
Surveying the Developer Experience of Flaky Tests
Owain Parry

University of Sheffield
UK

Gregory M. Kapfhammer
Allegheny College

USA

Michael Hilton
Carnegie Mellon University

USA

Phil McMinn
University of Sheffield

UK

ABSTRACT
Test cases that pass and fail without changes to the code under test
are known as flaky. The past decade has seen increasing research
interest in flaky tests, though little attention has been afforded to
the views and experiences of software developers. In this study,
we utilized a multi-source approach to obtain insights into how
developers define flaky tests, their experiences of the impacts and
causes of flaky tests, and the actions they take in response to them.
To that end, we designed a literature-guided developer survey that
we deployed on social media, receiving 170 total responses. We also
searched on StackOverflow and analyzed 38 threads relevant to
flaky tests, offering a distinct perspective free of any self-reporting
bias. Using a mixture of numerical and thematic analyses, this study
revealed a number of findings, including (1) developers strongly
agree that flaky tests hinder continuous integration; (2) developers
who experience flaky tests more often may be more likely to ignore
potentially genuine test failures; and (3) developers rate issues in
setup and teardown to be the most common causes of flaky tests.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Software Testing; Flaky Tests; Qualitative Research.
ACM Reference Format:
Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn.
2022. Surveying the Developer Experience of Flaky Tests. In 44nd Interna-
tional Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3510457.3513037

1 INTRODUCTION
Test cases that pass and fail without changes to the code under
test are called flaky and are prevalent in industry [24, 32]. Flaky
tests are a major snag for software developers because they disrupt
continuous integration [14], harm productivity [29, 33], and lead

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513037

to a loss of confidence in testing [45]. They are also a persistent
problem in research, limiting the applicability of state-of-the-art
techniques for test selection and prioritization [31, 36, 48].

Despite an increasing volume of studies on test flakiness [21,
30, 40, 46], there is as yet little focus on the views and experiences
of developers. Since flaky tests are primarily a developer problem,
there is an underutilized opportunity to acquire valuable insights
from those who experience them first-hand.Where previous studies
do exist, they focus on specific organizations and developers’ self-
reported experiences [17, 23], two potential sources of bias [13].

In this paper, we examine multiple sources to understand how
developers define and react to flaky tests and their experiences of
the impacts and causes. We consulted both published and gray liter-
ature to inform the design of a developer survey that we deployed
on social media as broadly as possible, receiving 170 responses.

In addition to the survey, we searched StackOverflow and fil-
tered the results to produce a dataset of 38 threads. We performed
thematic analysis [11] on the questions and accepted answers in
these threads to gain insights into the flaky tests for which develop-
ers require assistance to diagnose and repair. Through this unique
perspective, we were able to identify themes regarding additional
causes and actions that were not revealed by the developer survey.

Some of our findings support previous literature while several
others were unanticipated. For example, we found that participants
who experience flaky tests more often may be more likely to ignore
potentially genuine test failures, supporting the position of experts
such as Martin Fowler [19]. We also found that participants rated
asynchronicity and concurrency as only the fourth and fifth most
common causes of flaky tests respectively, despite studies reporting
these to be the most common [17, 30, 40]. Finally, we make all our
data and artifacts publicly available in our replication package [6].

In summary, the main contributions of this study are as follows:
Contribution 1: Developer survey: We designed a developer
survey based on previous literature and received 170 responses.
Through numerical and thematic analysis, we identify alternative
definitions of flaky tests, the most significant impacts of flaky tests,
the most frequent causes of flaky tests, and the most common
actions developers perform in response to flaky tests (See §2.1).
Contribution 2: StackOverflow threads: Through thematic anal-
ysis of our dataset of 38 StackOverflow threads, we offer a unique
insight into the causes of flaky tests experienced by developers and
the strategies that they suggest to repair them, independent of what
they self-reported in our developer survey (See §2.2).
Contribution 3: Findings and recommendations: We surface
a range of findings that support previous literature and some that
were more unforeseen. From these, we offer actionable recommen-
dations for both software developers and researchers (See §4).

https://doi.org/10.1145/3510457.3513037
https://doi.org/10.1145/3510457.3513037

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

2 METHODOLOGY
To understand how software developers define, experience, and
approach flaky tests, we asked the following research questions:
RQ1: Definition: How do developers define flaky tests?
RQ2: Impacts: What impacts do flaky tests have on developers?
RQ3: Causes:What causes the flaky tests experienced by developers?
RQ4: Actions: What actions do developers take against flaky tests?

To answer these RQs, we used a multi-source study consisting
of a developer survey, with both closed- and open-ended questions,
and an analysis of StackOverflow threads. We performed numerical
analysis on the closed-ended survey questions and thematic analysis
[11] on the open-ended questions and the StackOverflow threads.

Before conducting our study, we received ethical approval for
the developer survey from the University of Sheffield. We include
our participant information sheet in our replication package [6].

2.1 Developer Survey
We designed a survey of 11 questions for software developers. Some
presented a list of prepared statements and asked participants to re-
spond to them in a closed-ended fashion. To ensure their relevance,
we reviewed published research and other gray literature to deter-
mine these statements. We disseminated the survey on Twitter and
LinkedIn, specifically asking for developer participants. We also
circulated the survey among Sheffield Digital, a regional technology
business forum [7]. Our 11 survey questions are as follows:

SQ1: A flaky test is a test case that can both pass and fail without
any changes to the code under test. Do you agree with this definition?
Participants could indicate that they agreed or disagreed. This is
a common definition, though it is not universal. Vahabzadeh et al.
[47] only considered test cases whose non-determinism was caused
by timing or concurrency to be flaky tests. On the other hand, Shi
et al. [41] included test cases with inconsistent coverage in their
study on mitigating the effects of flaky tests on mutation testing.

SQ2: If you answered “No, I do not agree” to the previous question,
please give your own definition of a flaky test. This gave participants
who disagreed with our proposed definition the opportunity to
offer their own. Together with SQ1, these questions address RQ1.

SQ3: How often do you observe flaky tests in the projects you’re
currently working on? Participants could answer Never, A few times
a year, Monthly, Weekly, or Daily. We used this to gauge the preva-
lence of flaky tests and as a demographic variable in our analysis.

SQ4: To what extent do you agree with the following statements:
To address RQ2, this question posed eight statements and asked
participants to rate their agreement on a four-point scale. With
reference to previous literature, the statements are as follows:
SQ4.1: Reliability: Flaky tests reduce the reliability of testing. Va-
habzadeh et al. [47] categorized 443 bug reports regarding test cases.
They found that 97% caused the test to fail without indicating a
bug, i.e., they were false alarms. They categorized 53% of these as
either flaky tests, resource mishandling, or caused by factors in the
execution environment. According to our proposed definition in
SQ1, we also consider the latter two categories as flaky tests.
SQ4.2: Efficiency: Flaky tests reduce the efficiency of testing. A spe-
cific category of flaky tests, known as order-dependent (OD) tests
[26, 43, 50], are influenced by previously executed test cases. Tech-
niques to improve the efficiency of testing by reordering, reducing

