥ δ ≥ 0,
we choose 1, 0.7, 0.4, and 0.1, respectively.

For Elbaum et al., there are three conditions under which a
test case is given a higher priority over another test. These are
the “failure window”, denoted WF , which is the time since
the most recent failure of the test case, and the “execution
window”, denoted WE , which represents how long it has been
since a test case was last run. Since, during testing with JUnit,
it is common for testers to run all tests every time, we discard
the WE variable. Finally, if a test case is “new”, then it is
assigned a priority denoted WN . In our implementation, we
assign values of 5 to both the failure window, WF , and the
“new test” value, WN , meaning if a test has been executed less
than five times, or has failed in its most recent five executions,
then it will be assigned higher priority than other test cases.

We also added G-clef, from Algorithm 1, to KANONIZO.
6) Evaluation Measurements: For RQ2 and RQ3, we com-

pare the effectiveness G-clef to that of the existing test priori-
tization strategies. The most commonly used evaluation metric
in this field is the Average Percentage of Faults Detected
(APFD), an area-under-curve metric that compares the per-
centage of test cases executed to the percentage of faults found.
However, in our study we consider 395 program versions, each
containing a single fault. This reduces the APFD metric to
the percentage of tests that were executed before the fault was
detected. DEFECTS4J provides a list of the trigger tests that
detect each fault. To compare the strategies in the experimental
evaluation, we calculate the percentage of each prioritized test
suite that was placed higher than the trigger test for the subject
program. For example, if the trigger test is the 50th test case
out of 1000 test cases, the suite is scored as 5%.

7) Analysis Procedure: We analyzed all of the data re-
sulting from the experiments by following well-established
guidelines [39]. For instance, we use the Mann-Whitney U-
test to compare two different data sets, obtaining a p-value
representing the likelihood that our data was observed as a
result of chance. For the Mann-Whitney U-test, we adopt a
95% confidence interval, meaning p < 0.05 indicates that
our results are statistically significant. In addition, we use
the Vargha-Delaney Â test to compare G-clef with existing
strategies. For this, Â values closer to 0 indicate that G-clef, on
average, is expected to outperform the existing strategy, while
a value closer to 1 indicates that the previous prioritization
strategy, on average, is expected to outperform G-clef.

8) Threats to Validity: Despite the fact we used a high
number of real faults from six different Java programs, this
paper’s results may not generalize to other programs with
either different characteristics or types of test suites or faults.
Although we evaluate prioritization strategies on manually
written test suites, it is conceivable that the use of different
test suites could improve the results for some prioritization
strategies, while degrading the results for others — in such
cases, our results and conclusions would not be generally valid.

Even though we do not have evidence to suggest that this
would occur, future work should further study prioritization
effectiveness for different types of test suites (e.g., automati-
cally generated test cases from tools such as EVOSUITE [40]
and Randoop [41]). While Just et al. [42] suggest that there is

https://github.com/kanonizo/kanonizo
https://github.com/kanonizo/kanonizo


Table II: Best and worst of top and bottom three Schwa
configurations. For each configuration we report the revision, fixes, and authors
weights, TR value, average, standard deviation (σ), and confidence intervals (CI) using
bootstrapping at 95% significance level of the ranking position of the known buggy class.

Revision Fixes Authors Time Avg. Std. Dev. Conf. Inter.
Weight Weight Weight Range Pos. σ CI

top 3
0.6 0.1 0.3 0.0 46.53 49.12 [27.71, 63.97]
0.7 0.1 0.2 0.4 46.57 49.49 [29.00, 62.93]
0.6 0.1 0.3 0.4 46.73 49.26 [27.90, 63.33]

bottom 3
0.1 0.6 0.3 1.0 88.07 109.20 [43.82, 125.10]
0.1 0.7 0.2 1.0 90.73 112.25 [46.46, 127.09]
0.1 0.8 0.1 1.0 91.43 109.50 [52.14, 125.59]

a correlation between real faults and synthetic mutants, recent
work from Luo et al. [4] and Paterson et al. [3] shows that
the most effective test prioritizer on mutants may not be the
best on real faults, thus motivating us to focus on real faults
in DEFECTS4J. Finally, even though DEFECTS4J’s programs
have fast tests for which prioritization is less necessary, our
experiments yield useful insights when, for instance, tests run
in a continuous integration environment (e.g., [17], [43]).

Moreover, this paper does not consider the runtime of test
cases when evaluating prioritizations. It is possible that with
long running test cases, new orderings may actually be slower
to detect faults, even if they require fewer tests. However, in
our experience, approximately 98% of tests ran in under one
second, making it unlikely that this would occur in practice.

