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ABSTRACT

Because they pass or fail without code changes, flaky tests cause se-
rious problems such as spuriously failing builds and the eroding of
developers’ trust in tests. Many previous evaluations of automated
flaky test detection techniques do not accurately assess their useful-
ness for the developers who identify the flaky tests to repair. This is
because researchers evaluate detection techniques against baselines
that are not derived from past developer behavior or against no
baselines at all. To study the effectiveness of an automated test
rerunning technique, a common baseline for other approaches to
detection, this paper uses 75 commits — authored by human soft-
ware developers — that repair test flakiness in 31 real-world Python
projects. Surprisingly, automated rerunning detects the developer-
repaired flaky tests in only 40% of the studied commits. This result
suggests that automated rerunning does not often find those flaky
tests that developers fix, implying that it makes an unsuitable base-
line for assessing a detection technique’s usefulness for developers.
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1 INTRODUCTION

Flaky tests — test cases that pass and fail without code changes
[31] — are a major burden to software developers [17, 30]. When
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surveyed, 79% of developer participants characterized flaky tests
as a moderate or serious problem, citing time wasted debugging
spurious failures and an erosion of trust in test case outcomes [15].
Developers report that repairing flaky tests is cumbersome
[15, 33]. Despite this, many methodologies for evaluating auto-
mated flaky test detection techniques do not accurately assess their
usefulness for the developers who decide which flaky tests to repair.
To ensure that flaky test detectors enhance developer productivity,
it is imperative to evaluate any technique from their perspective.
One common methodology is to calculate the recall of a detection
technique against a baseline of flaky tests identified by automated
rerunning, the most straightforward method for detecting flaky tests
[9, 11, 34]. In this context, recall is the percentage of flaky tests in
the baseline that are detected by the technique under evaluation. We
refer to this as a rerun-based methodology. However, this approach
is limited because no prior work has studied how well this baseline
assesses a technique’s usefulness for software developers.
Another methodology is to simply present the number of de-
tected flaky tests [26, 35, 40]. Yet, this is limited because there is
no baseline to assess recall against [40]. Following Harman and
O’Hearn position that it is safer to assume that all tests are flaky [23],
evaluating a technique this way gives no indication of its usefulness.
Given these limitations, we performed a study to demonstrate
the value of a developer-based methodology. It features a baseline
of developer-repaired flaky tests that is more suitable for assessing
a technique’s usefulness for developers. This is because developers
allocated time to repair these flaky tests, implying they were of
interest. This is not to say that flaky tests of a baseline derived from
rerunning would not be of interest to developers, but rerunning
alone cannot evidence this property as past developer behavior can.
Leveraging a baseline of 75 flakiness-repairing commits that
originated from 31 open-source Python projects hosted on GitHub,
this paper addresses the following two research questions:
RQ1: What is the recall of automated rerunning against our
baseline? We developed our own automated rerunning framework
and applied it to the flaky tests in each commit just before the fix.
We found that it detected the repaired flaky tests in only 40% of the
commits. Such a low recall suggests that automated rerunning is not
that helpful for developers. This implies that a rerun-based method-
ology is unsuitable for assessing developer usefulness, highlighting
the value of supplementing it with a developer-based methodology.
RQ2: What causes the flaky tests in our baseline and how
did developers repair them? For a deeper understanding of our
baseline, we manually classified the causes of the flaky tests and the
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developers’ repairs in the commits. We found that randomness was
the most common cause and that widening the range of acceptable
states and outputs in assertions was the most common repair.

In summary, the contributions offered by this paper’s study are:
1. Evaluation. Ours is the first study to evaluate automated rerun-
ning under a developer-based methodology. Central to this is our
baseline of 75 flakiness-repairing commits from 31 Python projects.
We make this available in this paper’s replication package [5].
2. Implications. This paper’s results can both help developers
decide whether or not to adopt automated flaky test rerunning and
aid researchers who want to effectively evaluate new detection
techniques. Our evaluation was also facilitated by an automated
rerunning framework, available in the replication package [5].

