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ABSTRACT
Relational databases are a vital component of many modern soft-
ware applications. Key to the definition of the database schema —
which specifies what types of data will be stored in the database
and the structure in which the data is to be organized — are in-
tegrity constraints. Integrity constraints are conditions that protect
and preserve the consistency and validity of data in the database,
preventing data values that violate their rules from being admit-
ted into database tables. They encode logic about the application
concerned, and like any other component of a software applica-
tion, need to be properly tested. Mutation analysis is a technique
that has been successfully applied to integrity constraint testing,
seeding database schema faults of both omission and commission.
Yet, as for traditional mutation analysis for program testing, it is
costly to perform, since the test suite under analysis needs to be
run against each individual mutant to establish whether or not it
exposes the fault. One overhead incurred by database schema mu-
tation is the cost of communicating with the database management
system (DBMS). In this paper, we seek to eliminate this cost by per-
forming mutation analysis virtually on a local model of the DBMS,
rather than on an actual, running instance hosting a real database.
We present an empirical evaluation of our virtual technique reveal-
ing that, across all of the studied DBMSs and schemas, the virtual
method yields an average time saving of 51% over the baseline.

1. INTRODUCTION
Relational databases provide a reliable way to store and retrieve

data, forming a critical component of a wide range of different soft-
ware applications, from domains such as Internet browsers (e.g.,
Chrome1 and Firefox2) to applications powering political cam-
paigns [2]. Despite the recent wave of interest in “NoSQL” tech-
nologies, relational databases are still important, relevant and pop-
ular in modern software application design, as evidenced by the
876, 022 questions on the popular StackExchange technical ques-
tion and answer website tagged with labels devoted to the topic.3

Key benefits to using a relational database include the good per-
formance of database management systems (DBMSs) [1] — such
as PostgreSQL and SQLite, two popular and free DBMSs — and
their reliability. Developers often prefer relational databases to
other storage and retrieval systems due to the availability of a clear
1https://www.google.com/chrome/browser
2http://www.mozilla.org/firefox
3http://goo.gl/F3Tiax
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database schema, which specifies the data to be stored and how it
is structured into tables, serving as easy-to-refer-to documentation4.

A relational database schema further involves the definition of
a series of integrity constraints that guard the validity and con-
sistency of stored data. Integrity constraints ensure that certain
data values are unique, through PRIMARY KEY constraints and
UNIQUE constraints; maintain referential integrity with other data
values, through FOREIGN KEY constraints; are actually present,
through NOT NULL constraints; and are subject to other arbitrary
domain-specific conditions, through CHECK constraints. Integrity
constraints prevent invalid values being admitted into the database
via SQL INSERT statements, by causing the DBMS to reject the
statement with an error. Integrity constraints encode key applica-
tion logic, providing the broader software application with a last
line of defense against malformed data entries. As such, and in
accordance with industry advice [4], they require thorough testing.

To this end, previous work has devised coverage criteria and
automated test suite generation approaches for relational database
schema integrity constraint testing [9, 11]. Past work has also
proposed mutation analysis techniques to seed faults in database
schemas that simulate faults of commission and omission, which
may be used to evaluate test suites for integrity constraints [8, 17].
However, as with most forms of mutation — including traditional
program mutation analysis — these techniques are costly to exe-
cute, since the test suite needs to be evaluated against every mutant
to determine whether it is capable of exposing the seeded fault.

One cost incurred in evaluating relational database schema test
suites is the overhead of communicating with the DBMS that hosts
each of the mutant databases, which forms a significant component
of the overall time needed to perform mutation analysis. In this
paper, we propose to perform mutation analysis virtually, on a lo-
cal model of the DBMS, rather than an actual running instance that
incurs constant and costly interaction. Since different DBMSs in-
terpret the SQL standard differently, and often have unique imple-
mentation “quirks”, a model is required for each different DBMS.
In this paper we utilize models for three popular and widely-used
DBMSs: HyperSQL, PostgreSQL and SQLite. We empirically
show how using virtual mutation instead of the standard method
can cut the costs of analysis by 51% on average across all of the
studied configurations. Thus, the contributions of this paper are:
1. Avoiding costly DBMS interactions, a new method for perform-
ing mutation analysis virtually using a local model of three popular
and widely-used DBMSs: HyperSQL, PostgreSQL and SQLite.
2. Demonstrating the efficiency trade-offs associated with virtual
mutation analysis, an empirical study incorporating nine relational
database schemas and the three representative DBMSs.

