
Information and Software Technology xxx (2014) xxx–xxx
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Test suite reduction methods that decrease regression testing costs by
identifying irreplaceable tests
http://dx.doi.org/10.1016/j.infsof.2014.04.013
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +886 5 2717227.
E-mail address: chutilin@mail.ncyu.edu.tw (C.-T. Lin).

Please cite this article in press as: C.-T. Lin et al., Test suite reduction methods that decrease regression testing costs by identifying irreplaceabl
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
Chu-Ti Lin a,⇑, Kai-Wei Tang b, Gregory M. Kapfhammer c

a Department of Computer Science and Information Engineering, National Chiayi University, Chiayi, Taiwan
b Cloud System Software Institute, Institute for Information Industry, Taipei, Taiwan
c Department of Computer Science, Allegheny College, Meadville, PA, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 August 2013
Received in revised form 10 April 2014
Accepted 14 April 2014
Available online xxxx

Keywords:
Software testing
Regression testing
Test suite reduction
Code coverage
Test irreplaceability
Context: In software development and maintenance, a software system may frequently be updated to
meet rapidly changing user requirements. New test cases will be designed to ensure the correctness of
new or modified functions, thus gradually increasing the test suite’s size. Test suite reduction techniques
aim to decrease the cost of regression testing by removing the redundant test cases from the test suite
and then obtaining a representative set of test cases that still yield a high level of code coverage.
Objective: Most of the existing reduction algorithms focus on decreasing the test suite’s size. Yet, the dif-
ferences in execution costs among test cases are usually significant and it may take a lot of execution time
to run a test suite consisting of a few long-running test cases. This paper presents and empirically eval-
uates cost-aware algorithms that can produce the representative sets with lower execution costs.
Method: We first use a cost-aware test case metric, called Irreplaceability, and its enhanced version,
called EIrreplaceability, to evaluate the possibility that each test case can be replaced by others during
test suite reduction. Furthermore, we construct a cost-aware framework that incorporates the concept
of test irreplaceability into some well-known test suite reduction algorithms.
Results: The effectiveness of the cost-aware framework is evaluated via the subject programs and test
suites collected from the Software-artifact Infrastructure Repository — frequently chosen benchmarks
for experimentally evaluating test suite reduction methods. The empirical results reveal that the pre-
sented algorithms produce representative sets that normally incur a low cost to yield a high level of test
coverage.
Conclusion: The presented techniques indeed enhance the capability of the traditional reduction algo-
rithms to reduce the execution cost of a test suite. Especially for the additional Greedy algorithm, the pre-
sented techniques decrease the costs of the representative sets by 8.10–46.57%.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The goal of software testing is to execute the software system,
locate the faults that cause failures, and improve the quality of
the software by removing the detected faults. Testing is the pri-
mary method that is widely adopted to ensure the quality of the
software under development [1]. According to the IEEE definition
[2], a test case is a set of input data and expected output results
which are designed to exercise a specific software function or test
requirement. During testing, the testers, or the test harnesses, will
execute the underlying software system to either examine the
associated program path or to determine the correctness of a
software function. It is difficult for a single test case to satisfy all
of the specified test requirements. Hence, a considerable number
of test cases are usually generated and collected in a test suite [3].

If the requirement set covered by a test case overlaps the set cov-
ered by another test case, then the two test cases may be redundant
to each other. At the beginning of software testing, a large number of
test cases may be automatically generated by a test case generator
without considering the redundancies of test cases [4,5]. Yet,
because the resources allocated to a testing team are usually limited,
it may be impractical to execute all of the generated test cases. If
software developers can reduce the test suite by removing the
redundant test cases, while still ensuring that all test requirements
are satisfied by the reduced test suite, then testing may be more effi-
cient and the effectiveness of testing in unlikely to be compromised.
e tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013
mailto:chutilin@mail.ncyu.edu.tw
http://dx.doi.org/10.1016/j.infsof.2014.04.013
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2014.04.013


2 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
The process of removing the redundant test cases is called test suite
reduction or test suite minimization [6,7].