G-clef prioritizes tests from an entire test suite rather than
using a test case selection approach to identify relevant test
cases. While this is consistent with many previous approaches
(e.g., [9], [12], [17]), it is conceivable that using subsets of test
cases may lead to different results. Future work should also
examine the effectiveness of a hybrid approach that selects
subsets of test cases in conjunction with defect prediction.

Additionally, the random sample of 30 faults used to tune
Schwa’s parameters in RQ1 may not have resulted in the
best overall parameters for this tool, and thus using different
subjects may have resulted in different parameters. To mitigate
this, we chose bugs from each of the projects in DEFECTS4J,
thereby avoiding bias towards any particular project. Next,
we selected the test case prioritization strategies used in the
experiments as a representative sample of previous history-
based approaches. Since our evaluation is not exhaustive, it
is possible that using other strategies may lead to different
results. We mitigated this threat by using a range of strategies
from the literature that require different input and process
the test execution history in different ways. One of the
considerations when running Schwa is the number of commits
that it analyzes when calculating prediction scores. If Schwa
can analyze the entire repository history, while a history-based
strategy only has a small number of commits available due
to reasons discussed in Section IV-A3, then it may give G-
clef an unfair advantage. Although space constraints restrict
us from including the results, we also conducted experiments
in which we limited the number of commits available to Schwa
to be equal to the number used by the history-based strategies,
observing no significant differences in the overall results.

Table III: Relative ranking position of buggy classes reported
by the best Schwa configuration. We report the average number of classes
(ranking size), minimum, maximum, average, and standard deviation (σ) of the relative
ranking position of a buggy class, and the average defectc value of a buggy class (def ).

Ranking Relative Ranking Position
Project Size min max avg σ def

Chart 1016 0.1% 56.0% 16.6% 19.9 0.39
Closure 1478 0.1% 90.4% 9.2% 15.6 0.89
Lang 344 0.3% 52.3% 12.8% 14.3 0.96
Math 1069 0.1% 94.0% 17.7% 21.3 0.91
Mockito 1018 0.1% 86.6% 10.6% 19.7 0.85
Time 585 0.1% 67.6% 12.6% 17.1 0.80

Overall 1046 0.1% 74.5% 13.0% 18.0 0.86

The bug prediction described in Section II-B uses the com-
mit history of a repository as a black box. It has been shown,
for example, that modelling commit authors could improve the
effectiveness of identifying which commits introduce a bug,
thereby improving the effectiveness of bug-predictors [44].
With that said, this paper’s main goal is to evaluate how
leveraging defect prediction in test case prioritization could
lead to faster regression detection — and not what is the best
bug prediction approach for this particular problem.

A final validity threat is potential defects in the
tools used during experimentation (i.e., KANONIZO [3]
and Schwa [32]). Used without error in prior experi-
ments, both of these publicly available tools have been
extensively tested. Moreover, all of this paper’s data
and the scripts needed to reproduce the experiments
are available at https://bitbucket.org/josecampos/

history-based-test-prioritization-data/.

B. RQ1: Which configuration of G-clef is the most effective?

1) RQ1.1: What are the best parameters for Schwa?
Table II reports the three best and the three worst of Schwa’s
configurations identified during tuning. For the 30 randomly
selected faults, Schwa works best, on average, with a revision
weight of 0.6, fixes weight of 0.1, authors weight of 0.3, and a
TR value of 0.0, which lines up with Graves et al. [6] finding
that recent changes have a higher impact on the likelihood of
code being buggy. A TR value of 0.0 means that w, as given
in Equation (1), is equal to 12, which is the same value sug-
gested by Lewis et al. [31]. With 99% confidence, according to
the Anderson-Darling statistical test [45], the ranking position
of each buggy class of any Schwa configuration is not normally
distributed. When ranking buggy classes, according to the
Mann-Whitney U-test, no Schwa configuration X performs
significantly better than any other Schwa configuration Y.

RQ1.1: For the 30 faults randomly selected from the DE-
FECTS4J’s dataset, Schwa works best with the following
parameters: revision weight of 0.6, fixes weight of 0.1,
authors weight of 0.3, and a TR value of 0.0.