or splitting-up the test suite are unsound when OD tests are present.
For instance, in the test suites of 11 Java modules, Lam et al. [27]
found that 23% of OD tests failed after they applied test case priori-
tization, 24% after test case selection, and 5% after parallelization.
SQ4.3: Productivity: Flaky tests lead to a loss of productivity. John
Micco [33] explained that developer productivity relies on the ca-
pability of test cases to identify genuine issues in a timely and
reliable manner. Flaky tests are unreliable and therefore could harm
the productivity of the developers who experience them as well as
those who rely on the productivity of those developers [29].
SQ4.4: Confidence: Flaky tests lead to a loss of confidence in testing.
Given how flaky tests may manifest as a false alarm [47], there
is a danger that developers will lose confidence in testing if they
continuously experience flaky tests. This could lead to a culture of
ignoring tests, which may cause genuine bugs to go unnoticed [45].
SQ4.5: CI: Flaky tests hinder continuous integration (CI). Durieux
et al. [14] analyzed over 75 million build logs on Travis CI. They
found that 47% of previously failing builds that were manually
restarted by a developer subsequently passed. Since no changes
were involved, these builds may have failed due to flaky tests.
SQ4.6: Ignore: Flaky tests make it more likely for you to ignore
(potentially genuine) test failures.Martin Fowler [19] explained how
developers may be tempted to ignore flaky test failures. He ex-
plained that if a test suite contains too many flaky tests, developers
could lose the discipline to ignore just the flaky failures. Rahman
et al. [39] found that ignoring test failures, flaky or not, was associ-
ated with a higher volume of crashes due to missed bugs.
SQ4.7: Reproduce: It is difficult to reproduce a flaky test failure.
Lam et al. [28] described how, upon encountering a failing test, a
developer might rerun it in isolation from the rest of the test suite in
order to reproduce the failure and debug the code under test. They
reran in isolation, for 4,000 times each, the 107 flaky tests from 26
Java modules, only reproducing the failures of 57 and concluding
that this may be ineffective at reproducing flaky test failures.
SQ4.8: Differentiate: It is difficult to differentiate between a test
failure due to a genuine bug and a test failure due to flakiness. Lamyaa
Eloussi [18] remarked how flaky tests are a source of wasted time,
particularly during regression testing, where flaky test failures may
appear linked with a commit but can actually be unrelated.

SQ5: In the projects you’re currently working on, how often have
you encountered flaky tests caused by...We gave participants a list
of causes and asked them to rate on a four-point scale how often
they had experienced them. The list of causes is as follows:
SQ5.1:Waiting: Not correctly waiting for the results of asynchronous
calls to become available. This cause has been presented in numerous
studies and is widely agreed upon by researchers to be one of the
leading causes of flaky tests [17, 25, 30, 40]. For example, a flaky
test that spawns a new process to perform an operation but does
not wait for the process to finish falls under this category.
SQ5.2: Concurrency: Synchronization issues between multiple
threads interacting in an unsafe or unanticipated manner (e.g., data
races, atomicity violations, and deadlocks). Like SQ5.1, studies point
to this category as being very common. Eck et al. [17] explained that
flaky tests caused by local thread synchronization issues belong in
this category, while synchronization issues with remote resources,
such as web servers or external processes, would be SQ5.1.

Surveying the Developer Experience of Flaky Tests ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

SQ5.3: Setup/teardown: Tests not properly cleaning up after them-
selves or failing to set up their necessary preconditions. Many studies
identified OD tests to be a very prevalent category of flaky tests
[17, 21, 26, 30]. Bell et al. [9] suggested that one cause may be the
burden of writing correct setup and teardown methods, executed
by a test runner before and after the main body of a test case. Shi
et al. [43] differentiated between victims, an OD test that fails if
executed after a polluter test case, and brittles, an OD test that only
passes if executed before a state-setter. In the former, the victim
does not perform proper setup and/or the polluter does not perform
proper teardown. The latter instance is similar but reversed.
SQ5.4: Resources: Improper management of resources (e.g., not clos-
ing a file or not deallocating memory). The specific case of failing
to release acquired resources (i.e., a resource leak) has been identi-
fied at a generally lower prevalence than the preceding categories
in previous research [17, 21, 25, 30]. Bearing some similarities to
SQ5.3, the test that improperly manages the resource may not be
the test case that is flaky, but rather a subsequently executed test.
SQ5.5: Network: Dependency on a network connection. Any test
case that requires a network connection will inevitably be flaky
since infrastructure issues or periods of high traffic may cause
the test case to fail. Several empirical studies have described this
particular cause, with varying degrees of prevalence [17, 25, 30, 46].
SQ5.6: Random: Not accounting for all the possible outcomes of
random data generators or code that uses them. Test cases that use
random data, or cover code that utilizes randomization, can become
flaky for a variety of reasons. One reason is that it may be difficult
for developers to approximate test oracles, such as the appropriate
range of output values in assertion statements [17, 35]. This is a
particular problem for machine learning applications [15, 16].
SQ5.7: Time/date: Reliance on the local system time/date. Test cases
that depend on time and date are fraught with difficulty, such as
inconsistencies in representation and precision across systems as
well as timezone conversion issues [17, 21, 25, 30].
SQ5.8: Floating point: Inaccuracies when performing floating point
operations. Given their limited precision and other idiosyncrasies,
floating point comparisons can sometimes produce unexpected
results. In the context of flaky tests, previous work generally con-
sidered this specific cause to be quite rare [17, 25, 30].
SQ5.9: Unordered: Assuming a particular iteration order for an
unordered collection-type object (e.g., sets). This is a special case of a
general cause pertaining to assumptions regarding the implemen-
tations of non-deterministic program specifications [22, 42, 49].
SQ5.10: Unknown: Reasons that cannot be precisely determined.
Finally, developers could indicate how often they had encountered
flaky tests whose cause they could not precisely identify.

SQ6: Have you encountered any other causes of flaky tests that
we have not described above? This question gave participants the
chance to tell us about any other causes of flaky tests that we did
not list in SQ5. Together with SQ5, these questions address RQ3.

SQ7: After identifying a flaky test, how often do you... This ques-
tion offered a list of actions and participants could rate how often
they perform them on a four-point scale. They were as follows:
SQ7.1: No action: Take no action. Quite simply, a developer may
choose to take no action when encountering a flaky test.
SQ7.2: Re-run: Re-run the build. Perhaps the most straight-forward
action, a developer may just restart the failing build and hope that

the flaky test passes this time. In their study of Travis CI build logs,
Durieux et al. [14] found this to be a common practice.
SQ7.3: Document: Document and defer (e.g., submit an issue/bug
report). A developer may not have the time to immediately repair
a flaky test and may choose to document it for attention later. For
example, they could raise an issue in a GitHub repository.
SQ7.4: Delete: Delete the test. Another straight-forward action is to
permanently remove the flaky test from the test suite. Recounting
on his experiences at Facebook, Kent Beck remarked how it was
routine to delete non-deterministic test cases [12].
SQ7.5: Quarantine: Quarantine the test. Martin Fowler [19] ad-
vised that flaky tests should be quarantined from the main test suite
into a dedicated test suite that is understood by the development
team to be unreliable. He advised that developers should keep the
quarantined test suite small by promptly fixing flaky tests. Other-
wise, there is a danger of flaky tests being forgotten about and the
whole process becoming equivalent to just deleting test cases.
SQ7.6: Mark skip: Mark the test to be skipped or as an expected
failure (e.g., xfail). Many testing frameworks allow test cases to
be marked as skipped, meaning they are not deleted from the test
suite but are not executed either. Alternatively, some frameworks,
such as pytest, allow test cases to be marked as expected failures or
xfails. This signals to the testing framework that they are expected
to fail, in which case they should not fail the entire test suite.
SQ7.7: Mark re-run: Mark the test to be automatically repeated
(e.g., by using the flaky plugin for pytest). Often via the support of
plugins, some testing frameworks allow test cases to be marked
such that they are repeated some number of times upon failure.
One example of such a plugin is flaky for pytest [10].
SQ7.8: Repair: Attempt to repair the flakiness. Finally, a developer
may attempt to repair the underlying cause of the flaky test rather
than just mitigating it with one of the previous actions.

SQ8: Are there any other actions that you would take that we
have not listed above? In this question, participants could report any
additional actions. Along with SQ7, these questions address RQ4.

SQ9: Which languages are you currently developing in? Partici-
pants could select from a list of popular programming languages,
with an option to specify any other languages that we did not
include. We asked this question to obtain further demographic
information about our participant population.