Additionally, evolutionary development, incremental delivery,
and software maintenance are common in software development
[8,9]. In such development processes, the functionality of a soft-
ware system may be refined to meet the customer’s needs or
may be delivered incrementally. Each time the software developers
modify the system, they may also introduce some faults. New test
cases should be added to ensure the quality of new functions. The
existing test cases should also be re-executed in order to detect the
faults caused by imperfect debugging. Such an activity is called
regression testing [2,10]. In the process of software development,
more and more test cases will be included, thus often causing some
test requirements to be associated with more than one test case. To
reduce the cost of regression testing, test suite reduction can also
be applied to remove the redundant test cases [11].

The test suite reduction problem can be defined as follows
[6,7,9]:

Given:

� A set T = {t1, t2, . . . , tn} representing the test cases in the ori-
ginal test suite, where n denotes the number of test cases
(i.e., n = |T|).

� A set of test requirements R = {r1, r2, . . . , rm} in which each
test requirement must be satisfied by at least one of the
test cases in T, where m denotes the number of test require-
ments (i.e., m = |R|).

� The binary relation between T and R: S = {(t, r) | t satisfies r,
t e T and r e R}.

Objective:

� Find a subset of the test suite T, denoted by a representative
set RS, to satisfy all of the test requirements satisfied by T.

Let us consider the binary relation between T0 = {t1, t2, t3, t4, t5}
and R0 = {r1, r2, r3, r4, r5, r6} that is shown in Table 1 as an illustra-
tion. If the set of test cases {t1, t2} are executed instead of T0, all of
the requirements in R0 are still satisfied. Thus, the test cases {t3, t4,
t5} do not need to be executed. In this example, the subset {t1, t2} is
the minimal representative set.

In fact, the test suite minimization problem can be reduced to
the minimum set cover problem [6]. Karp proved that the set cover
problem is NP-complete [12]; yet, many techniques have been pro-
posed to obtain the near-optimal solution for the test suite reduc-
tion problem. Even though the representative sets produced by
these techniques are not guaranteed to be optimal, they can signif-
icantly decrease both the size of the test suite and the cost associ-
ated with its execution. However, to the best of our knowledge,
most of the existing reduction algorithms ignore the significant dif-
ferences in execution costs among test cases. In response to this
limitation, this paper presents a cost-aware test suite reduction
technique based on the concept of test irreplaceability.

The main contributions of this paper include: (C1) presenting a
cost-aware test case metrics, called Irreplaceability and
EIrreplaceability, based on the concept of test irreplaceability;
Table 1
An example of a test suite.

Test suite T0 Requirement set R0

r1 r2 r3 r4 r5 r6

t1 � � �
t2 � � �
t3 � �
t4 � � �
t5 � �

Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
(C2) constructing a cost-aware framework that incorporates the
concept of test irreplaceability into some well-known test suite
reduction algorithms; (C3) empirically evaluating the effectiveness
of the presented test suite reduction techniques and evaluating
whether these methods select many test cases in common during
the test suite reduction process. It is important to note that, in
comparison with the preliminary version of this work (i.e., [9]), this
paper provides several additional contributions. Considering (C1)
as an example, although the test case metric, Irreplaceability,
was presented in [9], this paper further presents the enhanced ver-
sion, EIrreplaceability, which strictly dominates Irreplaceability.
Considering (C2), the work in [9] only explained how to use Irre-
placeability to evaluate the test cases and selected the test cases
based on the concept of the additional Greedy algorithm. This
paper further incorporates the presented cost-aware test case met-
rics into two additional well-known reduction algorithms. Consid-
ering (C3), in addition to the small subject programs used in [9],
this paper further includes empirical studies with a larger subject
program. Moreover, this paper evaluates the common rates of
the representative sets according to the concept developed by
Zhong et al. in [3].