2 BACKGROUND

Causes of Flakiness. Luo et al. [29] performed one of the earli-
est empirical studies of flaky tests. They categorized the cause of
flakiness-repairing commits using the following ten categories:

1. Async. Wait. Test case makes an asynchronous call but does
not adequately wait for it to finish, leading to intermittent failures.
2. Concurrency. Test case invokes multiple threads that interact
in an unsafe or unanticipated manner, for example, race conditions.
3. Floating Point. Test case uses floating point operations and is
flaky due to discrepancies such as non-associative addition.

4. Input/Output. Test case interacts with the filesystem and is
flaky due to specific intermittent issues such as naming conflicts.
5. Network. Test case depends on the availability of a network and
is flaky when the network or resource is unavailable or busy.

6. Order Dependency. Test case depends on a shared value or
resource that is modified by other test cases as a side-effect.

7. Randomness. Test case uses (or covers code that uses) random
number generators and is flaky due to either not setting seeds or
not anticipating the full range of the generator’s potential outputs.
8. Resource Leak. Test case does not release acquired resources,
such as a database connection, inducing intermittent failures for
itself or for other test cases that require the same resources.

9. Time. Test case relies on measurements of date and/or time.
Flakiness is caused by, for instance, discrepancies in precision and
representation of time across libraries and platforms.

10. Unordered Collection. Test case assumes a deterministic iter-
ation order of an unordered collection type object, such as a set,
leading to intermittent failures when the assumption does not hold.

Automated Rerunning. The most straight-forward flaky test de-
tection technique is automated rerunning, which involves repeat-
edly executing test cases to observe inconsistent outcomes [31].
To detect more flaky tests, rerunning frameworks can introduce
noise into the execution environment [37]. Examples of this include
shuffling the test run order [40], randomizing standard library im-
plementations [35], and introducing artificial CPU stress [36]. More
sophisticated detection techniques may involve rerunning as a sub-
component [13, 18, 26] or as a means to train machine learning
models [9, 12, 32, 34]. Rerunning can also be used by developers
as a mitigation technique. For example, flaky [1] is a plugin for
the pytest testing framework that will rerun a failing flaky test. In
this paper, when we refer to rerunning, we refer to the detection
technique as opposed to the mitigation technique.
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3 METHODOLOGY

Baseline. To build our baseline of developer-repaired flaky tests,
we searched for commits using the query “flaky OR flakey OR
flakiness OR flakyness OR flakeyness OR intermittent”
in the top-1,000 Python repositories on GitHub by number of stars.
We decided to target Python since many previous studies tend to
focus overwhelmingly on Java [10, 20, 27]. Upon finding matching
commits, we inspected their commit messages and code diffs to
determine if they repaired at least one flaky test. We considered
up to six commits per project, improving the generalisability of
our results by enabling the examination of more projects. For each
commit, we cloned the repository at the state of its preceding com-
mit, known as its parent commit, just before the repair. We then
attempted to build it in a virtual environment [7] and execute its
test suite. If we could not, then we were unable to use it. For older
commits, this could be due to a dependency on an old version of a
package no longer hosted on the Python Package Index (PyPI) [3].
To promote the reproducibility of this paper’s results, we stipulated
that we must be able to ensure a deterministic build. To that end,
projects could only depend on packages available on PyPI This
allows us to capture and reproduce the exact environment of a
build by recording the names and exact versions of each package
as reported via a call to pip freeze [4]. Following this process, we
arrived at 75 commits from 31 projects. Table 1 lists the names of
each repository along with the number of its commits we used.