2. BACKGROUND
Relational Database Schemas. Figure 1 shows SQL CREATE
TABLE statements for the “NistWeather” schema, which is a part
of the NIST SQL conformance test suite5. The schema defines

4http://goo.gl/v03nUr
5http://www.itl.nist.gov/div897/ctg/sql_form.htm



1 CREATE TABLE Station (
2 ID INTEGER PRIMARY KEY,
3 CITY CHAR(20),
4 STATE CHAR(2),
5 LAT_N INTEGER NOT NULL
6 CHECK (LAT_N BETWEEN 0 and 90),
7 LONG_W INTEGER NOT NULL
8 CHECK (LONG_W BETWEEN SYMMETRIC 180 AND -180)
9 );

10 CREATE TABLE Stats (
11 ID INTEGER REFERENCES STATION(ID),
12 MONTH INTEGER NOT NULL
13 CHECK (MONTH BETWEEN 1 AND 12),
14 TEMP_F INTEGER NOT NULL
15 CHECK (TEMP_F BETWEEN 80 AND 150),
16 RAIN_I INTEGER NOT NULL
17 CHECK (RAIN_I BETWEEN 0 AND 100),
18 PRIMARY KEY (ID, MONTH)
19 );

Figure 1: The NistWeather database schema.

two tables. The “Stats” table (lines 10–19) is for storing rain-
fall and temperature statistics for a given month pertaining to a par-
ticular weather station, the details of which are to be stored in the
“Station” table (lines 1–9). Each table involves a number of dif-
ferent columns, each with an associated data type, and a series of
integrity constraints, as highlighted in the figure.

Defining integrity constraints protects the validity and consis-
tency of data stored in the tables of the database. For instance, the
MONTH column of the Stats table has a “CHECK” constraint de-
fined on it (line 13) that ensures an integer MONTH value can only be
between 1 and 12. Further CHECK constraints defined on both ta-
bles ensure that other column values are within certain valid ranges
(lines 6, 8, 15 and 17). Relational databases allow columns to have
missing or unknown values (denoted by the “NULL” marker). To
prevent inconsistency (for instance, with the MONTH column) sev-
eral columns have a “NOT NULL” constraint defined on them, en-
forcing values to be present for those columns in all rows of the
table concerned. Furthermore, the Stats table involves a “foreign
key”, defined on line 11. Here, “ID” column values in the Stats
table must match some value for the ID column in a row of the
Station table. Finally, both tables have “primary keys” defined
on them (lines 2 and 18). A primary key specifies a set of columns
in the table that must have distinct sets of values for each row, and
ensures the row is uniquely identifiable. The primary key of the
Stats is multicolumn, involving the ID and MONTH columns.

Testing Integrity Constraints. Relational database schemas are
an important artifact in a software application, and integrity con-
straints are a key part of their definition. Poorly or incorrectly spec-
ified integrity constraints for a schema may leave an application
open to a range of serious failures — for example, non-unique lo-
gin IDs or negative values for prices or stock levels. For this reason,
testing the integrity constraints of a database schema is an impor-
tant activity that is recommended by industry practitioners [4].

In our previous work, we defined coverage criteria for the in-
tegrity constraints of a relational database schema [11]. These cov-
erage criteria mandate the creation of test cases with the aim of
demonstrating that the schema has been correctly specified for the
purpose of admitting valid values into the database, while also re-
jecting invalid ones. Each test case is designed to exercise a specific
integrity constraint defined for the schema, causing it to either be
(a) satisfied, by submitting rows of database values that are valid;
or, (b) violated, by submitting rows of values that are invalid.

In practice, each test case takes the form of a minimal num-
ber of SQL INSERT statements that encode the rows of values
with which the schema will be tested. For instance, the following
INSERT statement could be used to check that the integrity con-

straints of the “Station” table admits certain values as expected.
Given an empty table, the values embodied in the following SQL
statement should be correctly inserted into the table:

INSERT INTO Station(ID, CITY, STATE, LAT_N, LONG_W)
VALUES(1, ’Austin’, ’TX’, 30, 98);

Further INSERT statements could then be used to test that the
table rejects certain values as expected, for example using NULL
or out of range values for the LAT_N or LONG_W columns, or
by attempting to use a value for ID that has already been in-
serted into the table. It will of course transpire that each of these
INSERTs will be rejected, since the table has correctly defined NOT
NULL, CHECK and PRIMARY KEY constraints that cover each of
these cases. Whereas traditional program testing involves asser-
tions over values outputted from a program, database schema test-
ing involves checking that INSERT statements were accepted or
rejected as expected. If the acceptance-rejection pattern for a se-
ries of INSERT statements differs from that which was expected, a
specification error may exist in the definition of the schema.