The remainder of this paper is organized as follows. Section 2
reviews some well-known test suite reduction algorithms and
some cost-aware regression testing techniques. In Section 3, we dis-
cuss the differences in execution costs among test cases and explain
how the differences influence test suite reduction. Based on these
discussions, we show how to use test irreplaceability to evaluate
each test case. In Section 4, we propose the cost-aware algorithms
by incorporating test irreplaceability into the existing reduction
algorithms. Section 5 reports on the results from the empirical stud-
ies. Finally, Section 6 furnishes some concluding remarks.
2. Related work

Test suite reduction, test case prioritization, and test case
selection are three primary techniques to make regression testing
more efficient and effective [13]. As described in Section 1, test suite
reduction techniques remove the redundant test cases and then
produce a representative set of test cases that still yield a high level
of code coverage. Test case prioritization techniques reorder the
test cases according to some specific criteria such that the tests
with better fault detection capability are executed early during
the regression testing process. Test case selection techniques run
a subset of the test cases that execute the modified source code in
order to ensure the correctness of the functionalities of the updated
program [14]. Recall that this paper aims to present and
empirically evaluate the cost-aware test suite reduction algorithms.
In order to introduce the state-of-the-art relevant techniques,
Sections 2.1.1–2.1.3 first review three well-known test suite
reduction algorithms that will be used to explain the presented
technique in Section 4, and then Section 2.1.4 reviews some exist-
ing cost-aware test suite reduction techniques. To the best of our
knowledge, few cost-aware test case selection techniques have
been proposed in the literature, while a lot of cost-aware test case
prioritization techniques have been proposed and have received
considerable attention. Thus, Section 2.2 focuses on the reviews of
the cost-aware regression test case prioritization techniques.
2.1. Reviews of well-known test suite reduction techniques

2.1.1. Additional Greedy algorithm
The additional Greedy algorithm [15], hereafter called Greedy

for simplicity, is a well-known method for finding the near-optimal
solution to the test suite reduction problem. This algorithm
repeatedly moves the test which covers the most unsatisfied test
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 3
requirements from the test suite set T to RS until all of the require-
ments are covered. The detailed steps are given as follows:

1. Create an empty set RS and mark all test requirements as
‘‘unsatisfied’’.

2. Identify a test case t in T, where t is the test case that satisfies
the most unsatisfied test requirements.

3. Move the test case t from T into RS.
4. Mark the test requirements which are satisfied by t as

‘‘satisfied’’.
5. Repeat Steps 2–4 until all test requirements are satisfied, and

then return the representative set RS.

The time complexity of the Greedy algorithm is O(m � n �min(m,
n)) [16]. Many existing test suite reduction methods are based on
the concept of the Greedy algorithm [13]. In other words, many
algorithms repetitively choose the ‘‘best’’ test case to obtain the
near-optimal solution from the locally optimal solutions.

2.1.2. GE and GRE algorithms
If a test requirement only can be satisfied by a specific test case,

then that test can be called the essential test case for that require-
ment [16]. Considering the example in Table 1, t2 is the essential
test case for the requirement r1 because r1 only can be satisfied
by t2. If the essential test cases are not inserted into the represen-
tative set early in the reduction process, some of the selected test
cases may become redundant with a high probability. However,
the Greedy algorithm does not specifically deal with the essential
test cases as early as is possible. Because the Greedy algorithm
does not ensure that the essential test cases are chosen first, Chen
and Lau [16] proposed two algorithms, called GE and GRE, to
address this problem. Here ‘‘G’’, ‘‘R’’, and ‘‘E’’ represent the abbrevi-
ations of ‘‘Greedy’’, ‘‘Redundant’’, and ‘‘Essential’’, respectively.

The GE algorithm will choose all of the essential test cases first
and then will apply the Greedy algorithm to the remaining test
suite. It has the same time complexity as the Greedy algorithm.
The GRE algorithm is the enhanced version of GE, which includes
the following strategies:

(1) Essential strategy: it will first choose all essential test cases.
(2) 1-to-1 redundant strategy: if the test case tx can cover all the

test requirements satisfied by another test case ty, ty is said
to be 1-to-1 redundant to tx. Considering the example in
Table 1, t5 is 1-to-1 redundant to t2 because both the
requirements satisfied by t5 (i.e., r4 and r6) can also be satis-
fied by t2. This strategy is used to remove the 1-to-1 redun-
dant test cases.