RQ1: What is the recall of automated rerunning against our
baseline? To address this question, we developed our own auto-
mated rerunning framework called ShowFlakes [6]. It can introduce
four types of noise into the execution environment during reruns.
The first is to randomly deprioritize threads to expose concurrency
bugs [28] and manifest flaky tests of the Async. Wait and Concur-
rency categories. The second is to randomly execute other test cases
from the test suite and shuffle the order to identify flaky tests of
the Order Dependency category. The third is to limit the upload
and download speed of the network to a random value between 1
kilobyte/s and 1 megabyte/s to increase the probability of detecting
Network flaky tests. The fourth is to vary the minor version of the
Python interpreter between reruns (from versions 3.5 up to 3.9) to
identify flaky tests that may only fail on one specific platform [15].
For each commit, we manually identified the Python versions that
the project was declared to support by its developers and restricted
ShowFlakes to just those. To find this information, we checked
the project’s tox configuration file [8], its setup script, and any
continuous integration configuration files and build scripts.

For each commit, we used ShowFlakes to rerun the developer-
repaired flaky tests at the state of the parent 1,000 times with no
noise and 1,000 times with all four types of noise together. In each
case, it counts a commit as “detected” and a true-positive if it can
detect at least one of its flaky tests and a false-negative if it cannot.
Recall is then the number of true-positives over the total number
of commits. Because our baseline contains only positive examples,
we cannot calculate true-negatives, false-positives, or precision.

RQ2: What causes the flaky tests in our baseline and how
did developers repair them? We manually classified the causes
of the test flakiness and the developers’ repairs in the 75 commits.
For the causes, we used the categories of Luo et al. [29] (see §2).
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Table 1: The recall of automated rerunning against the base-
line of flakiness-repairing commits. Each row shows the
repository name, the number of commits we used, the num-
ber where at least one repaired flaky test was detected after
1,000 reruns with no noise, and the number detected after
1,000 reruns with all four types of noise together.

Detected Commits

GitHub Repository Commits No Noise Noise

2

apache/airflow
HIPS/autograd
mahmoud/boltons
celery/celery
django/channels
quantumlib/Cirq
wandb/client
home-assistant/core
dask/dask
spesmilo/electrum
robinhood/faust
pallets/flask
pallets/flask-sqlalchemy
geopy/geopy
graphgl-python/graphene
HypothesisWorks/hypothesis
dpkp/kafka-python
matplotlib/matplotlib
mitmproxy/mitmproxy
pandas-dev/pandas
zalando/patroni
OpenMined/PySyft
giampaolo/psutil
pytest-dev/pytest
saltstack/salt
scipy/scipy

searx/searx
matrix-org/synapse
tornadoweb/tornado
python-trio/trio
urllib3/urllib3
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Three authors of this paper categorized each commit independently,
examining the code diff, any comments, and any linked issues. They
then discussed their results and arrived at a consensus for the final
categories, following a process of qualitative negotiation [38, 39].
To classify repairs without an initial set of categories, we followed a
more exploratory methodology. Initially, one author inspected each
commit and devised a minimal set of repair categories. Using these
categories, and being allowed to create new ones, two other authors
categorized each commit individually. These three authors then
met to discuss the final category of each commit while agreeing on
the final set of repair categories and their specific definitions.

Threats to Validity. We identified several threats to the validity
and generalisability of this paper’s findings and, where possible,
took steps to mitigate them. First, the commits we used may have
been unsuccessful at repairing the flakiness or may have only par-
tially repaired it. Yet, we used these commits as a baseline to assess
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Table 2: The results of our manual categorization of the 75
flakiness-repairing commits. We gave each commit a cate-
gory describing the cause of the flakiness (rows) and another
describing the repair applied by the developers (columns).
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Cause < < 0 & 5 x & 2 5 A
Async. Wait 1 6 - - - - 2 - 9
Concurrency = 2 = n = = A 2 8
Floating Point - - - - - - -3 -3
1/0 - - - - - - - - - -
Network 3 3 - - 1 - - - 1 8
Order Dependency - - -2 - -1 - - 3
Randomness - - - - -6 -4 1 11
Resource Leak - - - - 2 - 1 1 - 4
Time 5 - - - - - 1 1 2 9
Unordered Coll. - -3 - - - - - - 3
Miscellaneous 2 -1 - 1 - - 6 7 17
Total 11 11 4 2 6 6 3 19 13 75