Mutation Analysis of Relational Database Schemas. Once a
test suite has been created, its strength — that is, its potential fault-
finding capability — can be estimated using mutation analysis [6].
Mutation analysis involves seeding small faults into the artifact un-
der test to create mutants and then checking to find if the test suite
behaves differently with the mutant compared with the original ar-
tifact. If a difference in behavior is found, the test suite is capable
of distinguishing the faulty artifact from the original.

For instance, seeding a fault into the NistWeather schema could
take the form of removing the NOT NULL constraint on the MONTH
column of the Stats table. In this faulty version, NULL values
would be admitted into a database table for the MONTH column
that would previously have been rejected, due to violation of the
integrity constraint. Thus, an INSERT statement with otherwise
valid values for the Stats table, but a NULL for the MONTH col-
umn, would be accepted with the mutant schema — and yet re-
jected for the original schema. A test suite with a test involving
such an INSERT is therefore capable of detecting such a fault, and
the mutant is said to be “killed”. However, if the test suite did not
involve any INSERT statements with NULL for MONTH, the dif-
ference between the mutant and the original schema would not be
exposed, and the mutant would still be classified as “alive”. Such a
test suite would have a lower mutation score — the number of mu-
tants killed divided by the total number of mutants — and would
therefore be regarded as having a weaker fault detection capability.

Previous work [9, 17, 18] has developed a series of mutation op-
erators for the integrity constraints of relational database schemas.
These include operators that add, remove and replace columns for
constraints defined over one or more columns (e.g., PRIMARY KEY
and FOREIGN KEY constraints), add and remove NOT NULL con-
straints for columns, remove CHECK constraints and alter the rela-
tional operators used within them (e.g., substituting “>” for “>=”).

Execution Cost of Mutation Analysis. A longstanding problem
with mutation analysis is the issue of its high execution cost. The
test suite needs to be executed with each mutant, and mutation anal-
ysis tends to produce large numbers of mutants due to the large
number of potential ways in which faults can be seeded into soft-
ware artifacts, such as programs and relational database schemas.
This problem has prompted several researchers to develop tech-
niques to reduce its execution costs. These were categorized into
three groups by Offutt and Untch [13]: “do fewer”, “do smarter”
and “do faster”. As its name suggests, the “do fewer” category in-
volves evaluating a subset of the complete set of mutants according
to some selection strategy, while the latter two categories involve



function obtain_primary_key_constraint_predicate(pkc(tbl, CL), nr)
where

• pkc(tbl, CL), nr is a PRIMARY KEY constraint
• tbl is the table on which the constraint is defined
• CL = cl1...cln is the set of columns of the constraint

• nr be a new row of data to be inserted into tbl

// The test for null values:
let ncpk ← (nr(cl1) 6= NULL ∧ . . . ∧ nr(cln) 6= NULL)

// The test for uniqueness of values:
let ccpk ← (∀er ∈ tbl : nr(cl1) 6= er(cl1) ∨ . . . ∨ nr(cln) 6= er(cln))

// The complete integrity constraint predicate:
let icppk ← ncpk ∧ ccpk

return icppk

end function

function obtain_primary_key_constraint_predicate_for_SQLite (pkc(tbl, CL), nr)
where

• pkc(tbl, CL) is a PRIMARY KEY constraint for SQLite
• tbl is the table on which the constraint is defined
• CL = cl1...cln is the set of columns of the constraint

• nr be a new row of data to be inserted into tbl

// The test for null values:
let ncpk ← (nr(cl1) = NULL ∨ . . . ∨ nr(cln) = NULL)

// The test for uniqueness of values:
let ccpk ← (∀er ∈ tbl : nr(cl1) 6= er(cl1) ∨ . . . ∨ nr(cln) 6= er(cln))

// The complete integrity constraint predicate:
let icppk ← ncpk ∨ ccpk

return icppk

end function

Figure 2: Two example integrity constraint predicate functions.
This figure gives two functions for obtaining PRIMARY KEY integrity con-
straint predicates. While the first function is a general definition, the second
function applies to the specific behavior of the SQLite database manage-
ment system. (Adapted from McMinn et al. [11].)

techniques that approximate the result of standard mutation analy-
sis, or otherwise reduce its overall execution cost.