(3) Greedy strategy: the Greedy algorithm will be applied to the
remaining test cases.

In the test suite reduction process, the GRE algorithm will first
adopt the essential strategy and then the 1-to-1 redundant strat-
egy. Only when no essential test case can be found will the Greedy
strategy then be adopted. GRE finds the optimal solution if only the
essential and 1-to-1 redundant strategies are adopted during the
reduction process [16]. The time complexity of the GRE algorithm
is O(min(m, n) � (m + n2 � k)), where k is the maximum number of
requirements that can be satisfied by a single test case.

2.1.3. HGS algorithm
Harrold et al. [6] also proposed a test suite reduction approach,

called the HGS (i.e., the abbreviation of the authors’ last names,
Harrold, Gupta, and Soffa) algorithm, that has received considerable
attention (e.g., [3,7,11,13,16–18]). Let Si (for i = 1, 2, 3, . . . , m) repre-
sent the subsets of T, with each subset Si containing all of the test
cases that satisfy the i-th test requirement. The HGS algorithm will
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
determine the representative test cases for each subset and include
them in the representative set. The time complexity of the HGS
algorithm is O(m � (m + n) �maxCard), where maxCard is the maxi-
mum cardinality of all the Sis. The experimental results reported
by Chen and Lau [17] and Zhong et al. [18] indicated that both
the HGS algorithm and the GRE algorithm can significantly reduce
the size of a test suite.

2.1.4. Other test suite reduction techniques
Similar to the current study, Ma et al. [19] and Smith and Kapf-

hammer [20] also considered the differences in execution costs
among test cases when reducing a test suite. Instead of using code
coverage criteria (e.g., statements, branches, define-use pairs, basic
blocks, or functions), Ma et al. [19] proposed a cost-aware criterion
that combines the block-based coverage (i.e., the node coverage or
the segment coverage) and the execution cost of each test case.
Later, Smith and Kapfhammer [20] generalized the cost-aware cri-
terion proposed by Ma et al. [19] by considering any type of test
requirement and used the generalized criterion to greedily reduce
the test suite. An empirical study demonstrated that this cost-
aware criterion can aid a test suite reduction method in generating
a representative set with a low execution cost. This approach will
be clearly described in Section 3.3. Additionally, this approach,
together with Greedy, GRE, and HGS, will be empirically compared
to the presented cost-aware algorithms in terms of the metrics
adopted by Zhong et al. (see [3] for more details).

Yoo and Harman [21] formulated a multi-objective test suite
reduction problem and illustrated this with two versions, including
a two-objective formulation that combines both execution costs of
test cases and statement coverage and a three-objective formulation
that further considers past fault-detection history. Based on the
concept of Pareto efficiency, they explained how to use the non-
dominating sorting genetic algorithm, called NSGA-II, [22] and an
island genetic algorithm variant of NSGA-II, called vNSGA-II, to
address the two- and three-objective instances of the test suite
reduction problem. Their empirical results show that the search-
based algorithms outperform Greedy for smaller programs while
Greedy demonstrates good effectiveness for a large program.
Because of this observation, Yoo and Harman [23] further presented
a hybrid variant of NSGA-II, called HNSGA-II, that combines the effi-
cient approximation of Greedy with NSGA-II to address the multi-
objective test suite reduction problem. The empirical results indi-
cate that the approximation produced by Greedy is complemented
by the intermediate solutions that are detected by NSGA-II. As a
result, the proposed hybrid approach indeed works better than
Greedy and NSGA-II. In addition to execution cost and code cover-
age, Bozkurt [24] recently further incorporated the concern about
the reliability of a test suite (i.e., the validity of test inputs in the test
suite) into the multi-objective test suite reduction problem and
addressed the problem based on HNSGA-II. The experimental results
also showed evidence for the effectiveness of HNSGA-II for analyzing
the trade-off between execution cost, code coverage, and test suite
reliability.