the usefulness of automated rerunning for developers identifying
flaky tests to repair. Therefore, it does not matter how successful
the repairs were, but rather that developers allocated time and re-
sources in an attempt to do so. Second, the projects that we used
may not be representative of open-source Python projects. To alle-
viate this threat, we used popular projects on GitHub, rather than
from a specific organization, and limited the number of commits to
six per project to limit any bias arising from using too few projects.
Third, when calculating recall for RQ1, some of the undetected
commits may have actually been detected had we set ShowFlakes to
perform more reruns. There is little that we can do to mitigate this
since there is no upper limit on the number of reruns required to
manifest a flaky test [9]. It is also our judgement that 1,000 reruns is
sufficient for assessing developer usefulness, since any more would
likely be impractical [24]. Finally, our manual categorization for
RQ2 could have been impacted by our personal biases. To minimize
this threat, three authors performed the task independently without
communicating their opinions before the final discussion.

4 RESULTS

RQ1: What is the recall of automated rerunning against our
baseline? Table 1 shows for how many of the 75 commits could
automated rerunning detect at least one of the flaky tests. For each
commit, we applied rerunning to only the developer-repaired flaky
tests at the state just before the fix and had it perform 1,000 runs
with no noise and 1,000 with all types of noise. Without noise,
rerunning detected the flaky tests in 21% of the commits. With
noise, it performed better — but still only achieved a recall of 40%.
RQ2: What causes the flaky tests in our baseline and how did
developers repair them? Table 2 shows the results of our manual
categorization of the commits. Each cell shows the frequency of
every pair of cause and repair categories. The overall frequencies
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def test_example_runs_quantum_teleportation():
expected, teleported = examples.quantum_teleportation.main()
B assert np.all(np.isclose(expected, teleported, rtol=le-4))
+ assert np.all(np.isclose(expected, teleported, atol=1e-4))

Figure 1: A commit of the Randomness cause category
and the Widen Assertion repair category. This flaky test
from the Cirq project [2] was repaired by a developer
who adjusted the type of tolerance used in the approx-
imate assertion statement. The source of the test data,
examples.quantum_teleportation.main, uses a random num-
ber generator, indicating that the assertion was previously
too conservative to accommodate all possible output values.

for the causes and repairs can be found in the left-most column
and the bottom-most row, respectively. For the repairs, these eight
categories emerged as part of our exploratory methodology:

1. Add Mock. Replace a function with a mock [16, 41] that mimics
the behavior of the original in a controlled way.

2. Add/Adjust Wait. Add or adjust a time delay (i.e., an explicit
wait for an event or a set amount of time) in the test code.

3. Guarantee Order. Guarantee a deterministic iteration order for
a collection object by ensuring that it is a type that maintains an
order [20, 35] and that it is sorted before being used in assertions.
4. Isolate State. Eliminate shared program state between test cases
[18, 21] by, for example, not using global variables.

5. Manage Resource. Ensure that external resources are properly
managed by, for instance, closing files and sockets.

6. Reduce Randomness. Make a test case that involves random-
ness more deterministic by, for example, setting a generator seed.
7. Reduce Scope. Hone the set of behaviors and properties checked
by a test case to potentially make it less brittle [25].

8. Widen Assertion. Adjust a test case’s assertion statement to
make it accept a broader range of values and states [14, 15].

The most common cause category was Randomness, which de-
velopers addressed in 15% of the commits. This was followed by
Async. Wait and Time both at 12% each and then Concurrency
and Network both at 11% each. The most common repair category
was Widen Assertion, which developers applied in 25% of the com-
mits. Add Mock and Add/Adjust Wait were tied for second place at
15% each, followed by Manage Resource and Reduce Randomness
both at 8% each. See Figure 1 for an example of a commit of the
Randomness cause and Widen Assertion repair categories.

