
SchemaAnalyst: Search-Based Test Data Generation
for Relational Database Schemas

Phil McMinn and Chris J. Wright Cody Kinneer, Colton J. McCurdy, Michael Camara, and Gregory M. Kapfhammer
University of Sheffield Allegheny College

Abstract—Data stored in relational databases plays a vital role
in many aspects of society. When this data is incorrect, the
services that depend on it may be compromised. The database
schema is the artefact responsible for maintaining the integrity
of stored data. Because of its critical function, the proper testing
of the database schema is a task of great importance. Employing
a search-based approach to generate high-quality test data for
database schemas, SchemaAnalyst is a tool that supports testing
this key software component. This presented tool is extensible
and includes both an evaluation framework for assessing the
quality of the generated tests and full-featured documentation.
In addition to describing the design and implementation of
SchemaAnalyst and overviewing its efficiency and effectiveness,
this paper coincides with the tool’s public release, thereby en-
hancing practitioners’ ability to test relational database schemas.

I. INTRODUCTION

Healthcare, science, and commerce often rely on informa-
tion that is stored in databases [1]. When this data is incorrect,
passengers can have their flights delayed or patients may re-
ceive the wrong medication [2]. In addition to documenting the
structure of and connections between data entries, relational
databases furnish a means for protecting the correctness of
the data that they store. In particular, the relational database
schema is the artefact that is responsible for safeguarding the
integrity of a database. The crucial role of the database schema
makes the testing of it a task of vital importance.

While non-relational “NoSQL” database systems have been
gaining in popularity, relational databases remain pervasive.
For instance, Skype, the widely used video-call software, uses
the PostgreSQL database management system (DBMS) [3]
while Google makes use of the SQLite DBMS in Android-
based phones [4]. Moreover, according to DB-Engines.com,
the three most popular DBMSs are relational in nature [5];
also, the 968,277 questions asked on StackExchange about
relational databases show the demand for their support [6].

SchemaAnalyst is a tool for generating high-quality test data
in support of database schema testing. Using a search-based
approach that incrementally improves a test suite by repeated
fitness evaluations, SchemaAnalyst discovers data instances
that comprehensively exercise a database schema hosted by ei-
ther HyperSQL, PostgreSQL, or SQLite [7]. It also includes an
evaluation framework with a collection of real-world schemas,
as well as a mutation analysis system that enables verifying
the quality of the generated test data based on its capability
to detect systematically seeded faults. Also, SchemaAnalyst is
extensible, well documented, and available for download [8].

SchemaAnalyst has been used to support research studies
focusing on both search-based software testing [7], [9], [10]

and mutation testing [11], [12], [13], [14]. In addition to
describing the design and implementation of SchemaAna-
lyst and overviewing its efficiency and effectiveness, this paper
inaugurates the public release of this tool. Since past studies
have shown the benefits of using the presented open-source
tool instead of competing systems [7], this paper argues that
SchemaAnalyst is ready to enhance practitioners’ testing of
schemas. In summary, the key contributions of this paper are:

1) SchemaAnalyst, an extensible, efficient, and effective tool
that generates test data for database schemas (Section III).

2) In support of researchers, a comprehensive evaluation
framework, including relational schemas suitable for fur-
ther empirical study and mutation analysis tools support-
ing the assessment of test data quality (Section III).

3) Aiding both researchers and practitioners, documentation
explaining the features and usage of the tool (Section IV).

4) Confirming SchemaAnalyst’s scalability and applicability,
a survey of relevant empirical results (Section V).

II. BACKGROUND

Software testing, the process of running a software system
to ensure that it functions as intended, is a key part of the
software development lifecycle [15]. Software that produces
unexpected output contains a fault. Developers can check for
these faults by running test cases that give the program inputs
and check for expected outputs [16]. If the software produces
the expected output for the provided input, then this suggests
that it is functioning correctly. Yet, if it does not perform as
anticipated, then the tests may have found a fault.