It is true that the studies in [21,23,24] are relevant to the execu-
tion cost of test cases. However, these papers intend to produce a
representative set of test cases that balances the trade-offs
between the execution cost and the other objectives while our
paper aims to produce a representative set that decreases the exe-
cution cost but yields the same level of code coverage. Thus, it is
not absolutely necessary to empirically compare the techniques
presented in [21,23,24] with our presented techniques.

In addition to these algorithms reviewed in Sections 2.1.1–2.1.4,
many studies (e.g., [7,11,25–30]) that have received considerable
attention also aim to reduce the test suites under various consider-
ations; the focuses of their empirical studies are diverse. Yet, it is
not advisable to include all of the considerations and foci of prior
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


4 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
work in this paper. Additionally, these studies did not consider the
differences in the execution costs of the tests. Therefore, in order to
control the scope and focus of both this exposition and the empir-
ical study, in this section we only review and discuss the papers
that are frequently cited and most relevant to the current study
(i.e., [6,15,16], the studies that proposed the Greedy, GRE, and
HGS algorithms, and [19–21,23,24], the studies that proposed the
cost-aware test suite reduction techniques).

2.2. Cost-aware test case prioritization techniques

The average percentage of fault detected (APFD) [31], a com-
monly used metric for evaluating the fault detection rate of prior-
itized test cases, assumes that all test cases and fault severities are
uniform. Elbaum et al. [32] considered the differences in execution
costs among test cases and the differences in the severity of faults
in practice, and thus presented a new metric, called the cost-cogni-
zant average percentage of faults detected (APFDC). They also
described how to adjust several prioritization techniques to be
cost-cognizant [33]. Park et al. [34] used historical information
to estimate costs and fault severities, and further proposed a
historical value-based technique for cost-cognizant test case
prioritization. The experimental results show that this historical
value-based technique works better, in terms of APFDC, than
functional coverage-based prioritization techniques. Recently,
Huang et al. [35] proposed a cost-cognizant test case prioritization
technique that uses a genetic algorithm to determine the most
effective prioritization according to the historical records gathered
from the latest regression testing. As a result of the experiment,
the proposed cost-cognizant approach significantly outperforms
the coverage-based techniques and the other history-based
techniques.

In addition to the differences in execution costs among test cases,
some test case prioritization studies have considered the testing time
constraint or budget. Walcott et al. [36] reported that previous test
case prioritization techniques did not explicitly consider a testing
time constraint. Thus, they presented a time-aware test case prioriti-
zation technique that used a genetic algorithm to reorder the test
cases so that regression testing will terminate in the allotted time.
They also defined a new metric for evaluating the effectiveness of test
case prioritization in an explicit testing time constraint. To address
the similar time-constrained test case prioritization problem,
Alspaugh et al. [37] applied knapsack solvers to perform time-aware
prioritization. Given a testing time constraint, the reordered test suite
created by the proposed knapsack-based approaches can cover the
test requirements in a short time and always stop execution in a
given time constraint. The empirical results also indicate that the
knapsack-based approaches, without considering the overlap in test
case coverage, result in a low time overhead and a moderate to high
space overhead while the created prioritizations lead to a minor to
moderate decrease in the effectiveness. Zhang et al. [38] presented
the first time-aware test case prioritization approach that uses inte-
ger linear programming. In this study, they empirically evaluated
and compared the time-aware prioritization and traditional tech-
niques in the context of time-constrained prioritization. The results
indicate that their proposed techniques outperform others,
especially when the given time budget is tight.