2) RQ1.2: How effective is the best Schwa configuration
at ranking a buggy class? Table III and Figure 1 report
the relative ranking position of buggy classes for the 395
faults in DEFECTS4J’s [10] dataset when Schwa uses the best
parameters found by RQ1.1. For instance, on average, the
buggy classes of the Closure project appear in the first 9.2%

https://bitbucket.org/josecampos/history-based-test-prioritization-data/
https://bitbucket.org/josecampos/history-based-test-prioritization-data/


Relative ranking position of the faulty classes (%)

F
re

q
u
e
n
c
y

0 20 40 60 80 100

0

50

100

150

200

250

Figure 1: Relative ranking position of the buggy class. This is
calculated by Schwa as the position divided by the total number classes for the subject.

positions, for a total of 1478 classes, with a defect value of
0.89. As shown by Figure 1, a total of 267 bugs were correctly
estimated within the top 10% of all classes in the subject
programs. In fact, for 17 faults, Schwa ranks the buggy class
as the most buggy one, and for 281 faults the relative ranking
position of the buggy class is lower than the average value.
RQ1.2: Schwa ranks the buggy classes of all projects in the
top 13.0%, with an average defectc value of 0.86.

3) RQ1.3: Assuming either an ideal and non-ideal bug-
prediction report, what are the best parameters for G-clef? As
described in Section III, G-clef can be instantiated with differ-
ent secondary objective functions and grouping classes values.
To assess which combination of parameters works best (i.e.,
requires the execution of fewer test cases) we ran G-clef on
365 faults4 with four different secondary objective functions
(i.e., greedy, additional greedy, random, and constraints) and
four grouping classes values (1, 5%, 10%, and 25%). As G-clef
relies on the outcome of a bug-prediction tool, we also defined
two different scenarios to assess the influence of the underlying
tool: 1) an ideal scenario in which a bug-prediction tool always
ranks first a true buggy class and 2) a real scenario when a
bug-prediction tool ranks classes as previously described.

Table IV reports the total number of test cases that must be
executed in order to trigger the faulty behavior of each real
fault. For each configuration/project, Table IV also reports the
ranking position of each configuration at prioritizing the failure
revealing test case. For instance, if a configuration A ranks
the trigger test in 3rd and configuration B ranks it in 16th,
configuration A is ranked first and configuration B is second.
In case of a tie, all configurations are ranked in the same posi-
tion. As an example, for the Closure project the configuration
requiring the execution of the fewest tests is constraints as a
secondary objective and a grouping classes value of 1 (which
ranked 5th, on average, among all configurations). Overall,
for the real bug-prediction scenario, G-clef performs best with
constraints as a secondary objective (5 out of 6 projects) and
grouping classes value of 1 (3 out of 6 projects). On the other
hand, for the ideal bug-prediction scenario, G-clef works best
with additional greedy as a secondary objective for 3 out of 6
projects (Chart, Lang, and Mockito).
4Although DEFECTS4J [10] contains 395 real faults, we used 30 faults to
tune Schwa’s parameters, thus prohibiting us from using them in this study.

The reason why the constraint solver performed relatively
poorly with ideal bug prediction is that it also applies a
minimization to the test set. For example, if the buggy class
is covered by 100 tests (including the trigger test), but the
constraint solver finds a minimized set of 80 tests completely
covers the class but does not include the trigger test, then G-
clef will not prioritize the trigger test until it covers another
class. Future work could enhance the constraint solver sec-
ondary objective to ensure that all tests are used. Although
G-clef with constraints as a secondary objective only works
best for 2 out of 6 projects (Closure and Time), overall it is
ranked 2.4 (nearly the same as additional greedy). The overall
configuration ranking, for both the real and ideal scenarios, is
statistically significant according to the Friedman test.

RQ1.3: Assuming a perfect bug-prediction tool exists, G-clef
works best with constraints as a secondary objective and a
grouping classes value of 1; for a real bug-prediction report
additional greedy is the best secondary objective for G-clef.

C. RQ2: How does G-clef compare to previously proposed
coverage-based test case prioritization strategies at prioritiz-
ing manually-written test cases?