SQ10: How many years experience do you have in commercial
and/or open-source software development? Participants could select
one of 0–1, 2–4, 5–8, 9–12, or 13+ years. Like SQ3, we used this as
an additional demographic variable in our analysis.

SQ11: Is there anything else that you would like to tell us about
flaky tests? The final question gave participants the opportunity to
relay any miscellaneous insights they had about flaky tests.

2.2 StackOverflow Threads
We analyzed StackOverflow threads where a developer asked for
help addressing one or more flaky tests. We selected StackOverflow
specifically due to its widespread popularity and its use in previous
software engineering research [34]. This analysis adds further depth
to our answer for RQ3 by considering the causes of flaky tests that
developers ask for help with, as opposed to the causes they report as
the most common. It is also free of any self-reporting bias that may

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

result from the survey [13]. For RQ4, this analysis offers insights
into how developers repair flaky test cases, since our survey only
asks participants how often they attempt to do so.

A thread on StackOverflow consists of a single question followed
by answers. A user can indicate that an answer has addressed
their question by accepting it. To find relevant threads, we used
the website’s search feature. The query we used was “flaky test
hasaccepted:yes”. The latter part of the query is a search operator
that only matches threads where the user who asked the question
has accepted an answer. This is to increase the probability that we
can identify a recommended course of action for RQ4.

From the search results, we created a dataset of relevant threads.
We only included threadswhere the questionwas specifically asking
about the cause of one or more flaky tests and/or how to repair them.
We excluded threads where the question was more tangential, such
as asking how to handle flaky tests in a specific testing framework
[3]. This is because such threads do not present causes or possible
repairs and are therefore of no use for addressing RQ3 or RQ4.

2.3 Analysis
We designed SQ4, SQ5, and SQ7 to be answered using a four-
point Likert scale, quantifying agreement in the case of SQ4 and
frequency for SQ5 and SQ7. Each of these questions asked partici-
pants to respond to a list of prepared statements. For each statement,
we assigned a score between 0 and 3 to each point on the Likert
scale. As an example, for each statement of SQ4, participants could
select Strongly disagree, Agree, Disagree, or Strongly disagree, corre-
sponding to a score of 0, 1, 2, or 3 for that statement, respectively.
For each question, we calculated the mean score of each statement
across all participants and four specific populations. The first two
populations were participants who said they experienced flaky tests
on at least a monthly basis and those who experienced them less
frequently (see SQ3). We chose to split the participants by this
criterion since those who frequently experience flaky tests may
have different views to those who experience them rarely [19].

The final two populations were participants who said they had
at least 13 years of software development experience and those who
had fewer (see SQ10). We made this split because, when compared
to participants with less experience, those with more may be better
at accurately diagnosing the causes of flaky tests and may be more
likely to take certain actions to address them. We excluded any
respondent from the analysis of a particular question if they did
not respond to all of that question’s statements. For each question,
we calculated the ranks of every statement, based on mean score,
to quantify the most significant impacts in the case of SQ4 and the
most common causes and actions for SQ5 and SQ7, respectively.

We performed inductive thematic analysis [11] on the responses
to the open-ended survey questions (SQ2, SQ6, SQ8, and SQ11)
and the StackOverflow threads. For each survey question, all four
authors met and discussed each response. We split responses con-
taining logical connectives such as “and” and “or” into their atomic
components. We then assigned one or more labels or codes to each
response, representing its key concepts. By collaboratively perform-
ing the coding, we minimized the impact of any individual biases
and ensured our coding was as consistent as possible. From these
codes we derived a set of themes, representing the definition of flaky
tests, their causes, and developers’ actions against them for SQ2,

SQ6 and SQ8, respectively. For SQ11, the themes represent more
general insights. We performed a very similar procedure for the
StackOverflow threads. Next, we assigned themes regarding causes
and actions to each thread in two separate sessions. Finally, we
encountered several accepted answers prescribing multiple actions,
in which case we assigned them to multiple action themes.

2.4 Threats to Validity
All methodologies carry the risk of biasing results, including this
paper’s. This section discusses both these risks and our mitigations.

Replicability: Can others replicate our results? Our numerical
analysis is straightforward to replicate. We make the response data
from our developer survey and our Python script for performing
our numerical analysis available as part of our replication package
[6]. In general, thematic analysis is more challenging to replicate.
Nonetheless, we include in our replication package the spreadsheets
we used to facilitate our collaborative thematic analysis.

Construct: Are we asking the right questions? The construction
of our study can bias our results, as in any study. To attain the high-
est quality of results possible, we designed a multi-source approach.
Our numerical analysis of the closed-ended survey questions pro-
vides broad, high-level insights. Our thematic analysis of the open-
ended questions offers a more specific, but much more detailed,
understanding of developers’ experiences. Finally, our analysis of
the StackOverflow threads provides an alternative perspective, free
of any potential self-reporting bias [13]. We selected these three
components to collect inherently different but complementary data,
thereby giving a more complete understanding of flaky tests.

Internal: Did we skew the accuracy of our results with how we
collected and analyzed information? It is possible for the results
of surveys to be impacted by biases, from both participants and
researchers. During our numerical analysis, there is little we can do
to mitigate this on the participants’ side, though since the analysis
is purely mathematical in nature, there is very limited scope for
researcher bias. During the thematic analysis, we mitigated any in-
dividual researcher bias by collaboratively performing all analyses.
Due to the nature of our recruitment, we could not verify that par-
ticipants genuinely were software developers. Therefore, we have
no guarantee that our participant population accurately reflects
our target population. We mitigated this by specifically asking for
developers in our Twitter and LinkedIn posts and by making it clear
in our participant information sheet that we were seeking develop-
ers. Furthermore, the technical nature of the questions mean the
survey would be difficult for non-developers to complete.

External: Do our results generalize?We cannot make any claims
regarding the generalization of our results beyond the survey popu-
lation. Even though this is a natural limitation of any survey-based
study, we mitigated it by not targeting any specific organization
and recruiting participants through more than one platform.

3 RESULTS
We received 170 responses to our survey. Figure 1 shows the results
of SQ3 and SQ9. For SQ3, just over half of the participants reported
that they observe flaky tests on at least a monthly basis. This shows
that flaky tests are a frequent phenomenon, especially given that
23 reported experiencing them daily. For SQ10, just under half said

Surveying the Developer Experience of Flaky Tests ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

234427705
SQ3: How often do you observe flaky tests ... ?

Never A few times a year Monthly Weekly Daily

792532268
SQ10: How many years experience ... ?

0 - 1 2 - 4 5 - 8 9 - 12 13 +

Figure 1: Results for SQ3 and SQ10.

they had 13 years or more of software development experience.
For SQ9, the top three programming languages were JavaScript,
Python, and Java. The distribution roughly corresponds to the most
popular languages according to the 2021 StackOverflow developer
survey [8]. This reassures us that our participant population is
generally representative of the wider community of developers.

After performing our search on StackOverflow, we found 169
threads. We carefully examined each one and narrowed them down
to the 38 that are relevant according to the criteria in Section 2.2.

We now answer each of our research questions using the results
of our analysis of the responses to our survey and the StackOverflow
threads. See Table 1 for the results of our thematic analysis for SQ11.