A collection of test cases is called a test suite. A test suite’s
effectiveness at finding faults is known as its adequacy, which
is assessed by a test suite adequacy criterion. Writing high-
quality tests requires developers to painstakingly consider the
range of possible inputs — as anticipated, this is a challenging
and time-consuming process [17]. Test data generation reduces
the burden on a human tester by (semi-)automatically creating
test inputs. As described in this paper, search-based test data
generation with SchemaAnalyst employs a fitness function to
direct the tool towards creating high-quality test data [18].

Mutation adequacy is a criterion that measures the effec-
tiveness of a test suite by modifying the artefact under test to
produce a “mutant” [19]. This change to the entity is meant to
simulate a potential fault, so that the mutant should result in
behavior different from that of the original. In this process, the
result from running the tests against the original and mutant
artefacts are compared. If the results are the same, then the test
suite failed to detect the seeded fault. Yet, if they are different,



1 CREATE TABLE Inventory
2 (
3 id INT PRIMARY KEY,
4 product VARCHAR(50) UNIQUE,
5 quantity INT,
6 price DECIMAL(18,2)
7 );

Fig. 1. The Inventory relational database schema

then the test suite found the simulated fault, at which point the
mutant is said to be “killed”. The mutation score is the number
of mutants killed divided by the total number of mutants [20].

Managed by applications called database management sys-
tems (DBMSs), a relational database is a collection of con-
nected data [2]. The database schema is the artefact that lays
out the structure of the database, organising it into tables and
columns. The schema can also define integrity constraints, or
rules that the candidate data must meet before the DBMS will
accept it. If the pending data violates an integrity constraint
specified by the schema, then the DBMS rejects it as invalid.
Figure 1 furnishes a database schema for recording the number
of products kept in an inventory. This schema defines one
table, called Inventory, with four columns. The id column
on line 3 is annotated with the PRIMARY KEY constraint,
indicating that data inserted into it cannot be left missing or
unknown, and that the values in this column must be unique.
If the PRIMARY KEY was left out of the database schema,
then multiple items could be entered with the same id value,
potentially resulting in incorrect application behavior.

III. THE SchemaAnalyst TEST DATA GENERATION TOOL

An error in the specification of the database schema may
result in the corruption of the data state and the disruption
of a supported service. Even though verifying the accuracy of
the database schema is a critical step towards protecting data
integrity, using manually created test data to do so is often time
consuming and error prone [7]. Figure 2 provides a high-level
overview of this paper’s tool that uses a search-based approach
to automatically generate tests for database schemas.

After being given a schema as input, SchemaAnalyst uses a
coverage criterion to systematically create a collection of test
requirements, or the rules that the test data must try to fulfill.
One example of a coverage criterion is Integrity Constraint
Coverage (ICC) [9], which has two test requirements for
every integrity constraint in the schema: one requiring that the
constraint is satisfied and another necessitating its violation.
So, a test requirement for the Inventory schema in Figure 1
might be “the PRIMARY KEY constraint on line three must be
violated”. Running a test that fulfilled this requirement would
draw attention to the fact that, for instance, SQLite allows
a PRIMARY KEY to be NULL, unlike most other DBMSs.
SchemaAnalyst supports 9 coverage criteria in total [9].

Using a test data generator, the presented tool creates
test data to satisfy the test requirements; the default test
data generator used by SchemaAnalyst is based on Korel’s
Alternating Variable Method (AVM) [21]. This data generator
uses a fitness function to evaluate how well the test data
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Fig. 2. The inputs and outputs of the SchemaAnalyst tool

satisfies the requirements, thus aiding it in producing test
data that satisfies more of the requirements [9]. For example,
SchemaAnalyst generated the following INSERT statement to
violate the PRIMARY KEY constraint on line three in Figure 1.

INSERT INTO Inventory VALUES (NULL, '', 0, 0);

The version of SchemaAnalyst presented in this paper en-
codes this test case in the well-established JUnit format that
is commonly used by developers, thereby providing a way to
easily apply SchemaAnalyst to industrial databases. The JUnit
test first runs the INSERT statement on an installed DBMS
(e.g., SQLite) and then asserts that the INSERT statement was
rejected by the schema. If this is the case, then the test passes.
If the schema allows the bad data, then the test case fails.