As stated in Section IV-A5, KANONIZO has implementa-
tions for four coverage-based strategies that are commonly
used in test case prioritization evaluations, as well as a
completely random ordering. Thus, for this research question,
we compare G-clef to these strategies. Since we use 30
subject programs for the tuning study in RQ1, we eliminate
those subject programs from this RQ to avoid bias, leaving
a total of 365 real faults. For each of these subjects, we run
KANONIZO with each of the coverage-based strategies and the
best configuration of G-clef found in RQ1. We then evaluate
the prioritized test suite by the percentage of the test suite
that is executed before the fault is found. Table V reports
the average number of tests that are required to be executed
before a fault is found across all projects and strategies, with
the percentage of the test suite required reported in brackets.
As shown by Figure 2, G-clef often requires the fewest overall
test cases in order to detect a fault (Closure, Math, Time). For
the remaining three projects, in two cases (Chart and Lang) G-
clef was only beaten by a single other strategy. Furthermore,
as reported by Table VI, there are a number of cases in which
G-clef significantly outperformed other strategies, as reported
by the Mann-Whitney U-Test. For the Closure project, G-clef
significantly outperformed all other strategies except additional
greedy, while for both Math and Time, G-clef significantly
outperforms a further three strategies. Notably, there are only
four combinations of project/strategy with an Â score of > 0.5
(meaning on average the alternative approach is expected to
outperform G-clef). Overall, of the 1,825 combinations of
subject/strategy included in this study, G-clef performs best for
1,165, and significantly outperforms four of the five coverage-
based strategies we compare against.

RQ2: G-clef performs better than any other coverage-based
strategy, statistically better than 4 out of 5 strategies.



Table IV: Test case prioritization results of G-clef with different secondary objective functions and grouping classes values.
The α column represents the grouping classes parameter (see Section III-B for more details), #t stands for the number of test cases that have to be executed in order to trigger the
faulty behavior, and R is the ranking position of a configuration. For the overall ranking position of each configuration the χ2 and p-value of the Friedman test is also reported.

Chart Closure Lang Math Mockito Time Overall
Sec. Obj. α #t R #t R #t R #t R #t R #t R #t R

Real bug-prediction data — χ2 = 201.11, p − value < 0.0001
Greedy 1 626.8 (34.9%) 9.3 3404.2 (47.1%) 10.4 701.7 (37.3%) 8.3 1003.7 (35.1%) 8.7 528.5 (46.1%) 9.9 910.7 (23.2%) 7.8 1196.0 (38.1%) 9.3
Greedy 5% 691.4 (38.5%) 10.3 3436.3 (47.6%) 10.1 696.4 (37.0%) 7.7 927.6 (32.4%) 7.3 540.5 (47.1%) 10.1 954.6 (24.4%) 8.0 1207.8 (38.5%) 8.8
Greedy 10% 703.9 (39.2%) 9.6 3436.4 (47.6%) 10.1 670.9 (35.6%) 7.7 934.5 (32.7%) 7.7 540.5 (47.1%) 10.0 967.0 (24.7%) 8.5 1208.9 (38.5%) 8.9
Greedy 25% 790.6 (44.0%) 11.5 3436.0 (47.6%) 10.1 691.7 (36.7%) 8.2 948.7 (33.2%) 8.3 540.5 (47.1%) 10.1 932.1 (23.8%) 8.1 1223.3 (39.0%) 9.2
Add. Greedy 1 605.8 (33.7%) 7.7 2635.9 (36.5%) 7.6 711.8 (37.8%) 8.9 1032.0 (36.1%) 9.2 439.3 (38.3%) 6.8 987.1 (25.2%) 7.6 1068.6 (34.1%) 8.2
Add. Greedy 5% 559.1 (31.1%) 7.3 2783.2 (38.5%) 7.9 713.6 (37.9%) 8.4 998.7 (34.9%) 8.8 375.2 (32.7%) 6.5 1164.0 (29.7%) 9.4 1099.0 (35.0%) 8.2
Add. Greedy 10% 614.1 (34.2%) 7.9 2787.5 (38.6%) 8.6 748.2 (39.7%) 9.2 1024.0 (35.8%) 9.2 383.7 (33.5%) 7.0 1184.5 (30.2%) 10.5 1123.7 (35.8%) 8.8
Add. Greedy 25% 675.0 (37.6%) 10.0 2769.8 (38.4%) 9.5 825.0 (43.8%) 9.9 1070.8 (37.4%) 9.6 396.8 (34.6%) 7.9 1141.9 (29.1%) 10.4 1146.6 (36.5%) 9.5
Random 1 611.3 (34.1%) 8.2 2870.2 (39.7%) 9.1 712.4 (37.8%) 9.0 1016.7 (35.6%) 9.1 432.6 (37.7%) 7.2 1023.6 (26.1%) 8.8 1111.1 (35.4%) 8.8
Random 5% 576.4 (32.1%) 7.5 2806.9 (38.9%) 9.5 726.1 (38.5%) 8.8 986.5 (34.5%) 8.7 401.5 (35.0%) 7.6 1176.6 (30.0%) 9.8 1112.3 (35.4%) 8.9
Random 10% 553.5 (30.8%) 7.1 2786.3 (38.6%) 9.5 725.9 (38.5%) 9.1 1027.1 (35.9%) 9.2 410.2 (35.8%) 7.2 1205.9 (30.8%) 10.2 1118.2 (35.6%) 9.1
Random 25% 594.5 (33.1%) 9.0 2734.5 (37.9%) 9.3 761.1 (40.4%) 9.8 1086.2 (38.0%) 9.9 410.8 (35.8%) 8.4 1211.6 (30.9%) 10.2 1133.1 (36.1%) 9.5
Constraints 1 701.0 (39.0%) 7.2 1691.3 (23.4%) 5.0 708.6 (37.6%) 7.6 875.9 (30.6%) 7.1 452.0 (39.4%) 8.4 773.8 (19.7%) 5.9 867.1 (27.6%) 6.5
Constraints 5% 640.0 (35.7%) 6.8 1822.9 (25.2%) 5.8 780.5 (41.4%) 7.6 935.5 (32.7%) 7.5 444.7 (38.8%) 9.2 785.7 (20.0%) 6.0 901.6 (28.7%) 6.9
Constraints 10% 640.5 (35.7%) 7.3 1810.1 (25.1%) 6.5 789.7 (41.9%) 7.5 938.0 (32.8%) 7.6 447.3 (39.0%) 9.7 761.9 (19.4%) 6.6 897.9 (28.6%) 7.3
Constraints 25% 686.1 (38.2%) 9.1 1790.4 (24.8%) 7.1 824.2 (43.8%) 8.3 945.6 (33.1%) 8.2 432.2 (37.7%) 9.8 781.7 (19.9%) 8.1 910.1 (29.0%) 8.0