RQ1: Definition. Of the 169 respondents who answered SQ1,
6.5% disagreed with our proposed definition. In order of prevalence,
the themes following our thematic analysis for SQ2 are:
SQ2t1: Beyond code: The definition extends beyond the test case code
and the code that it covers. Participant 97 (P97) said “... a flaky test
is any test that changes from pass to fail (or vice versa) in different
environments”. P147 relayed a similar view, but specifically for test
cases that only fail in a CI environment. P27 stated more generally
that a test case whose outcome depends on changes irrelevant to the
code under test is flaky. Arguably, this includes the environmental
changes referenced by P97 and P147 and more.
SQ2t2: Flaky code under test: A flaky test can indicate that the
code under test is flawed, rather than the test case itself. In the words
of P155, “... a flaky test is therefore either unreliable itself or it
proves the code under test is flawed and unreliable”. P25 indicated
that the term flaky is inappropriately used to blame test cases when
their flakiness is inevitable if they test nondeterministic code.
SQ2t3: Beyond test outcomes: A test case can be considered flaky
despite having a consistent outcome. P58 wrote “... this includes
pass/fail, but can encompass other aspects such as coverage or test
time”. P25 generalized by considering more abstract characteristics
such as the extent that the test case controls the system under test.
SQ2t4: Learn to live with it: Flakiness is an inevitable aspect of
testing. P62 agreed with our definition, but indicated that some test
cases may be flaky by nature, saying “... not all tests are determin-
istic”. P25 expressed that there may be limited value in labelling
test cases as flaky, since they are an inescapable aspect of testing.
Conceivably, SQ11t5 is a continuation of this concept and indicates
that some participants consider them to have value.
SQ2t5: Usefulness of the test: A test case that cannot effectively
identify bugs is flaky. In reference to our definition, P116 stated “I
think it’s broader than that and includes things like tests that pass
independent of conditions”. P101 said that a test case is flaky if it
cannot clearly identify problems in the code under test. This theme
is similar to SQ2t3 but leans more towards bug-finding capability.

Conclusion for RQ1: Definition: How do developers define
flaky tests? Most participants (93.5%) agreed with our definition
of flaky tests in SQ1. Following our thematic analysis for SQ2, we
identified more general definitions. Some participants indicated
that the definition should consider factors beyond the test case
code or the code under test. Others expressed that only taking
the outcome of a test case into consideration when defining flaky
tests is not enough. They conveyed that other behaviors, such
as coverage, and more abstract properties, such as usefulness,
should be part of the definition. Several offered more digressive
insights, such as test cases should not always be considered at
fault for the flakiness, as it is an inevitable aspect of testing.

RQ2: Impacts. The top third of Table 2 shows the mean scores
and ranks of each impact statement. For all participants, SQ4.5
scored the highest. This indicates that developers strongly agree
with the notion that flaky tests hinder CI. Second and third were
SQ4.3 and SQ4.2, regarding losses to productivity and the effi-
ciency of testing, respectively. The lowest scoring impact was SQ4.8,
which, as illustrated by the distribution bar, was the most evenly
split between agreement and disagreement. This suggests that dif-
ferentiating between a true test failure and a spurious failure due
to flakiness is relatively straightforward for some developers.

The most significant difference in mean score between partici-
pants who experienced flaky tests on at least a monthly basis and
those who did not was for SQ4.6. This indicates that developers
who experience flaky tests more often could be more likely to ig-
nore potentially genuine test failures. Beyond that, the scores are
similar, with both scoring SQ4.5 the highest and SQ4.8 the low-
est. The scores between the participants with at least 13 years of
development experience and those with fewer are also similar.

In SQ11t2, participants expressed anger or frustration at flaky
tests. P96 said they “they’re very annoying”. Along with SQ4.4 and
SQ4.6, this further evidences the psychological cost of flaky tests.

Conclusion for RQ2: Impacts: What impacts do flaky tests
have on developers? Our analysis for SQ4 indicates that devel-
opers strongly agree with the notion that flaky tests hinder CI.
They also agree that flaky tests lead to both a loss of productivity
and a reduction in testing efficiency. Respondents were mixed
with regard to the difficulty of differentiating between a failure
due to a true bug and one due to flakiness, implying that some
developers may not find this challenging. Our analysis also sug-
gests that developers who experience flaky tests more often may
be more likely to ignore potentially genuine test failures.

RQ3: Causes. The middle third of Table 2 shows the mean scores
of each cause we proposed for SQ5. The cause with the highest score
across all participants was SQ5.3. This suggests that improper setup
and teardown is the most frequent cause of flaky tests. Flakiness
caused by network issues (SQ5.5) and unknown reasons (SQ5.10)
had the second and third highest scores, respectively. This indicates
that the causes of many flaky tests go undiagnosed by developers.
The lowest scoring was SQ5.8 concerning floating point issues.

Comparing the participants who experienced flaky tests at least
monthly to those who did not, there is agreement that SQ5.3, SQ5.5,
and SQ5.8 were the first, second, and least most common causes,

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

Table 1: Themes of the responses for SQ11 regarding miscellaneous insights about flaky tests, in order of prevalence.

Title and description Representative quote

SQ11t1: Developer culture: The relationship between flaky tests and
testing practices and developer culture.

“It’s often an organizational problem...” – P89

SQ11t2: Emotive response: An expression of anger or other emotion. “They suck.” – P91
SQ11t3: Poor tooling support: Tooling for handling flaky tests is inade-
quate or not well known.

“Library support for automatically handling them in Scala is poor or not
well popularized.” – P7

SQ11t4: Execution environment: The interplay between execution envi-
ronment and flaky tests.

“Caused by poor quality of coding and poor test specification coupled with
a lack of understanding of the environment.” – P101

SQ11t5: Silver lining: Flaky tests may have some utility. “Flaky tests can be valuable as they often point to an underlying weakness
in the codebase.” – P133

SQ11t6: Time/date logic: Test cases handling time/date logic are notori-
ously flaky.

“90% of the time it’s date and or timezone logic ...” – P28

SQ11t7: External service: Flaky tests caused by third party services. “Recently, seen a lot of flaky tests when running CI on Azure due to failures
to download libraries ...” – P31

SQ11t8: Not worth fixing: The resources required to repair flaky tests are
too great to make it worthwhile.

“... We haven’t got the time to address them all.” – P64

Table 2: Results of the numerical analysis of the responses for SQ4, SQ5, and SQ7. The five “Mean Score (Rank)” columns are
the mean scores of each impact, cause, or action for the four specific populations and all participants (All). In each case, the
ranks in descending order of mean score are in parentheses. The final column visualizes the distribution of responses.

Mean Score (Rank)

≥ Monthly (SQ3) ≥ 13 Years (SQ10)

Question Yes No Yes No All Distribution (All)

RQ2: Impacts Strongly disagree Disagree Agree Strongly agree

SQ4.1: Reliability 2.43 (4) 2.47 (2) 2.49 (4) 2.41 (4) 2.45 (4)
SQ4.2: Efficiency 2.53 (3) 2.38 (4) 2.52 (2) 2.42 (3) 2.47 (3)
SQ4.3: Productivity 2.58 (2) 2.41 (3) 2.52 (2) 2.49 (2) 2.50 (2)
SQ4.4: Confidence 2.18 (6) 2.25 (5) 2.27 (5) 2.17 (5) 2.21 (5)
SQ4.5: CI 2.63 (1) 2.63 (1) 2.68 (1) 2.59 (1) 2.63 (1)
SQ4.6: Ignore 2.32 (5) 1.96 (7) 2.21 (6) 2.11 (6) 2.16 (6)
SQ4.7: Reproduce 2.05 (7) 2.14 (6) 2.07 (7) 2.11 (6) 2.09 (7)
SQ4.8: Differentiate 1.70 (8) 1.85 (8) 1.76 (8) 1.77 (8) 1.76 (8)