While several time-aware test case prioritization techniques
have been proposed to satisfy the time budget of regression test-
ing, You et al. [39] analyzed whether it is effective to consider
the time cost of each test case when prioritizing the regression test
cases. Their empirical studies evaluate the effectiveness of the test
case prioritization techniques based on two common criteria,
statement coverage and fault detection, and the results indicate
that the time-aware techniques are only slightly better than
others.
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
Although the aforementioned studies do not focus on the test
suite reduction problem, they clearly show that discussions on
the time costs of regression testing have received considerable
attention. This further confirms that it is worthwhile for this paper
to focus on the cost of regression testing.
3. Test suite cost reduction

3.1. Execution costs of test cases

Most traditional test suite reduction approaches aim to
decrease the number of test cases in the representative set and
ignore the individual execution cost of each test case. That is, the
execution costs of different test cases in a test suite are treated
as if they are the same. In fact, this assumption may be unreason-
able for most test suites. For example, suppose that two test cases
t1 and t2 are applied to a program that only includes a loop. During
testing, the execution associated with t1 will repeat the loop twice
while t2 will cause the loop to be executed one thousand times. If
the test requirement in this example is statement coverage or
branch coverage, both t1 and t2 can yield 100% coverage for this
code segment. However, the time required to execute t2 is signifi-
cantly greater than that required to execute t1. In a real-world
example, Mücke and Huhn reported that the execution time for
different test cases should not be omitted in railway interlocking
system [40]. In such a system, the executions of test cases may
be related to the traffic or process control systems and the relevant
actions may cause a long waiting time.

Fig. 1 shows the results from an investigation into the test case
cost of the subject programs from the Software-artifact Infrastruc-
ture Repository (SIR) [41], which includes the seven Siemens suite
programs [7,42] and the Space program [43]. Table 2 shows the
statistics related to the execution time of the test cases. As seen
from the figure and the table, the differences in execution time
among test cases are significant for the SIR subject programs. Thus,
it may be unsuitable to ignore the issues related to execution time
when looking for the representative set of a test suite.

In addition to execution time, running test cases may lead to
other resource consumptions such as memory usage, network-
bandwidth, disk input/output, and energy [44]. The consumptions
of these resources are also important factors to consider during
cost-effective software testing and it may be helpful to take into
account their differences when reducing the test suite. However,
because regression tests are usually run outside of working hours,
finishing the tests before the next work period should be the
most important consideration of testers. The other resources may
be less critical in comparison to time consumption. Therefore, even
though the presented methods are general enough to handle any
measurable type of resource consumption, this paper only focuses
on time consumption and leaves the others for study in future work.
3.2. Execution cost of a test suite

Due to the differences in execution costs among the test cases,
the representative set with the smallest number of tests may not
be the one with the minimum execution cost [9]. Let us consider
the code segment of function func in Fig. 2 as an illustration. The
code segment includes 6 if-statements. If test requirements
are defined in terms of branch coverage and bT

y and bF
y denote the

true case and the false case for the y-th if-statement by, respec-
tively, then all test requirements (12 possible branches) are shown
in Table 3. Table 4 lists the individual execution cost (i.e., execution
time) for each test case in the test suite and shows the binary rela-
tions between the test cases and the test requirements. As shown
in the table, RSa = {t1, t2, t5, t6}, with cardinality 4 (i.e., |RSa| = 4)
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


Execution Time (μs)

4,130 Test Cases for print tokens

Execution Time (μs)

4,115 Test Cases for printtokens2

(a) Program printtokens (b) Program printtokens2

Execution Time (μs)

5,542 Test Cases for replace

Execution Time (μs)

2,650 Test Cases for schedule

(c) Program replace (d) Program schedule

Execution Time (μs)

2,710 Test Cases for schedule2

Execution Time (μs)

1,608 Test Cases for tcas

(e) Program schedule2 (f) Program tcas

Execution Time (μs)

1,052 Test Cases for totinfo

Execution Time (μs)

13,585 Test Cases for space

(g) Program totinfo (h) Program space

Fig. 1. Execution time distribution of the test cases created for the SIR subject programs.