Ideal bug-prediction data — χ2 = 39.63, p − value < 0.0001
Greedy 1 51.9 (2.9%) 3.2 1394.8 (19.3%) 3.2 36.9 (2.0%) 2.5 81.4 (2.8%) 2.7 229.6 (20.0%) 2.8 422.4 (10.8%) 2.5 369.5 (11.8%) 2.9
Add. Greedy 1 15.7 (0.9%) 1.8 879.7 (12.2%) 2.3 28.4 (1.5%) 2.2 78.9 (2.8%) 2.4 181.2 (15.8%) 2.0 431.6 (11.0%) 2.9 269.2 (8.6%) 2.3
Random 1 25.1 (1.4%) 2.5 839.8 (11.6%) 2.5 29.6 (1.6%) 2.5 75.2 (2.6%) 2.3 167.8 (14.6%) 2.2 539.4 (13.8%) 2.6 279.5 (8.9%) 2.4
Constraints 1 314.8 (17.5%) 2.5 1154.1 (16.0%) 2.0 349.3 (18.5%) 2.8 439.0 (15.4%) 2.6 335.7 (29.3%) 3.0 377.0 (9.6%) 2.1 495.0 (15.8%) 2.4

Table V: Test case prioritization results of G-clef and coverage-based strategies. For each prioritization strategy we report the total number of test
cases (#t) that have to be executed to trigger the faulty behavior, and its ranking position when compared to the other strategies.

Chart Closure Lang Math Mockito Time Overall
Strategy #t R #t R #t R #t R #t R #t R #t R

χ2 = 110.70, p− value < 0.0001
Greedy 859.1 (47.9%) 3.7 3439.4 (47.6%) 4.2 623.4 (33.1%) 2.6 909.5 (31.8%) 2.9 540.1 (47.1%) 4.1 970.0 (24.7%) 3.1 1223.6 (39.0%) 3.5
Add. Greedy 740.4 (41.2%) 3.6 1955.3 (27.1%) 2.6 939.8 (49.9%) 3.9 1046.2 (36.6%) 3.1 408.2 (35.6%) 3.1 953.1 (24.3%) 3.0 1007.2 (32.1%) 3.1
GA 719.4 (40.1%) 3.7 2817.6 (39.0%) 3.9 840.4 (44.6%) 3.9 1287.9 (45.0%) 4.1 423.9 (37.0%) 3.3 1385.3 (35.3%) 4.1 1245.8 (39.7%) 3.9
Random 674.6 (37.6%) 3.5 2811.0 (38.9%) 3.9 826.1 (43.8%) 3.6 1271.9 (44.5%) 4.1 425.5 (37.1%) 3.6 1410.2 (36.0%) 4.4 1236.6 (39.4%) 3.9
Rand. Search 717.7 (40.0%) 3.7 2828.7 (39.2%) 3.9 829.4 (44.0%) 3.6 1267.3 (44.3%) 4.0 422.1 (36.8%) 3.4 1400.6 (35.7%) 4.3 1244.3 (39.7%) 3.9
G-clef 701.0 (39.0%) 2.8 1691.3 (23.4%) 2.5 708.6 (37.6%) 3.3 875.9 (30.6%) 2.8 452.0 (39.4%) 3.5 773.8 (19.7%) 2.1 867.1 (27.6%) 2.8