RQ3: Causes Never Rarely Sometimes Often

SQ5.1: Waiting 1.48 (3) 1.08 (5) 1.26 (4) 1.34 (4) 1.30 (4)
SQ5.2: Concurrency 1.27 (5) 0.95 (7) 1.24 (5) 1.02 (5) 1.12 (5)
SQ5.3: Setup/teardown 1.73 (1) 1.64 (1) 1.84 (1) 1.56 (1) 1.69 (1)
SQ5.4: Resources 0.82 (7) 0.97 (6) 0.93 (7) 0.85 (7) 0.89 (7)
SQ5.5: Network 1.63 (2) 1.21 (2) 1.53 (2) 1.36 (2) 1.44 (2)
SQ5.6: Random 0.69 (8) 0.70 (9) 0.68 (9) 0.70 (8) 0.69 (9)
SQ5.7: Time/date 1.01 (6) 1.12 (4) 1.11 (6) 1.02 (5) 1.06 (6)
SQ5.8: Floating point 0.33 (10) 0.66 (10) 0.59 (10) 0.37 (10) 0.48 (10)
SQ5.9: Unordered 0.69 (8) 0.78 (8) 0.84 (8) 0.63 (9) 0.73 (8)
SQ5.10: Unknown 1.45 (4) 1.16 (3) 1.29 (3) 1.35 (3) 1.32 (3)

RQ4: Actions Never Rarely Sometimes Often

SQ7.1: No action 1.40 (4) 0.91 (5) 1.41 (4) 1.01 (4) 1.19 (4)
SQ7.2: Re-run 2.81 (1) 2.46 (2) 2.68 (1) 2.66 (1) 2.67 (1)
SQ7.3: Document 1.58 (3) 1.67 (3) 1.59 (3) 1.65 (3) 1.62 (3)
SQ7.4: Delete 0.86 (7) 1.06 (4) 1.09 (5) 0.80 (7) 0.94 (5)
SQ7.5: Quarantine 0.74 (8) 0.79 (7) 0.81 (7) 0.73 (8) 0.77 (8)
SQ7.6: Mark skip 0.98 (5) 0.85 (6) 1.04 (6) 0.84 (5) 0.93 (6)
SQ7.7: Mark re-run 0.96 (6) 0.55 (8) 0.74 (8) 0.84 (5) 0.79 (7)
SQ7.8: Repair 2.23 (2) 2.64 (1) 2.53 (2) 2.31 (2) 2.41 (2)

Surveying the Developer Experience of Flaky Tests ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

respectively. The greatest difference in score is for SQ5.1. It could
be that those participants who said they experience flaky tests on
a less than monthly basis do not work on projects that heavily
rely on asynchronicity. This could also explain why these particu-
lar participants do not experience flaky tests frequently, since the
participants who do also scored this cause relatively highly. The
differences in mean scores between participants with at least 13
years experience and those with fewer are comparatively small.

According to these results, time and date (SQ5.7) appears to be a
fairly uncommon cause of flaky tests. Despite this, two participants
made strong statements about how time and date logic is a signifi-
cant cause of flaky tests in SQ11t6. P28 said “date handling is the
worst thing I have ever had to program around”. This suggests that
if a project does rely on time and date logic, this is likely to be a
significant cause of the flaky tests of the project’s test suite.

After our thematic analysis for SQ6, we identified the following
themes, in order of prevalence, regarding additional causes:
SQ6t1: External artifact: An issue in an external service, library,
or other artifact, that is outside the scope and control of the software
under test. As a potential cause of flaky tests, P8 reported “third-
party artifacts, services, or dependencies ... which you do not have
full control of ...”. Responses of this prevalent theme were split
between highlighting instabilities in remote services (in some in-
stances a special case of SQ5.5), and issues in third-party libraries.
The common aspect is that participants did not have control over
the external artifact. On the external services side, SQ11t7 is a
special case of this theme, further evidencing its prevalence.
SQ6t2: Environmental differences: Environmental differences
between local development machines and remote build machines. P21
referred to “environmental differences in local vs CI like different
Java Virtual Machine (JVM) defaults.” Almost all the responses
in this theme made reference to CI. P97 offered a more nuanced
explanation, highlighting how file system latency and concurrency-
related issues may cause code to behave differently on a CI system.
This theme is a special case of SQ11t4 and directly supports SQ2t1.
SQ6t3: Host system issues: Problems regarding the machines run-
ning the test suites. In the words of P155, the most common aspect
of this theme is “changes in hardware that the code and tests are
running on”. In many instances, this is a hardware analogue of
SQ6t2, where a change in a machine is the cause of the flakiness.
SQ6t4: Test data issues: Issues originating from the data used by
test cases. Some participants described flakiness caused specifically
by test data. Most of these responses were brief and made reference
to test data that was “deteriorated”, “changing”, or “external”.
SQ6t5: Resource exhaustion: Limited computational resources,
such as memory and storage. P49 wrote “unrelated system load
on a shared resource causing low-level timeouts”. P133 also made
reference to system load from unrelated processes, giving antivirus
software as an example. Other responses leaned more towards test
cases that consume too many resources themselves. This theme is
distinct from SQ5.4, which is specifically about mismanagement.
SQ6t6: OS differences: Differences between operating systems (OS)
or different versions of the same OS. P62 described their experience
after upgrading to a later version of Windows — “user interface
(UI) changes with new OS. Things like EggPlant, that uses graphics.

Moving to a new version of Windows (I think), changed the bat-
tleship gray ever so slightly and failed our UI tests”. P76 explained
how filesystem differences between OSes can cause flaky tests.
SQ6t7: Virtual machines: Complications arising from the use of
virtual machines or containers. Put simply by P52, “the automation
of virtual machines is asking for trouble”. Vagrant and Docker were
specific technologies referred to by the participants.
SQ6t8: UI testing: Non-determinism inherent to the testing of UIs.
P147 wrote “UI not being in the expected state, i.e., keyboard not
closed, or animations not completed when checking results”. P100
specifically described how “random quirks in how Selenium works”
caused them to have flaky tests. In many instances, this theme is a
special case of SQ5.1, since UI test cases often have to wait for a
specific element of a UI to be in the correct state [38].
SQ6t9: Conversion issues: Inconsistencies when converting be-
tween data representations. In the words of P48, “in my code that
tests database interactions, I’ve run into issues where my coding
language has more time precision than my storage ...”. P103 relayed
a similar experience regarding timestamps. While both participants
referred to time, this theme is applicable to any data type.
SQ6t10: Timeouts: Test execution exceeding a time limit and being
prematurely terminated by the test runner. P76 wrote “not waiting
long enough for an environment to be set up”. P79 referred to input
and output operations occurring within a specific time limit.

We identified eight further themes regarding causes after ana-
lyzing the StackOverflow threads. In order of prevalence:
Ct1: UI Timing: Test case does not wait for a user interface to be in
the correct state. This theme is a subset of SQ5.1 regarding general
asynchronicity and a special case of SQ6t8 pertaining specifically
to timing. This theme is related to SQ6t3 since the execution speed
of the machine is likely to significantly impact any timing issues.
Ct2: Logic error: Error in the logic of the test code or the code
under test. This theme is broadly characterized by an oversight or
misunderstanding on the part of the author of the test case. In one
specific instance, a test case used an inappropriate method to wait
for a condition in a UI [4]. This led to flakiness by Ct1, though since
the root cause was that the developer misunderstood the use case
of the waiting method, we placed this thread in Ct2.
Ct3: Shared state: Test case depends on state shared with other test
cases. In one thread, the question describes a test case that shares a
database connection with other test cases and only passes when
executed in isolation [2]. This is an example of an OD test.
Ct4: Unknown: The cause was never resolved. Like its counterpart
in the survey, SQ5.10, this theme was fairly prevalent.
Ct5: Setup/teardown: Test case does not properly clean up after
itself or fails to set up its necessary preconditions. This is equivalent
to SQ5.3. While OD tests were the main motivation for SQ5.3, the
threads in Ct5 describe test cases that do not appear to be OD. This
theme was uncommon yet SQ5.3 was rated as the most common
by participants in the survey. This suggests that the most common
causes are not necessarily the hardest for developers to repair.
Ct6: External library: Bug in a third-party library or package.
This is a special case of SQ6t1 pertaining specifically to third-party
libraries. In one instance, an intermittent NullPointerException
from an external package is the cause of flaky tests [1].
Ct7: Resource leak: Test case does not release acquired resources.
This theme is a subset of SQ5.4 specifically regarding test cases

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

that do not release resources, rather than general mismanagement.
It is similar but not equivalent to SQ6t5, since the exhaustion of
computational resources is not necessarily due to mismanagement.
Ct8: Improper mocking: Test case does not mock an object or
method correctly. Like Ct2, this theme is unique to the StackOver-
flow analysis and describes flaky tests caused by improper mocking.
A mock is a method or object that simulates the behavior of its real
counterpart to make testing more straightforward [44].