Like mutation analysis for programs, database schema mutation
analysis is a time-consuming process. With database schema mu-
tation analysis, one significant addition to the time cost is the over-
head of communicating with a DBMS over a network socket. This
can be a bottleneck even when the DBMS is running on the same
machine as the process conducting the analysis and submitting the
relevant SQL commands. In previous work, we sought to minimize
the amount of communication that needed to take place, for exam-
ple by combining all mutants into a single database schema [17].
This approach, however, does not completely eliminate communi-
cation costs. In this paper, we present a technique that substantially
reduces its execution costs — by evaluating mutants virtually.

3. VIRTUAL MUTATION ANALYSIS
Virtual Mutation Analysis of relational database schemas is the

use of a DBMS model to perform mutation analysis rather than
communicating with a real instance of a DBMS.

In this paper, we derive a model for the HyperSQL, PostgreSQL,
and SQLite DBMSs based on previous work [11] in which we mod-
eled the behavior of the integrity constraints of different DBMSs.
This model was originally motivated by the desire to derive dif-
ferent coverage criteria for testing the integrity constraints of a re-
lational database schema. In this paper, we show how this same
model can be used to evaluate mutants, thus removing the need to
communicate with a real instance of a DBMS and so potentially
speeding up the time needed to perform mutation analysis.

Modeling the Integrity Constraints of a DBMS. McMinn et al.
introduced integrity constraint predicates to model the integrity
constraints that can be specified as part of a relational database
schema for a database management system [11]. Integrity con-
straint predicates evaluate to true when a row of data in an INSERT
statement satisfies the constraint, and false when it does not.

Table 1: Schemas analysed in the empirical study.
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CoffeeOrders 5 20 0 4 10 5 0 19
Employee 1 7 3 0 0 1 0 4
Inventory 1 4 0 0 0 1 1 2
Iso3166 1 3 0 0 2 1 0 3
JWhoisServer 6 49 0 0 44 6 0 50
MozillaPermissions 1 8 0 0 0 1 0 1
NistWeather 2 9 5 1 5 2 0 13
Person 1 5 1 0 5 1 0 7
Products 3 9 4 2 5 3 0 14
Total 21 114 13 7 71 21 1 113

As per the relational model, originally due to Codd [3], a database
table consists of a set of rows with identical column names. We ex-
press an individual row as r = (cl1 : v1, . . . , clncl : vncl) for a
table with ncl columns, where cl1...ncl are the column names and
v1...ncl are the values for each column. As a shorthand, we use the
notation r(cl) to refer to the value of a column cl for a row r.

Figure 2 shows functions for acquiring predicates for primary
keys; “obtain_primary_key_constraint_predicate” gives a predicate
for the standard DBMS implementation of a primary key, while
“obtain_primary_key_constraint_predicate_for_SQLite” provides
an especially customized version for SQLite. SQLite differs from
most other DBMSs in that NULL is a legal entry for a primary key
column. Both functions take the configuration of a primary key
represented as a set of columns CL for a table tbl and a row of data
values nr. The predicate returned by the function can then be used
to decide, given the current state of the table tbl, whether the values
in nr conform to the primary key of tbl or not. For example, the
predicate returned for the PRIMARY KEY of the Station table
for a non-SQLite DBMS such as PostgreSQL is:

(nr(ID) 6= NULL) ∧ (∀er ∈ Station : nr(ID) 6= er(ID))

That is, the value of the id column in the row nr must not be
NULL, and it must not be identical to some other value for id ap-
pearing in a row already present in the Station table.

Once predicates have been obtained for all integrity constraints
pertaining to a database table6, an acceptance predicate can be
formed. An acceptance predicate describes whether a row of data
(such as that which forms part of an INSERT statement in a test
case) conforms to all of the integrity constraints defined on a ta-
ble, and as such, whether that row of data will be admitted into the
database. An acceptance predicate is formed by the conjunction of
each of the individual integrity constraint predicates.