Table VI: G-clef vs coverage-based strategies. The # column reports the number of bugs for which G-clef performed better than X and the total number of bugs
per project, Â column reports the effect size of X vs. G-clef (a value lower than 0.5 means X performed worse than G-clef, and a value greater than 0.5 means G-clef performed
worse than X), and p column reports the p-value of the Mann-Whitney U-test. Statistically significantly results at 95% significance level are given in bold-face.

Chart Closure Lang Math Mockito Time Overall
Strategy # Â p # Â p # Â p # Â p # Â p # Â p # Â p

Greedy 14 / 21 0.41 0.30 97 / 128 0.29 0.00 25 / 60 0.55 0.34 49 / 101 0.50 0.97 21 / 33 0.43 0.33 14 / 22 0.44 0.52 220 / 365 0.42 0.00
Add. Greedy 12 / 21 0.47 0.72 63 / 128 0.50 0.97 38 / 60 0.41 0.09 54 / 101 0.47 0.41 14 / 33 0.53 0.66 16 / 22 0.44 0.50 197 / 365 0.48 0.35
GA 14 / 21 0.44 0.48 96 / 128 0.25 0.00 33 / 60 0.41 0.10 73 / 101 0.28 0.00 13 / 33 0.48 0.79 18 / 22 0.23 0.00 247 / 365 0.31 0.00
Random 14 / 21 0.44 0.53 93 / 128 0.26 0.00 35 / 60 0.42 0.14 72 / 101 0.29 0.00 16 / 33 0.48 0.81 19 / 22 0.22 0.00 249 / 365 0.31 0.00
Rand. Search 14 / 21 0.44 0.48 98 / 128 0.26 0.00 32 / 60 0.42 0.14 73 / 101 0.28 0.00 17 / 33 0.48 0.80 18 / 22 0.24 0.00 252 / 365 0.31 0.00

●

●

●
●

●

●
●

●

●●

●

●

●
●
●●●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●

●

●

●

Math Mockito Time

Chart Closure Lang

R
an

do
m

G
re

ed
y

Add
. G

re
ed

y
G
A

R
an

d.
 S

ea
rc

h

G
−c

le
f

R
an

do
m

G
re

ed
y

Add
. G

re
ed

y
G
A

R
an

d.
 S

ea
rc

h

G
−c

le
f

R
an

do
m

G
re

ed
y

Add
. G

re
ed

y
G
A

R
an

d.
 S

ea
rc

h

G
−c

le
f

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Strategy

%
 o

f 
te

s
t 

c
a

s
e

s
 t

h
a

t 
h

a
ve

 t
o

 b
e

e
xe

c
u

te
d

 t
o

 t
ri

g
g

e
r 

th
e

 f
a

u
lt
y
 b

e
h

a
v
io

u
r

∗ represents the average % of test cases that have to be executed to trigger the faulty behavior.

Figure 2: Test case prioritization results of G-clef and the coverage-based strategies.



Table VII: Test case prioritization results of G-clef and history-based strategies. (Please refer to Table V for an explanation of each column.)

Chart Closure Lang Math Mockito Time Overall
Strategy #t R #t R #t R #t R #t R #t R #t R

χ2 = 15.87, p− value = 0.003
G-clef 854.7 (46.3%) 3.7 1576.0 (21.6%) 2.0 437.6 (24.0%) 2.2 931.0 (33.5%) 2.5 344.7 (26.6%) 3.8 439.7 (11.0%) 1.0 763.9 (24.1%) 2.5
ROCKET [18] 243.0 (13.2%) 3.8 2873.1 (39.4%) 3.3 628.3 (34.4%) 2.8 1270.3 (45.8%) 3.3 162.0 (12.5%) 3.0 2842.7 (71.2%) 3.7 1336.6 (42.1%) 3.2
Elbaum et al. [17] 151.2 (8.2%) 2.7 2452.2 (33.6%) 2.9 984.9 (54.0%) 3.7 1474.3 (53.1%) 3.4 392.3 (30.3%) 3.0 1521.3 (38.1%) 2.7 1162.7 (36.7%) 3.2
MCCTCP [21] 147.2 (8.0%) 1.9 2849.1 (39.1%) 3.3 734.9 (40.2%) 3.2 956.7 (34.5%) 2.5 169.3 (13.1%) 2.2 2619.7 (65.6%) 3.8 1246.1 (39.3%) 2.9
AFSAC [23] 165.7 (9.0%) 2.9 2854.6 (39.1%) 3.5 694.1 (38.0%) 3.1 980.2 (35.3%) 3.2 198.0 (15.3%) 3.0 2619.7 (65.6%) 3.8 1252.0 (39.5%) 3.2