C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 5
and an execution cost of 700, is the minimal representative set that
can achieve 100% branch coverage. In fact, if t2 is replaced by t3 and
t4, it can yield another representative set RSb = {t1, t3, t4, t5, t6} with
cardinality 5 (i.e., |RSb| = 5) and cost 600. Although the cardinality
of RSb is larger than that of RSa, the associated execution cost
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
decreases to 600 time units. From this example, it can be seen that
the representative set containing the fewest test cases may not
exhibit the lowest execution time.

As such, the cost of a test should be a more important consider-
ation for achieving cost-effective testing than the size of the test
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


Table 2
The statistics related to the execution time of the test cases designed for the SIR subject programs.

Subject program Num. of test cases Execution time (ls)

Maximum Minimum Average Std. deviation Coefficient of variance (Stdev./Avg.)

printtokens 4130 540,031 20,001 51177.26 27527.31 0.54
printtokens2 4115 130,008 20,001 40291.49 11648.51 0.29
replace 5542 510,029 20,001 63838.01 35030.60 0.55
schedule 2650 240,014 20,001 53267.20 19535.76 0.37
schedule2 2710 200,011 20,001 61966.64 23904.06 0.39
tcas 1608 140,008 20,001 39255.98 12998.87 0.33
totinfo 1052 150,008 30,001 48919.14 14148.49 0.29
space 13,585 38,112,180 60,003 643380.93 1546418.47 2.40

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

bool func(int x, int y , int z)
{

if(z<0) // if-statement 1 
  return false; 

if(x<y)   // if-statement 2
{

if(x*y!=0)  // if-statement 3 
x*=y; 

else
x++;

 } 
if(x>0) // if-statement 4
{

x*=x; 
if(y>5)   // if-statement 5 

y+=y; 
 } 

if(z>10)    // if-statement 6 
  sleep(200);  // this statement takes 200 ms 
 sync(x+y);   // this statement takes 100 ms 

return true; 
}

Fig. 2. Function func.

6 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
suite. Thus, it is necessary to consider individual execution costs
when choosing the test cases. This paper proposes a cost-aware
framework to enhance the test suite reduction algorithms
reviewed in Sections 2.1–2.3.
3.3. Evaluating the test cases

This subsection will first review two existing metrics, called
Coverage and Ratio, that are used to evaluate and choose test cases
during the test suite reduction process. We will point out the
possible weaknesses of these existing metrics and then propose
two new metrics, called Irreplaceability and EIrreplaceability,
based on the concept of test irreplaceability. EIrreplaceability is
the enhanced version of Irreplaceability.
Table 3
All possible branches of the function func in Fig. 2.

If-statements 1 2 3

Outcomes True False True False True F
Branches bT

1 bF
1 bT

2 bF
2 bT

3 b

Table 4
Test cases for function func.

Test cases (x, y, z) Cost bT
1 bF

1 bT
2 bF

2

t1 (2, 2, �1) <1 �
t2 (10, 20, 30) 300 � �
t3 (10, 15, 8) 100 � �
t4 (�5, 5, 5) 100 � �
t5 (�5, 0, 2) 100 � �
t6 (10, 8, 20) 300 � �

Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
3.3.1. Reduction using the existing metrics called Coverage and Ratio
The well-known traditional algorithms reviewed in Sections

2.1.1–2.1.3 repetitively choose the ‘‘best’’ test cases to obtain
the near-optimal solution. For example, the Greedy algorithm
repetitively includes the test case that covers the maximum
number of uncovered test requirements in the representative
set RS. The Greedy strategy of the GRE algorithm and the HGS
algorithm are also variations of the Greedy algorithm [13]. In fact,
their common metric used to evaluate the test case can be
defined as

CoverageðtÞ ¼ jRt j; ð1Þ

where Rt represents the set of uncovered test requirements satisfied
by the test case t.