5 IMPLICATIONS

Developers. For the flaky tests that were repaired by developers
in the studied commits, we can say that they allocated time to do
so and so they must have been of interest. The results for RQ1
showed that automated rerunning with noise achieved a recall of
only 40% against these commits. This is not to say that the flaky
tests that could be detected by rerunning, but that are not part of our
baseline, would not be of interest to developers. Yet, we cannot say
anything about those flaky tests, since we do not know if developers
would assign time to repair them. Still, we demonstrated that the
intersection between the flaky tests detected by rerunning and the
flaky tests that we can say were of interest to developers is small.
This implies that, for developers, the usefulness of rerunning is
limited — especially given its prohibitive runtime cost [9, 11, 26].
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We found that rerunning with noise performed significantly
better than without. This finding supports the results of Silva et al.
[36], who found that flaky tests fail more often in noisy execution
environments. It is also echoed by Habchi et al. [22], who found
that developers expressed a need for reruns under diverse system
configurations. Therefore, if developers do wish to use rerunning
to detect flaky tests, we strongly recommend doing so with noise.

Researchers. It is common in previous studies [9, 11, 34] to eval-
uate detection techniques using the flaky tests identified by auto-
mated rerunning as a baseline. We found that rerunning did not
perform well against the baseline of developer-repaired flaky tests.
Transitively, this implies that a baseline provided by rerunning
would be unsuitable for assessing developer usefulness, given that
this property is what our baseline aims to assess. However, we
appreciate the manual effort required to collect a set of flakiness-
repairing commits and evaluate a technique against them. For these
reasons, we would advise researchers to supplement their existing
evaluation methodologies with a developer-based methodology.

6 RELATED WORK

Luo et al. [29] performed one of the most frequently cited empirical
studies of flaky tests. They introduced ten cause categories to clas-
sify commits that repaired them. We used these categories in our
study to answer RQ2. Eck et al. [15] used surveys to examine test
flakiness from the view of software developers. They introduced
four further categories, including Platform Dependency for flak-
iness stemming from assumptions about the execution platform.
Gruber et al. [19] used automated rerunning to detect 7,571 flaky
tests in Python projects. Of these, they randomly sampled 100 and
classified their causes using the categories introduced by Luo et al.
and Eck et al.. Like us, they found Randomness to very prevalent.
Researchers have proposed many techniques for detecting flaky
tests. Bell et al. [11] introduced DeFlaker for detecting flaky tests
whose outcome changes across consecutive versions of a project but
that do not cover modified code. They found that it could detect 96%
of the flaky tests they had previously identified using rerunning.
This would be an example of a rerun-based evaluation methodology.
Dutta et al. [13] presented the FLASH tool for identifying flaky
tests specific to machine learning and probabilistic projects. As part
of their evaluation, they assessed their technique’s performance
against a baseline of developer-repaired flaky tests. This would be an
example of a developer-based methodology, though in comparison
to this paper, the authors used a smaller baseline of 11 commits.

7 CONCLUSIONS

Given the challenges that flaky tests pose for developers, prior re-
search has presented and evaluated many methods for finding them.
This paper demonstrated the value of a developer-based method-
ology for evaluating automated flaky test detection techniques. It
involves calculating the recall of a technique against a baseline
of developer-repaired flaky tests. For this baseline, we collected
75 flakiness-repairing commits from 31 Python projects hosted on
GitHub. We evaluated automated rerunning against our baseline
and found that it attained a recall of only 40%. For developers, this
indicates that the usefulness of rerunning is limited. For researchers,
this implies that a baseline provided by rerunning is unsuitable for
assessing the usefulness of a detection technique for developers.
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