Performing Virtual Mutation Analysis. Once acceptance predi-
cates have been obtained for each of the tables of a database schema,
they can be used to perform virtual mutation analysis. Rather than
submitting the rows of data in the INSERT statements of a test
case directly to the DBMS, rows of data can instead be evaluated
by the acceptance predicate relevant to the table that is the subject
of the INSERT. With standard mutation analysis, monitoring fo-
cuses on the differences in the acceptance and rejection behavior
of the DBMS with respect to the INSERT statements submitted as
part of each test case. With virtual mutation analysis, however, the
monitoring instead considers the difference in truth values of ac-
ceptance predicates when evaluated with the data contained within
an individual INSERT statement. A difference in truth value of an
acceptance predicate with the original schema compared to a mu-
tant indicates that the mutant is killed by the test suite.
6See McMinn et al. [11] for a full list of functions for obtaining predicates for integrity
constraints used by the schemas and DBMSs that we study in this paper.
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Figure 3: Box plot of the execution time for the standard and virtual mutation analysis techniques.
For a detailed description of the meaning of the boxes in this plot, please refer to Section 4. The boxes in this plot are noticeably compressed because there
is little variability in the timings for each of the various configurations. Since the results from running the standard method on the PostgreSQL DBMS differ
substantially from those with the other techniques and databases, all of the data values were log-transformed, thereby best revealing the relevant trends.

It is worth noting that mutation analysis of schemas involves the
repeated execution of tests normally containing a minimal number
of INSERTs. Yet, when running these tests, virtual mutation anal-
ysis always avoids the need to communicate with an instance of a
DBMS that hosts the mutant databases. This saves the cost of set-
ting up the tables of each database for the original schema and each
of the subsequent mutants (through SQL CREATE TABLEs), exe-
cuting the INSERT statements in the test suite against the database,
and then, finally, restoring the state of the DBMS by removing the
database tables (through SQL DROP TABLE statements).

One disadvantage of virtual mutation analysis is that a model of
the operation of the integrity constraints is needed for the DBMS
with which we wish to test schemas and perform mutation analysis.
While integrity constraints tend to operate in broadly the same way
across most DBMSs there is the potential for subtle variations due
to differing interpretations of the SQL standard (as shown with the
primary key example with SQLite). So, while we have models that
are accurate for HyperSQL, PostgreSQL and SQLite, which we use
in this paper, new models may be required for other DBMSs.

Related Work. Although this paper is the first to present the idea
of virtual mutation, there is a lot of prior work focused on improv-
ing the efficiency of mutation analysis; due to space constraints we
briefly survey some of the most related approaches. For instance,
Just et al. introduced a compiler-integrated method to make muta-
tion testing faster [7]. Also, Tokumoto et al. showed how various
techniques, such as the use of virtual machines, can improve the
efficiency of mutation testing [14]. Finally, Tuya et al. applied se-
lective mutation to the mutation testing of SQL SELECTs [15].

4. EXPERIMENTAL SETUP
To experimentally evaluate the presented virtual mutation anal-

ysis technique, we investigate three research questions, comparing
it against the standard approach to mutation analysis for relational
database schemas, which uses an actual instance of a DBMS (and
is hereafter simply referred to as the “standard” method).

RQ1 (Efficiency): How does the time overhead of virtual mutation
analysis compare to the standard technique’s cost, and how does
this vary depending on the DBMS in use?

RQ2 (Time Savings): How do the time savings from using vir-
tual mutation analysis vary when increasing either the number of
analysed mutants or the number of executed tests?

RQ3 (Mutation Score): How does the mutation score of virtual
mutation analysis compare to the score of a selective method that
runs randomly chosen mutants for as long as the virtual one?

Methodology. To answer the first and second research questions,
we recorded the time needed to run the standard approach and
virtual mutation analysis 30 times each, for each of the subject
schemas listed in Table 1 and with each of the three representative
DBMSs — HyperSQL, PostgreSQL and SQLite. Two schemas we
used appear in open-source projects (i.e., JWhoisServer and Mozil-
laPermissions), while others appear in SQL conformance suites
and DBMS sample sets (i.e., NistWeather and Iso3166, respec-
tively). Previous studies have shown that the remaining schemas
were challenging to handle for random test generators [11] and the
open-source DBMonster tool [9]. Between 9 and 184 mutants were
generated for each schema and between 426 and 449 in total for
the three DBMSs. These totals correspond to numbers following
the removal of certain ineffective mutants — mutants found to be
equivalent to the original or some other mutant, or “stillborn” [18].
Due to differing interpretations of the SQL standard, the notion of
“equivalence” differs from DBMS to DBMS, leading to a different
number of mutants for some of the schemas (e.g., JWhoisServer
yields 178 for HyperSQL and PostgreSQL and 184 for SQLite).