Conclusion for RQ3: Causes:What causes the flaky tests experi-
enced by developers? Our analysis for SQ5 suggests that improper
setup and teardown is the most common cause of flaky tests.
Second to that is network-related issues and third is unknown
causes, implying that many flaky tests may go undiagnosed by
software developers. Participants rated floating point idiosyn-
crasies to be the rarest cause. Our thematic analysis for SQ6
revealed additional insights into the causes of flaky tests. The
most common theme pertains to issues in external artifacts that
the developer has no control over, such as third-party libraries
and remote services. Another described differences between lo-
cal development environments and remote build environments,
such as CI. Our analysis of the StackOverflow threads, with re-
spect to the causes of flaky tests suggested that timing issues in
testing user interfaces were the most common theme. Like the
developer survey, our StackOverflow analysis showed that the
causes of flaky tests were never resolved in many threads.

RQ4: Actions. The bottom third of Table 2 presents the numer-
ical analysis for SQ7. The most common action as scored by all
participants was to simply re-run the failing build (SQ7.2). The sec-
ond most common was to attempt to repair the flaky test (SQ7.8).
After these two, there is a significant drop in mean score for the
remaining actions. This implies that re-running the build and at-
tempting to repair the flaky test are generally the most common
actions developers take when encountering flaky tests.

The greatest difference in score between the participants who
experienced flaky tests at least monthly and those who did not
was for SQ7.1. This suggests that developers who experience flaky
tests more often are more likely to take no action. There is also a
considerable difference for SQ7.8, implying that developers who
experience flaky tests less frequently are more likely to attempt
to repair them. Furthermore, SQ11t8 indicates that the costs of
repair are too great for the potential gains. Arguably, this is less
applicable when developers rarely experience flaky tests, which
could partially explain the differences in SQ7.1 and SQ7.8.

Following our thematic analysis for SQ8, we identified the fol-
lowing themes regarding actions, in order of prevalence:
SQ8t1: Emotive response: An expression of anger or some other
emotion. This theme is generally equivalent to SQ11t2, but specifi-
cally in the context of a direct response to flaky tests.
SQ8t2: Alert proper person: Inform other member or members of
the development team about the flaky test. In the words of P52, “tell
the person who maintains that codebase”. This theme is similar to
SQ7.3 but is more direct than just documenting the flaky test.
SQ8t3: Reorder tests: Adjust the order of the test cases. We placed
two responses under this theme but they both had different moti-
vations. P7 said “reorder tests to fail faster” and P111 said “reorder

tests in case they are order-dependent”. The former seems to be
referring to test case prioritization [37]. The latter is talking about
OD tests, but rather than repairing them they are seeking to find a
test run order that does not manifest their flakiness [27].
SQ8t4: Repair resource: Ensure a resource is in the correct state.
Summarized by P8, “when the test depends on the global state ... the
test needs to be neither deleted/skipped, nor repaired, but rather,
the state of the resource needs to be repaired ...”. This theme is
arguably a manifestation of SQ11t5, since the flaky test highlights
a flaw in an aspect of the software beyond the test case code.
SQ8t5: Rewrite code under test: Modify the code under test, as
opposed to the test code. P133 said “rewrite problematic code to make
it more testable”. This has clear links with SQ2t2, since it proves
that a flaky test can highlight issues in the code under test. It is also
a manifestation of SQ11t5, for the same reason as SQ8t4.

In order of prevalence, our analysis of the StackOverflow threads
also resulted in the following themes pertaining to actions:
At1: Fix logic: Repair a logic error. All instances of this theme
address an instance of Ct2. Given that Ct2 is generally about API
misuse, or inappropriate use of specific elements of an API, answers
in At1 typically highlight the correct API usage or recommend a
more appropriate method for a particular purpose [4].
At2: Wait for condition: Add an explicit wait for a condition.
Answers in this theme address most instances of Ct1 and prescribe
waiting for a specific condition, rather than a fixed time delay.
At3: Add mock: Mock out an object or method. This theme directly
addresses Ct8 but is also applicable to many other causes, such as
Ct1. In one instance, the answer recommends mocking to address
a timing issue that causes flakiness in a user interface test [5].
At4: Add/adjust external library: Use a third-party library or
adjust the version of a library already in use. All answers in this
theme address an instance ofCt6. In one specific thread, the answer
highlights the latest version of a particular third-party library that
previously contained a bug that was causing the flakiness [1].
At5: Fix setup/teardown: Repair insufficient setup or teardown
procedure. This theme directly addressesCt5 by suggesting changes
to setup and/or teardown methods that were causing flakiness.
At6: Isolate state: Remove dependency on a shared state. This theme
mostly addresses Ct4, but not always. One accepted answer sug-
gests decoupling shared database connections [2].

Conclusion for RQ4: Actions: What actions do developers
take against flaky tests? For SQ7, our analysis revealed that
re-running the failing build and attempting to repair the flaky
test were the most common actions as rated by the participants.
The remaining actions scored significantly lower, indicating that
developers are unlikely to perform them. Our findings also sug-
gested that developers who experience flaky tests more often
are more likely to take no action in response to them. While not
a bona fide action, our thematic analysis for SQ8 showed that
an emotive response was very common among the participants.
Other themes involved alerting another member of the devel-
opment team, reordering test cases, or repairing aspects of the
software under test, but not the flaky test itself. Our thematic
analysis of the StackOverflow threads demonstrated that many
action themes directly address a single cause theme.

Surveying the Developer Experience of Flaky Tests ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Our recommendations, supported by our results and previous literature. Targets researchers () and developers (/).

Supported by

Recommendation Results Literature

/ R1: Consider beyond code. The definition of a flaky test should include factors beyond the test case code
or the code under test, such as properties of the execution environment. Developers should consider the
behavior of test cases in different environments, particularly when going from a local environment to CI.

SQ2t1, SQ6t2, SQ11t4 [22, 42, 49]

/ R2: Not completely useless. Flaky tests may indicate a flaw in the code under test or another aspect of
the software system. Therefore, developers should not write them off as completely useless.

SQ2t2, SQ8t4, SQ8t5,
SQ11t5

[17]

 R3: Impact on CI. Flaky tests can become an obstacle to the effective deployment of CI. Researchers
should consider the creation and evaluation of new approaches to better mitigate this trend.

SQ4.5 [14, 23]

/ R4: Careful setup/teardown. Insufficient setup and teardown is a common cause of flaky tests. Developers
should exercise particular care when writing setup and teardown methods for their test suites.

SQ5.3, Ct5, At5 [9]

 R5: Identify root causes. It is difficult to manually determine the root cause of many flaky tests. Re-
searchers should continue to develop automated techniques for this challenging task [24].

SQ5.10, Ct4 [30]

/ R6: Repair promptly. The results suggest that participants who said they experienced flaky on at least a
monthly basis may be more likely to ignore genuine test failures, more likely to take no action in response
to flaky tests, and less likely to attempt to repair them. Therefore, developers should to repair flaky tests as
soon as possible after identifying them to avoid them accumulating and potentially being ignored.