Although not included in Figure 2 due to space constraints,
SchemaAnalyst also includes features to evaluate the quality
of the generated test data. First, it calculates coverage, or
the percentage of the requirements satisfied by the test data.
Test data quality can also be measured using the provided
mutation testing tools. When executed in mutation testing
mode, SchemaAnalyst will generate mutant database schemas
and compare the behavior of the test suite on the original and
mutant schemas. SchemaAnalyst includes 14 different muta-
tion operators that can be used to assess test suite quality [13].

IV. SchemaAnalyst’S DESIGN AND IMPLEMENTATION

A. Design

SchemaAnalyst is implemented in the Java programming
language. Designed with extensibility in mind, the tool is
divided into 13 packages, which this paper briefly overviews.
The sqlrepresentation package provides an interme-
diate Java representation of data structures in relational
databases, fully modelling database tables, columns, expres-
sions, data types, integrity constraints, and other relevant
entities. These objects enable SchemaAnalyst to support mul-
tiple DBMSs (i.e., SQLite, PostgreSQL, and HyperSQL), and,
additionally, allow for the inclusion of new DBMSs. The tool



Usage: <main class> [options] [command] [command options]
Options:
--criterion, -c

Coverage Criterion
Default: ICC

--generator, -g, --dataGenerator
Data Generation Algorithm
Default: avsDefaults

--dbms, -d, --database
Database Management System
Default: SQLite

--help, -h
Prints this help menu
Default: false

* --schema, -s
Target Schema
Default: <empty string>

Fig. 3. The first section of the SchemaAnalyst help menu

also contains the sqlparser package that wraps the Gen-
eral SQL Parser [22], thus enabling the effective conversion
of a schema expressed in the Structured Query Language
(SQL) to the tool’s intermediate representation. As this SQL
parser is a commercial product, the open-source version of
SchemaAnalyst does not provide it for download. Therefore,
users can experiment with SchemaAnalyst by either testing the
provided schemas or (automatically or manually) converting a
new schema to the tool’s internal SQL representation.

The testgeneration package provides a representation
of test suites and test cases, along with test requirements and
the 9 coverage criteria [9]. The data package furnishes the
3 test data generators, as well as various generic data-type
representations for use during test data generation [9]; Table I
summarizes the coverage criteria and data generators furnished
by the version of SchemaAnalyst presented in this paper.

The dbms package provides support for three DBMSs
and includes the classes that enable interaction with an in-
stalled DBMS. The sqlwriter package furnishes support
for creating SQL statements for use with DBMSs and is used
with the javawriter package to encode the generated test
data as a JUnit test suite. The mutation package provides
the mutation analysis functionality, including the mutation
operators [13], mutant equivalence and reduction features [12],
and means for performing mutation analysis [14].

B. Usage Instructions

SchemaAnalyst is publicly available on GitHub under an
open-source license [8]. After cloning the Git repository, the
project can be built using Gradle by running the follow-
ing command in the project’s root directory: ./gradlew

compile. After the tool compiles, the user must set the
CLASSPATH so that it contains build/classes/main, build
/lib/*, lib/* and the current working directory.

Optionally, the user can install the PostgreSQL, SQLite, and
HyperSQL DBMSs. Since SQLite does not require configura-
tion on the computer running SchemaAnalyst, it is currently the
default option. Using the chosen DBMS, SchemaAnalyst will
run the generated test suite. If the use of an actual DBMS
is desired, the user should refer to online documentation for
detailed instructions [8]. The tool also supports a “virtual”
DBMS executor allowing SQL statements to be simulated.

TABLE I
KEY FEATURES PROVIDED BY THE SchemaAnalyst TOOL

Coverage Criteria

APC
ICC
AICC
CondAICC
ClauseAICC
UCC
AUCC
NCC
ANCC

Data Generators

AVM (DR and RR)
Random (DR and RR)
Directed Random (DR and RR)