Table VIII: G-clef vs history-based strategies. (Please refer to Table VI for an explanation of each column.)

Chart Closure Lang Math Mockito Time Overall
Strategy # Â p # Â p # Â p # Â p # Â p # Â p # Â p

ROCKET [18] 2 / 6 0.76 0.15 15 / 20 0.34 0.08 12 / 21 0.43 0.42 15 / 26 0.39 0.16 2 / 6 0.78 0.13 3 / 3 0.00 0.08 49 / 82 0.42 0.09
Elbaum et al. [17] 2 / 6 0.78 0.13 13 / 20 0.36 0.15 15 / 21 0.27 0.01 19 / 26 0.32 0.03 3 / 6 0.56 0.81 3 / 3 0.22 0.38 55 / 82 0.38 0.01
MCCTCP [21] 2 / 6 0.86 0.04 16 / 20 0.25 0.01 16 / 21 0.32 0.04 15 / 26 0.46 0.63 1 / 6 0.67 0.38 3 / 3 0.00 0.08 53 / 82 0.39 0.02
AFSAC [23] 2 / 6 0.81 0.09 16 / 20 0.25 0.01 15 / 21 0.37 0.16 15 / 26 0.45 0.55 1 / 6 0.64 0.47 3 / 3 0.00 0.08 52 / 82 0.40 0.02
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∗ represents the average % of test cases that have to be executed to trigger the faulty behavior.

Figure 3: Test case prioritization results of G-clef and the history-based strategies.

D. RQ3: How does G-clef compare to previously proposed
history-based test case prioritization strategies at prioritizing
manually-written test cases?

As with RQ2, RQ3 involves the execution of G-clef com-
pared against four history-based approaches described in Sec-
tion IV-A5. In the DEFECTS4J dataset, there are a substantial
number of subject programs for which the test case that
detects a fault has no execution history. This may cause an
unnecessary bias either in favor of or against certain history-
based strategies, since some strategies rely on the number
of prior executions and/or failures. In order to give a fair
opportunity to all strategies, we only include bugs where
the trigger test has at least one prior execution before the
current version of the subject program. This means that, for
this RQ, we use 82 bugs for the evaluation. Table VII reports
the average number of tests that have to be executed before
a fault is found across all projects and strategies. For four
of the six projects (Closure, Lang, Math, Time), G-clef had
the lowest number of test cases required of any strategy.
Additionally, as shown by Table VIII, G-clef was significantly
better for five project/strategy combinations, and was only

significantly outperformed once (Chart/MCCTCP [21]). For
the Time project, while the Vargha-Delaney Â effect size was
0.00 for three of the four competing approaches, due to only
having three bugs for this project, we were unable to achieve a
significant result for this project. Yet, G-clef overall achieved
significantly better results than three of the four history-based
strategies evaluated in this paper, and outperformed ROCKET
for 49 out of the 82 bugs used in this evaluation.

Figure 3 contains a boxplot showing the percentage of
test cases executed before the trigger test. One of the most
noticeable results in Figure 3 is how effective history-based
strategies were on the Chart project. On average, only 10.5%
of the total test cases were required to find a fault, and for
four of the six Chart subjects used, at least one of the history-
based strategies was able to detect the fault in fewer than
10 test cases. Table IX shows, for each project, the average
number of commits analyzed, percentage of commits in which
the trigger test was present, and for the times when the trigger
test was present, the percentage of occasions on which the test
case failed. In the Chart project, a relatively low number of
commits were analyzed compared to other projects, however



Table IX: Test execution statistics. For each project, this reports the average
number of commits analyzed, the percentage of commits in which the trigger test was
present, and the percentage of occasions on which the trigger test failed when present.