For each run, we used a test suite that was automatically gener-
ated by a search-based method with a unique random seed. Details
of the specific generation algorithms used are given by McMinn et
al. [11]. We used the alternating variable method, or AVM, since
past experiments have shown it to be the most reliable automated
method for generating test suites that achieve high levels of test



coverage [11]. The coverage criterion we used was a combina-
tion of “ClauseAICC”, “AUCC” and “ANCC”, thus merging the
strongest criteria for testing the integrity constraints of schemas.

When the mutation analysis of any part of a database application
is too expensive — and a “virtualised” method is unavailable —
prior work has performed selective mutation in an attempt to reduce
overall analysis costs by, for instance, only evaluating a subset of
the mutants [15]. Therefore, to answer the third research question,
we developed a strategy like Tuya et al.’s [15] and ran the standard
technique 30 times, performing a mutation analysis that randomly
selected mutants until the time taken for the corresponding run of
the 30 repetitions of virtual mutation analysis was exhausted.

We implemented our virtual model into our SchemaAnalyst tool
[9, 11, 18], which we also used to perform all of the experiments.
SchemaAnalyst was compiled with the JDK 7 compiler and exe-
cuted with the Linux version of the 64-bit Oracle Java 1.7 virtual
machine. Experiments were executed on an Ubuntu 14.04 work-
station, with a 3.13.0-44 Linux 64-bit kernel, a quad-core 2.4GHz
CPU and 12GB of RAM. All input (i.e., the database schemas) and
output (i.e., the result files) were stored on the workstation’s lo-
cal disk. We used the default configuration of PostgreSQL version
9.3.5, HyperSQL version 2.2.8 and SQLite 3.8.2. HyperSQL and
SQLite were used with “in-memory” mode enabled.

Analysis Methods. Figures 3 and 5 furnish box and whisker plots.
In these plots the box itself represents the interquartile range (IQR),
or the measure of statistical dispersion that is the difference be-
tween the first and third quartiles. Moreover, the upper whisker
extends from the top of the box to the highest value that is within
1.5 times the IQR, the lower whisker goes from the bottom of the
box to the lowest value within 1.5 times the IQR, and the thick hor-
izontal line represents the median value. Also, these box plots use a
filled circle for an outlier and an open diamond for the mean value.

To statistically analyze the trends in Figure 3 we conducted
tests for significance with the nonparametric Wilcoxon rank-sum
test, using the sets of 30 execution times obtained with a specific
DBMS and the standard and virtual mutation analysis techniques.
A p-value less than 0.05 is deemed significant. To complement sig-
nificance tests, the nonparametric Â12 statistic of Vargha and De-
laney [16] was used to compute effect sizes, which determine the
average probability that one approach “outperforms” another. We
followed the guidelines of Vargha and Delaney in that an effect size
is deemed to be “large” if the value of Â12 is < 0.29 or > 0.71,
“medium” if Â12 is < 0.36 or > 0.64 and “small” if Â12 is < 0.44
or > 0.56. Values of Â12 close to the 0.5 value are viewed as show-
ing no effect. When discussing effect sizes for the execution times
of the two methods, we follow Neumann et al. [12] and say that
a value of Â12 closer to zero indicates that virtual is the preferred
technique while a value near one shows that standard is faster.

As the number of mutants subject to analysis and the number
of generated tests increases, Figure 4 plots the percentage of mean
time saved from using virtual mutation analysis instead of the stan-
dard method. This value is determined by first calculating the mean
execution time from the 30 trials of both the standard and the vir-
tual techniques. If Ts denotes the mean time taken by the standard
method and Tv is the mean time needed for the virtual one, then we
calculated the percentage of mean time saved by (Ts − Tv)/Ts.