DR: Default-value Restart
RR: Random-value Restart

Usage instructions for SchemaAnalyst can be obtained
by running java org.schemaanalyst.util.Go --help;
Figure 3 shows a snippet of this menu. As indicated by the help
display, SchemaAnalyst first expects options indicating the
desired schema, coverage criterion, data generator, and DBMS.
Defaults are provided for all of these options except for the
schema option, which is required. The user must then give
a command. The two supported commands are generation,
used to generate test data, and mutation, used to evaluate
the quality of test data. To run SchemaAnalyst to generate
test data for the provided Inventory schema, the following
command could be used: java org.schemaanalyst.util

.Go -s parsedcasestudy.Inventory generation.
With no other command-line options, SchemaAnalyst will

produce a Java class containing a JUnit test suite with the
generated test data. By default, this class will be created under
the generatedtest package and saved in a directory of the
same name in the tool’s root directory. The user may append
the --inserts option to the generation command to obtain
the generated test data in the form of SQL INSERT statements
that are saved in plain text instead of a JUnit test suite.

If the mutation command is given to perform mutation
analysis on the test data generated by SchemaAnalyst, a
directory called results will be created in the project’s
root directory. It will contain a comma-separated value file
recording the parameters used in the analysis as well as the
mutation score and some additional runtime information.

The SchemaAnalyst GitHub page also provides compre-
hensive documentation, including installation and usage in-
structions that detail the inputs, outputs, and behavior of the
tool [8]. In addition to featuring a thorough JUnit test suite, the
source code of SchemaAnalyst contains documentation to aid
developers who want to extend the tool or to better understand
certain implementation decisions. As an overall contribution of
this paper, the presented tool’s GitHub repository now includes
over 52,000 lines of Java code and tens of thousands of lines
of scripts and SQL code that enable others to try the provided
examples of schema testing, reproduce the results from our
prior experiments, and apply SchemaAnalyst to new schemas.

V. APPLYING THE SchemaAnalyst TOOL

As shown in Table II, SchemaAnalyst has been used in
several prior experimental studies, thereby facilitating research
into both search-based testing and mutation testing. To date,
published papers about the presented tool report on using it to



TABLE II
RELATIONAL DATABASE SCHEMAS USED TO EXPERIMENTALLY EVALUATE THE SchemaAnalyst TOOL

Schema Tables Columns Constraints Used In Schema Tables Columns Constraints Used In
ArtistSimilarity 2 3 3 [9],[12] JWhoisServer 6 49 50 [7],[9],[10],[11],[12],[14]
ArtistTerm 5 7 7 [9],[12] MozillaExtensions 6 51 5 [9]
BankAccount 2 9 8 [7],[9],[12] MozillaPermissions 1 8 1 [9],[14]
BioSQL 28 129 186 [10] NistDML181 2 7 2 [7],[9]
BookTown 23 69 29 [7],[9],[12] NistDML182 2 32 2 [7],[9],[11]
BrowserCookies 2 13 10 [9] NistDML183 2 6 2 [7],[9],[11],[12]
Cloc 2 10 0 [7],[9],[10],[11],[12] NistWeather 2 9 13 [7],[9],[10],[14]
CoffeeOrders 5 20 19 [7],[9],[12],[14] NistXTS748 1 3 3 [7],[9],[10]
CustomerOrder 7 32 42 [7],[9] NistXTS749 2 7 7 [7],[9],[10],[12]
DellStore 8 52 36 [7],[9] Person 1 5 7 [7],[9],[14]
Employee 1 7 4 [7],[9],[14] Products 3 9 14 [7],[9],[14]
Examination 2 21 9 [7],[9] RiskIt 13 56 36 [7],[9],[10],[11],[12]
Flights 2 13 10 [7],[9],[12] StackOverflow 4 43 5 [9],[12]
FrenchTowns 3 14 23 [7],[9] StudentResidence 2 6 8 [7],[9]
Inventory 1 4 2 [7],[9],[14] UnixUsage 8 32 23 [7],[9],[10],[11],[12]
Iso3166 1 3 3 [7],[9],[14] Usda 10 67 30 [7],[9]
IsoFlav 6 40 5 [12] WordNet 8 29 31 [12]
iTrust 42 309 134 [9],[10] Total 215 1174 769 6 (Unique)

test 35 relational schemas, including those from databases in
oft-used open-source software. Houkjær et al. [23] note that
real-world complex relational schemas often include features
such as composite keys and multi-column foreign-key rela-
tionships. As such, the schemas chosen for past studies reflect
a diverse set of features from simple instances of every main
type of integrity constraint (i.e., PRIMARY KEY constraints,
FOREIGN KEY constraints, UNIQUE constraints, NOT NULL
constraints, and CHECK constraints) to more complex exam-
ples involving many-column foreign key relationships.