Project # Commits % Occurences % Failures

Chart 24.33 72.78% 66.67%
Closure 178.19 81.81% 0.00%
Lang 159.33 87.16% 5.11%
Math 382.61 77.38% 5.56%
Mockito 105.33 65.20% 19.12%
Time 35.67 100.00% 0.00%

the trigger test was very often present in the commits (72.78%
of commits contained the trigger test), and more importantly,
the trigger test failed on average two-thirds of the time it
was included in a commit. Likewise, for the Mockito project,
on which history-based strategies outperformed G-clef, the
percentage of occasions on which the trigger test failed is
higher than on the other projects. Conversely, two of the
projects for which history-based strategies did not perform as
well, Closure and Time, featured zero previous failures of the
trigger test, meaning history-based strategies are unlikely to
effectively prioritize test suites for these projects.

RQ3: G-clef performs better than any other history-based
strategy, statistically better than 3 out of 4 strategies.

V. RELATED WORK

Many previous papers proposed and/or evaluated test case
prioritization. Rothermel et al. [12] and Elbaum et al. [9] con-
sidered a number of coverage-based and mutation-based ap-
proaches to greedily prioritizing test cases, while Li et al. [14]
and Conrad et al. [46] studied search-based methods. Finally,
Walcott et al. [47] and Alspaugh et al. [48] developed test
prioritization methods that take into account the time budget
allocated for testing. Yet, unlike this paper, neither these
studies, nor those omitted due to space constraints, used defect
prediction to support the process of test prioritization.

There also has been prior work that uses historical test case
information in order to predict the future results of test cases.
For instance, Huang et al. [21] proposed an approach for test
case prioritization based on historical test failures and their
associated severities, while Elbaum et al. [17] presented a
method that considered how recently a test had either been
run or failed. Marijan et al. [18] suggested an approach based
on test failures (with higher weighting for recent failures) and
Cho et al. [23] used test history statistics to predict future
failures. Importantly, all of these approaches look at the history
of test case behavior, while in contrast this paper’s approach
focuses on historical changes to the project’s source code.

Finally, there have been prior studies that used variations
of fault proneness or defect prediction for test case prior-
itization. For instance, Li et al. [49] adopted 32 software
metrics to identify sub-systems that were most likely to
fail. Srikanth et al. [50] considered requirements that have
been reported by users as most likely to contain failures.
Wang et al. [51] proposed a test prioritization technique based

on software quality, incorporating an unsupervised machine
learning model based on software quality metrics. Moreover,
Mirarab et al. [52] used software quality metrics in a Bayesian
model that supported test prioritization. Notably, all of these
studies used software quality metrics as a surrogate for fault
proneness, while G-clef uses the history of the software from
version control as an indicator for future defect locations.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a new strategy, called G-clef, that uses
defect prediction for test case prioritization. After explaining
how G-clef works, we present an empirical study comparing
it to four coverage-based strategies on 365 real faults, and
to four history-based strategies on 82 real faults from the
DEFECTS4J dataset. When compared against four coverage-
based strategies, G-clef resulted in the lowest number of test
cases required to find a fault for 1,165 out of 1,825 combi-
nations of project/strategy, statistically outperforming three of
the four strategies. Notably, while there are some strategies
that work better on some subject programs, G-clef is never
statistically outperformed by any other strategy, suggesting
that G-clef is at least as good for all projects as existing
strategies. Moreover, when compared against the four history-
based strategies, such as ROCKET, the experiments show that
G-clef results in the lowest number of tests required to find
a fault in 199 out of 312 combinations of project/strategy,
statistically outperforming three of the four strategies.

Given the importance of test prioritization for decreasing
the cost of regression testing and the demonstrated promise
of G-clef, we intend to improve the presented approach and
conduct additional experiments with new subjects. In this
paper, we present a test prioritization strategy based on defect
prediction values. In future work, we will investigate how
defect prediction is able to capture characteristics of test
suites in comparison with other strategies described in this
paper. Additionally, since Schwa uses features of the version
control repository’s history to calculate its prediction values,
we will investigate whether defect prediction techniques based
on software features (e.g., Chidamber-Kemerer [53]) are able
to achieve similar or better results. Since, in our experiments,
even an ideal bug prediction report admits opportunities to
decrease the number of required test cases, we will also
develop and study new secondary objectives. As improvements
are made to bug prediction methods, we will update G-clef
and evaluate the effectiveness of new test prioritizers. Finally,
since current defect prediction tools rely on constructs such as
classes and methods, we will investigate how the choice of a
programming language influences the effectiveness of G-clef.
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