SQ4.6, SQ7.1, SQ7.8,
SQ11t8

[19]

4 RECOMMENDATIONS
Table 3 lists our six recommendations. We found that SQ2t1, the
most common theme in SQ2, extends our proposed definition of
flaky tests to consider factors beyond the code of the test case and
the code under test, particularly the execution environment. Fur-
thermore, SQ6t2 represents environmental differences as a cause
of flaky tests and is a special case of SQ11t4. This supports a line
of research that considers how changes in the implementations
of third-party libraries can manifest flaky tests [22, 42, 49]. These
results and previous studies are the basis for R1.

The second most common theme in SQ2, SQ2t2, represents the
idea that flaky tests can indicate that the code under test is flawed.
Following our thematic analysis for SQ8, we identified SQ8t4 and
SQ8t5, regarding repairing a resource and the code under test
respectively, as actions in response to flaky tests. Furthermore,
SQ11t5 relays the concept that flaky tests have utility. These results
form the foundation of R2, along with one of the findings of Eck
et al. [17], that, for certain types of flaky test, developers sometimes
considered the cause to originate from the code under test.

For SQ4, we found that participants strongly agreed that flaky
tests hinder CI. This is the motivation for R3, along with the find-
ings of Hilton et al. [23], who asked developers to estimate the
number of weekly failing CI builds caused by genuine and flaky
test failures. They found no significant difference between the two
estimates. This also supports Durieux et al. [14], who found that
47% of previously failing CI builds that were manually restarted
passed without changes, suggesting the influence of flaky tests.

Previous studies identified waiting for asynchronous events
(SQ5.1) and concurrency (SQ5.2) to be the most common causes
of flaky tests [17, 30, 40]. According to our survey, these causes
were only the fourth and fifth most common. We found inadequate
setup/teardown (SQ5.3) to be the most common and also identified
this theme in our StackOverflow analysis (Ct5 and At5), forming
the basis of R4. However, these studies were based on previously
repaired flaky tests, whereas in our case, the participants reported
the frequency of each cause according to their experience. It could

be that the most common causes of flaky tests are not necessarily
the ones that developers prioritize for repair. On the other hand,
Bell et al. [9] suggested that the difficulty of writing correct setup
and teardown could cause OD tests. However, as attested by Ct5,
this cause may not always result in a flaky test that is OD.

For SQ5, we found that participants scored SQ5.10, regarding
unknown causes, as the third highest overall. Similarly, we found
that the cause of the flakiness was never resolved in many of the
StackOverflow threads (Ct4). This is reflected by Luo et al. [30], who
categorized the causes of the repaired flakiness in 201 commits and
found “Hard to classify” to be the second most common category.
Taken together, these results are our rationale for R5.

We found that participants who said they experience flaky tests
on at least a monthly basis scored SQ4.6, regarding ignoring poten-
tially genuine test failures, considerably higher than those who did
not. Martin Fowler [19] wrote that flaky tests have an “infectious”
quality, and as they proliferate, developers may ignore test failures
in general. Furthermore, our results for SQ7.1 and SQ7.8 indicate
that developers who experience more flaky tests may be more likely
to take no action against them and less likely to attempt to repair
them. We therefore suggest R6 in response to these findings.

5 RELATEDWORK
Luo et al. [30] performed an empirical study that investigated the
causes, manifestations, and fixing strategies of flaky tests. As objects
of analysis, they used 201 commits that repaired flaky tests in a
range of Apache Software Foundation projects. They introduced ten
cause categories that have since been used in subsequent research
[17, 21, 25, 40]. They found that the top three causes of flaky tests
were asynchronicity, concurrency, and test-order dependency (OD
tests). Unlike our study, Luo et al. did not base any of their findings
on the self-reported experiences of developers. In that respect, their
methodology is closer to our StackOverflow analysis.

Eck et al. [17] performed a related study. They asked 21 develop-
ers from Mozilla to classify 200 flaky tests that they had previously
repaired and also conducted a broader online survey, receiving

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

121 responses. Using Luo et al.’s ten categories as a starting point,
through their Mozilla study, they identified four additional causes,
including overly restrictive assertion ranges and platform depen-
dency (broadly similar to SQ6t2 and SQ6t6, respectively). To keep
our results as general as possible, we chose not to focus on any par-
ticular organization in any part of our study. Moreover, we included
additional objects of analysis beyond developers’ testimonies to
limit any self-reporting bias [13]. As part of their broader survey,
they asked developers to estimate how often they dealt with flaky
tests. Their results are very similar to ours for SQ3.

As part of a wider study on the uptake of CI, Hilton et al. [23]
deployed a survey at Pivotal Software. Among other questions,
the survey asked developers to estimate the number of CI builds
failing each week due to genuine test failures and due to flaky
test failures. Following a Pearson’s chi-squared test, they found
no statistically significant difference between the genuine and the
flaky distributions. Our findings confirm that flaky tests are very
prevalent (SQ3) and that flaky tests are a hindrance to CI (SQ4.5).

Gruber et al. [20] also deployed a survey about flaky tests, with
a specific focus on the support that developers need from tools.

6 CONCLUSIONS AND FUTUREWORK
We deployed an online survey about flaky tests, not restricted to
any organization, and received 170 responses. It focused on under-
standing how developers define and react to flaky tests and their
experiences of the causes and impacts. We also procured a dataset
of 38 StackOverflow threads, upon which we performed thematic
analysis to identify further causes and repair strategies. Ultimately,
we offer six actionable recommendations for both researchers and
developers. As part of future work, we plan to conduct a larger-scale
study with a greater volume of participants to improve the general-
izability of our findings. We also intend to include focused surveys
and interviews of developers from a variety of organizations.

REFERENCES
[1] 2014. NPE Inside Robotium. https://stackoverflow.com/questions/23519395/npe-

inside-robotiumk
[2] 2016. Flaky Tests with DatabaseCleaner and Transactions. How to

Debug? https://stackoverflow.com/questions/37560303/flaky-tests-with-
databasecleaner-and-transactions-how-to-debug

[3] 2016. How Do You Label Flaky Tests Using JUnit? https://stackoverflow.com/
questions/39538400/how-do-you-label-flaky-tests-using-junit

[4] 2017. Can I Detect If an Element (Button) Is "Clickable" In My
RSpecs? https://stackoverflow.com/questions/48027118/can-i-detect-if-an-
element-button-is-clickable-in-my-rspecs

[5] 2019. Detox: Detect That Element was Displayed. https://stackoverflow.com/
questions/59412749/detox-detect-that-element-was-displayed

[6] 2021. Replication Package. https://github.com/flake-it/flaky-test-survey-
replication-package

[7] 2021. Sheffield Digital. https://sheffield.digital/
[8] 2021. StackOverflowDeveloper Survey. https://insights.stackoverflow.com/survey/

2021
[9] J. Bell and G. Kaiser. 2014. Unit Test Virtualization with VMVM. In Proc. ICSE.
[10] Box. 2021. Flaky. https://github.com/box/flaky
[11] D. S. Cruzes and T. Dyba. 2011. Recommended Steps for Thematic Synthesis in

Software Engineering. In Proc. ESEM.
[12] Software Engineering Daily. 2019. Facebook Engineering Process with Kent

Beck. Retrieved 9/01/2021 from https://softwareengineeringdaily.com/2019/
08/28/facebook-engineering-process-with-kent-beck/

[13] S. Donaldson and E. Grant-Vallone. 2002. Understanding Self-Report Bias in
Organizational Behavior Research. Journal of Business and Psychology 17, 2
(2002).

[14] T. Durieux, C. L. Goues, M. Hilton, and R. Abreu. 2020. Empirical Study of
Restarted and Flaky Builds on Travis CI. In Proc. MSR.