We employed a correlation statistic to determine how the muta-
tion scores of the selective mutation method correspond to those of
virtual mutation analysis. Due to the possibility of rank ties, which
are not supported by a number of correlation measures, we chose
to use the tie-aware Kendall’s τb coefficient, as provided by the
“Kendall” R package [10]. Kendall’s τb provides a measurement
of correlation between -1 and 1, representing a strong negative and
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Figure 4: Scatter plot of the percentage of mean time saved for
the number of schema mutants subject to analysis.
In these plots, a specific point corresponds to the percentage of mean time
saved for a given number of mutants, across all three of the database man-
agement systems (a similar graph with the number of tests on the horizontal
axis shows the same trend as this graph). For a detailed description of how
to calculate the values on the vertical axis, please refer to Section 4.

strong positive association, respectively, with 0 indicating that there
is no correlation. Following Inozemtseva and Holmes, we adopt the
Guildford scale to describe the correlation values, with the absolute
value of a coefficient being described as “low” when it is less than
0.4, “moderate” when it is between 0.4 and 0.7, “high” when rang-
ing from 0.7 to 0.9, and “very high” when it is greater than 0.9 [5].

Threats to Validity. There are several threats to the validity of
the empirical results presented in this paper. First, several of the
techniques that we used (e.g., the test data generator in Schema-
Analyst and the choice of mutants by the selective mutation anal-
ysis method) employ randomness. Additionally, background pro-
cesses running during experimentation may introduce small ran-
dom variations in the timings for the mutation analysis methods. To
control for these threats we ran 30 trials and used box and whisker
plots and statistical tests to analyze the results. Adhering to the ad-
vice of Neumann et al. [12], we disregarded all timing differences
of 100 ms — as they would not be perceived by users of our tool —
to ensure that we did not misapply the Vargha-Delaney effect size.

Another threat to the validity of our results is potential defects
in the data generator or one of the mutation analysis methods. We
controlled these threats by implementing and regularly applying an
automated test suite for all of these software tools; to ensure their
correct operation we also manually performed “spot checks” on
small schemas. In addition, we verified that the virtual mutation
analysis always yielded the same mutation score as the standard
one. Finally, since possible defects in our results analysis routines
would compromise the conclusions from our experiments, we cre-
ated and regularly ran tests for the R code that manipulated the data,
carried out the statistical analyses, and visualised the results.

While the rich and diverse nature of real software systems makes
it impossible for us to claim that our schemas are representative of
all the characteristics of all possible relational database schemas,
we endeavored to select schemas from a wide variety of sources,
comprising open-source programs, conformance suites for the SQL
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Figure 5: Box plot of the mutation score for the selective and virtual mutation analysis techniques.
Involving test suites from 30 separate runs of the search-based test data generation method developed by McMinn et al. [11], this plot shows the variation in
the mutation score for the selective and virtual methods and for all of the chosen relational schemas and the three database management systems.

standard and schemas from databases that were used in previous
studies. Table 1 shows the variety captured by the schemas, with
tables that contain 1–50 constraints, including CHECKs, FOREIGN
KEYs, PRIMARY KEYs, NOT NULLs and UNIQUEs.

5. EMPIRICAL RESULTS
Comparing Standard and Virtual Mutation. The six box plots
in Figure 3 show the mutation analysis time for the two techniques
across all of the relational schemas and the three DBMSs. This plot
reveals that, when using the HyperSQL DBMS, the virtual method
is faster than the standard one, especially for large schemas such as
JWhoisServer. Since PostgreSQL is a “heavyweight” disk-based
DBMS, virtual mutation analysis — which avoids database inter-
actions — demonstrates much lower execution times with it than
does the standard method. Yet, these plots show that the perfor-
mance of the virtual approach is similar to the standard one when
mutation analysis runs on the high-performance SQLite DBMS.

The statistical tests and effect size calculations confirm the trends
evident in Figure 3. When comparing the timings for the two muta-
tion analysis methods on the HyperSQL and PostgreSQL DBMSs,
the Wilcoxon rank-sum test reveals, with a p-value near zero, that
virtual is faster than standard in a statistically significant fashion.
Moreover, the Â12 values of 0.26 and 0.0008 for the timings for
HyperSQL and PostgreSQL, respectively, show that there is a large
effect size evident in the timings and thus sustain virtual mutation
analysis as the clear winner for efficiency. Returning a p-value of
0.905, the Wilcoxon rank-sum test confirms that there is no sta-
tistical difference between the standard and virtual methods when
mutation analysis runs on SQLite. An effect size of 0.503, indi-
cating that the two techniques are stochastically equivalent, further
shows that a fast DBMS obviates the benefits of virtual mutation.7

7Following the suggestions of Neumann et al. [12], we also transformed the effect size
values by disregarding all timings differences of 100 milliseconds, ultimately yielding
the same conclusions as reported for the untransformed data values.