Several schemas used in past studies were taken from
real-world database-centric applications: JWhoisServer is used
in an open-source, Java-based implementation of a server
for the Internet “WHOIS” protocol (http://jwhoisserver.net).
Both MozillaExtensions and MozillaPermissions were ex-
tracted from SQLite databases that are a part of the Mozilla
Firefox Internet browser. RiskIt is part of system for modeling
the risk of insuring individuals (http://sourceforge.net/projects/
riskitinsurance), while StackOverflow is the schema used by
a popular programming question and answer website, as
previously studied in a conference data mining challenge [24].
Some of these schemas have featured in previous studies of
various testing methods (e.g., RiskIt and UnixUsage [25], and
JWhoisServer [26]). ArtistSimilarity and ArtistTerm are part of
the “Million Song” dataset, a database of song metadata [27].
It is worth noting that SchemaAnalyst’s GitHub repository
currently furnishes 95 schemas, including those that are deriva-
tives of the main schemas and thus ideal for testing purposes.

Due to space constraints, the remainder of this section
overviews experimental studies of SchemaAnalyst’s capability
to automatically generate test data; readers interested in other
related work can read the 6 papers referenced in Table II.
Kapfhammer et al. compared SchemaAnalyst to DBMonster in
an experiment using mutation testing for 3 DBMSs and 25
database schemas [7]. The results showed that SchemaAna-
lyst outperformed DBMonster in terms of mutation score and
constraint coverage, while remaining competitive in execution
time. McMinn et al. organized the 9 coverage criteria used in
SchemaAnalyst into an subsumption hierarchy and, addition-
ally, investigated the effectiveness of the criteria in a study
using 3 DBMSs and 32 database schemas [9]. The results

showed mutation scores as low as 12% for the least stringent
criteria and as high as 96% for the most stringent. Kinneer et
al. studied the scalability of SchemaAnalyst, finding that the
tool scaled well for all realistically sized schemas [10], [28].
Kinneer also enhanced SchemaAnalyst to generate test data
for both relational database queries and schemas, providing
evidence of SchemaAnalyst’s extensibility [29]. Finally, Mc-
Curdy et al. used the results from SchemaAnalyst’s mutation
analysis of schemas to support selective mutation testing [30],
showing that the presented tool can integrate with other tools.

VI. CONCLUSIONS AND FUTURE WORK

Many database-centric services rely on the quality of the
underlying data. Much of this data is managed by relational
databases, with the database schema protecting the integrity of
the data. Testing the schema for correctness is vital to ensuring
data quality. SchemaAnalyst is a tool that generates test data
for a relational database schema, thereby increasing confidence
in the schema’s correctness. Using a search-based technique,
SchemaAnalyst automatically creates high-quality test data
across multiple DBMSs. The presented tool also includes an
evaluation framework that provides 95 case-study schemas and
support for efficient mutation analysis. In addition to being
used in 6 published studies, the presented tool is now available
from http://www.schemaanalyst.org [8]. With an open-source
license and a modular design, SchemaAnalyst is an extensible
tool for search-based test data generation and mutation testing,
enabling the work of both researchers and practitioners.

In future work, we will evaluate how SchemaAnalyst helps
the people who design and test database schemas. We plan
to incorporate techniques that generate more readable and
realistic data values [31], [32], [33], [34], thus helping humans
understand test cases more easily [17], [35]. We will also in-
tegrate the tool with others that support software maintenance
activities like regression testing [36] and fault localization [37].
Next, we will extend the tool so that it enables the testing of
recently developed NoSQL systems. Ultimately, the current
version of SchemaAnalyst, our planned extensions, and the
features and studies contributed by the new researchers and
industrialists using this now-released tool will yield a com-
prehensive approach to testing database-centric applications.
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