[15] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, andMisailovic S. 2020. Detecting
Flaky Tests in Probabilistic and Machine Learning Applications. In Proc. ISSTA.

[16] S. Dutta, A. Shi, and Misailovic S. 2021. FLEX: Fixing Flaky Tests in Machine
Learning Projects by Updating Assertion Bounds. In Proc. ESEC/FSE.

[17] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. 2019. Understanding Flaky
Tests: The Developer’s Perspective. In Proc. ESEC/FSE.

[18] L. Eloussi. 2016. Flaky Tests (And How to Avoid Them). https://engineering.
salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60

[19] M. Fowler. 2011. Eradicating Non-Determinism in Tests. https://martinfowler.
com/articles/nonDeterminism.html

[20] M. Gruber, , and G. Fraser. 2022. A Survey on How Test Flakiness Affects
Developers and What Support They Need to Address It. In Proc. ICST.

[21] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser. 2021. An Empirical Study of
Flaky Tests in Python. In Proc. ICST.

[22] A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and D. Marinov. 2015. NonDex: A
Tool for Detecting and Debugging Wrong Assumptions on Java API Specification.
In Proc. FSE.

[23] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. 2017. Trade-Offs in
Continuous Integration: Assurance, Security, and Flexibility. In Proc. FSE.

[24] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta. 2019. Root
Causing Flaky Tests in a Large-Scale Industrial Setting. In Proc. ISSTA.

[25] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta. 2020. A Study on the
Lifecycle of Flaky Tests. In Proc. ICSE.

[26] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. 2019. IDFlakies: A Framework for
Detecting and Partially Classifying Flaky Tests. In Proc. ICST.

[27] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie. 2020. Dependent-Test-
Aware Regression Testing Techniques. In Proc. ISSTA.

[28] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov. 2020. Understanding
Reproducibility and Characteristics of Flaky Tests Through Test Reruns in Java
Projects. In Proc. ISSRE.

[29] B. Lee. 2019. We Have a Flaky Test Problem. https://medium.com/scopedev/how-
can-we-peacefully-co-exist-with-flaky-tests-3c8f94fba166

[30] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. 2014. An Empirical Analysis of
Flaky Tests. In Proc. FSE.

[31] M. Machalica, A. Samylkin, M. Porth, and S. Chandra. 2019. Predictive Test
Selection. In Proc. ICSE-SEIP.

[32] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco.
2017. Taming Google-Scale Continuous Testing. In Proc. ICSE-SEIP.

[33] J. Micco. 2016. Flaky Tests at Google and How We Mitigate Them. https://testing.
googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html

[34] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns. 2012. What Makes a Good Code
Example?: A Study of Programming Q&A in StackOverflow. In Proc. ICSM.

[35] M. Nejadgholi and J. Yang. 2019. A Study of Oracle Approximations in Testing
Deep Learning Libraries. In Proc. ASE.

[36] Q. Peng, A. Shi, and L. Zhang. 2020. Empirically Revisiting and Enhancing
IR-Based Test-Case Prioritization. In Proc. ISSTA.

[37] J. A. Prado Lima and S. R. Vergilio. 2020. Test Case Prioritization in Continuous
Integration Environments: A Systematic Mapping Study. IST (2020).

[38] K. Presler-Marshall, E. Horton, S. Heckman, and K. T. Stolee. 2019. Wait Wait.
No, Tell Me. Analyzing Selenium Configuration Effects on Test Flakiness. In Proc.
AST.

[39] M. T. Rahman and P. C. Rigby. 2018. The Impact of Failing, Flaky, and High
Failure Tests on the Number of Crash Reports Associated With Firefox Builds. In
Proc. ESEC/FSE.

[40] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang. 2021. An Empirical
Analysis of UI-based Flaky Tests. In Proc. ICSE.

[41] A. Shi, J. Bell, and D. Marinov. 2019. Mitigating the Effects of Flaky Tests on
Mutation Testing. In Proc. ISSTA.

[42] A. Shi, A. Gyori, O. Legunsen, and D. Marinov. 2016. Detecting Assumptions
on Deterministic Implementations of Non-Deterministic Specifications. In Proc.
ICST.

[43] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov. 2019. iFixFlakies: A Framework
for Automatically Fixing Order-Dependent Flaky Tests. In Proc. ESEC/FSE.

[44] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli. 2017. To Mock or Not to
Mock? An Empirical Study on Mocking Practices. In Proc. MSR.

[45] P. Sudarshan. 2012. No More Flaky Tests on the Go Team. https://www.
thoughtworks.com/en-gb/insights/blog/no-more-flaky-tests-go-team

[46] S. Thorve, C. Sreshtha, and N. Meng. 2018. An Empirical Study of Flaky Tests in
Android Apps. In Proc. ICSME.

[47] A. Vahabzadeh, A. A. Fard, and A. Mesbah. 2015. An Empirical Study of Bugs in
Test Code. In Proc. ICSME.

[48] Z. Yu, F. Fahid, T. Menzies, G. Rothermel, K. Patrick, and S. Cherian. 2019. TER-
MINATOR: Better Automated UI Test Case Prioritization. In Proc. ESEC/FSE.

[49] P. Zhang, Y. Jiang, A. Wei, V. Stodden, D. Marinov, and A. Shi. 2021. Domain-
Specific Fixes for Flaky Tests with Wrong Assumptions on Underdetermined
Specifications. In Proc. ICSE.

[50] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and D. Notkin. 2014.
Empirically Revisiting the Test Independence Assumption. In Proc. ISSTA.

https://stackoverflow.com/questions/23519395/npe-inside-robotiumk
https://stackoverflow.com/questions/23519395/npe-inside-robotiumk
https://stackoverflow.com/questions/37560303/flaky-tests-with-databasecleaner-and-transactions-how-to-debug
https://stackoverflow.com/questions/37560303/flaky-tests-with-databasecleaner-and-transactions-how-to-debug
https://stackoverflow.com/questions/39538400/how-do-you-label-flaky-tests-using-junit
https://stackoverflow.com/questions/39538400/how-do-you-label-flaky-tests-using-junit
https://stackoverflow.com/questions/48027118/can-i-detect-if-an-element-button-is-clickable-in-my-rspecs
https://stackoverflow.com/questions/48027118/can-i-detect-if-an-element-button-is-clickable-in-my-rspecs
https://stackoverflow.com/questions/59412749/detox-detect-that-element-was-displayed
https://stackoverflow.com/questions/59412749/detox-detect-that-element-was-displayed
https://github.com/flake-it/flaky-test-survey-replication-package
https://github.com/flake-it/flaky-test-survey-replication-package
https://sheffield.digital/
https://insights.stackoverflow.com/survey/2021
https://insights.stackoverflow.com/survey/2021
https://github.com/box/flaky
https://softwareengineeringdaily.com/2019/08/28/facebook-engineering-process-with-kent-beck/
https://softwareengineeringdaily.com/2019/08/28/facebook-engineering-process-with-kent-beck/
https://engineering.salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60
https://engineering.salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60
https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/nonDeterminism.html
https://medium.com/scopedev/how-can-we-peacefully-co-exist-with-flaky-tests-3c8f94fba166
https://medium.com/scopedev/how-can-we-peacefully-co-exist-with-flaky-tests-3c8f94fba166
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://www.thoughtworks.com/en-gb/insights/blog/no-more-flaky-tests-go-team
https://www.thoughtworks.com/en-gb/insights/blog/no-more-flaky-tests-go-team

	Abstract
	1 Introduction
	2 Methodology
	2.1 Developer Survey
	2.2 StackOverflow Threads
	2.3 Analysis
	2.4 Threats to Validity

	3 Results
	4 Recommendations
	5 Related Work
	6 Conclusions and Future Work
	References