Saving Time with Virtual Mutation. As evident by the scatter
plot in Figure 4, it is worthwhile to see how the time savings as-
sociated with using virtual mutation analysis varies as the number
of mutants and tests increases. Since PostgreSQL is a heavyweight
DBMS relative to HyperSQL and SQLite, this scatter plot reveals
that, by avoiding database interactions, the virtual method yields
substantial savings regardless of the number of mutants subject to
analysis or the number of tests run. Figure 4 also affirms that using
virtual mutation on HyperSQL saves time, albeit in a way that is
gradual and tapering off as there are more mutants and tests.

The scatter plots also highlight the fact that, when run on SQLite,
virtual only improves the performance of mutation analysis for four
of the nine schemas. While these larger schemas see reduced over-
heads with the virtual technique, the 5 smaller schemas do not ben-
efit from the decrease in database interactions afforded by the pre-
sented method, thus leading to the negative values of the percent-
age of mean time saved seen in Figure 4. Yet, even in these cases in
which a small schema and a fast DBMS should outperform virtual
mutation analysis, we found that the difference in execution time
was always less than 100 milliseconds, a negligible amount that
experts agree is not perceivable by users of a software tool [12].

Selective and Virtual Mutation. Since the experiments revealed
that virtual mutation analysis is faster than the standard one in 22
out of the 27 studied configurations — and competitive with the
DBMS-based method in the other 5 — it is useful to ascertain
whether the presented technique might yield more accurate muta-
tion scores in some circumstances. To this end, Figure 5 presents
the mutation score of both the virtual approach and a time-limited
selective analysis in which the standard technique randomly ana-
lyzes mutants for as long as virtual would normally take. These box
plots show that the selective technique results in mutation scores
that are often highly variable. This result can be attributed to the
randomness inherent in selectively running mutation analysis under
a time limit that will not permit the examination of every mutant.
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Figure 6: Bar plot of the mutant count for both the selective and virtual mutation analysis techniques.
In this plot the height of the bar corresponds to the number of mutants subject to analysis by the selective and virtual methods, reported for all of the schemas
and the three DBMSs. Since the selective technique employs randomness to pick mutants that can be run within a specified time limit, the height of a dark
grey bar is the average across a total of thirty runs; virtual mutation is deterministic and thus the height of the light grey bar is a direct count.

For instance, the noticeable variability in mutation score when
the Person schema is run on PostgreSQL is due to the high prob-
ability of selecting a mutant that cannot be killed. The bar chart
in Figure 6 further shows the benefit of virtual by revealing that
the random selective method rarely analyzes as many mutants as it
does, especially for large schemas like JWhoisServer.

Bearing in mind that the virtual method produces mutation scores
that are always equal to those achieved by the standard technique, it
is also important to observe that mutation analysis through random
selection leads to overly high mutation scores. Yet, at least for the
HyperSQL and SQLite DBMSs, the box plots in Figure 5 suggest
that the mutation scores are roughly similar for virtual mutation
analysis and the time-constrained selective method. To rigorously
establish this correlation, we calculated Kendall’s τb for the two
techniques on each of the DBMSs, arriving at the values of 0.561
(moderate), 0.132 (low) and 0.756 (high) for HyperSQL, Post-
greSQL and SQLite, respectively. These correlations suggest that
virtual mutation is the best option when highly accurate scores are
needed and there is limited time for mutation analysis of a schema.

6. CONCLUSIONS AND FUTURE WORK
This paper introduces a cost-effective and accurate technique

that performs mutation analysis for relational database schemas.
Virtual mutation analysis executes test suites virtually against a
model of the mutated schema. This novel approach removes the
need to setup an instance of a database with the mutated schema on
a real DBMS, communicate with the DBMS over a socket connec-
tion to set up the database, execute the SQL INSERTs of a test case
against it, and then tear down the database to prepare the DBMS for
the next test. Incorporating nine representative schemas and three
industry-standard DBMSs, this paper’s experiments reveal that vir-
tual mutation analysis is better than the standard technique in 22
of the 27 configurations studied, yielding a time savings ranging
from 13 to 99% — and proving to be competitive with the stan-
dard method in the other 5 cases. Given the promise of these re-
sults, in future work we plan to ensure our models support other

DBMSs and additionally extend the empirical study to include new
schemas, thereby furnishing further confirmation of the extensibil-
ity and efficiency of virtual mutation analysis for database schemas.
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