Similarly, the HGS algorithm also identifies the test case that
exists in the unmarked subsets Sis and satisfies the most uncovered
test cases. As mentioned in Sections 2.1.1–2.1.3, the goals of
Greedy, GRE, and HGS are to determine a near-optimal representa-
tive set that can achieve high coverage. However, compared to the
size of a test suite, the execution time of a test suite may be a more
important consideration for the software developer to judge the
efficiency of software testing. Thus, the coverage increase per unit
of cost consumption may be an intuitive metric to evaluate the test
case. Ma et al. [19] and Smith and Kapfhammer [20] evaluated the
test cases using

RatioðtÞ ¼ CoverageðtÞ
CostðtÞ ; ð2Þ

where Cost(t) represents the execution cost of the test case t; this
paper calls this metric Ratio. A higher value of Ratio(t) implies that
the test case is expected to be more cost-effective; in contrast, a
lower value of Ratio(t) may indicate that the test is less desirable.
4 5 6

alse True False True False True False
F
3 bT

4 bF
4 bT

5 bF
5 bT

6 bF
6

bT
3 bF

3 bT
4 bF

4 bT
5 bF

5 bT
6 bF

6

� � � �
� � �

� � �
� � �

� � �

s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 7
The Greedy algorithm repeatedly includes the test case with the
maximum Coverage(t) until all test requirements are satisfied.
Instead of Coverage(t), Smith and Kapfhammer [20] incorporated
the Ratio metric into the Greedy algorithm, hereafter called
GreedyRatio, which repeatedly includes the test case with the max-
imum Ratio(t) until all of the test requirements are satisfied. The
time complexity of GreedyRatio is O(m � n �min(m, n)).
Table 5
Example 1 – an example including the test requirements, the test cases, and the
associated execution costs.

Test suite T1 Requirement set R1

No. Cost r1 r2 r3

t1 6 � �
t2 2 �
t3 1 �
t4 3 �

Table 6
Reduction steps when applying Greedy to Example 1.

Initial T1 = {t1, t2, t3, t4}, R1 = {r1, r2, r3}, RS1 = {}

Test cases Cost r
t1 6 �
t2 2
t3 1
t4 3 �

Step 1 T1 = {t2, t3, t4}, R1 = {r3}, RS1 = {t1}

Test cases Cost –
t1 6 –
t2 2 –
t3 1 –
t4 3 –

Step 2 T1 = {t3, t4}, R1 = {}, RS1 = {t1, t2}, Cost of RS1 = 8

Test cases Cost –
t1 6 –
t2 2 –
t3 1 –
t4 3 –

Table 7
Reduction steps when applying GreedyRatio to Example 1.

Initial T1 = {t1, t2, t3, t4}, R1 = {r1, r2, r3}, RS2 = {}

Test cases Cost
t1 6
t2 2
t3 1
t4 3

Step 1 T1 = {t1, t2, t4}, R1 = {r1, r3}, RS2 = {t3}

Test cases Cost
t1 6
t2 2
t3 1
t4 3

Step 2 T1 = {t1, t4}, R1 = {r1}, RS2 = {t2, t3}

Test cases Cost
t1 6
t2 2
t3 1
t4 3

Step 3 T1 = {t1, t4}, R1 = {}, RS2 = {t2, t3, t4}, Cost of RS2 = 6

Test cases Cost
t1 6
t2 2
t3 1
t4 3

Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
The GreedyRatio and Greedy algorithms are compared via Exam-
ple 1 (i.e., the test suite in Table 5 that satisfies three requirements
with four tests that have varying cost). Table 6 demonstrates the
detailed steps of applying Greedy to reduce the test suite in the
example. This table shows the set of test requirements R, the set
of test cases T, and the associated execution costs. In addition,
the changes to R and the representative set RS1 are shown step
by step. Similarly, Table 7 demonstrates the steps of applying
GreedyRatio to the same example. We find that Greedy reduces
the test suite to the representative set RS1 = {t1, t2} with cost 8. If
the adopted test suite reduction algorithm is replaced by
GreedyRatio, we can obtain the representative set RS2 = {t2, t3, t4}
with cost 6. Although |RS2| > |RS1|, the total execution cost associ-
ated with running RS2 is lower than that associated with running
RS1. Thus, GreedyRatio outperforms Greedy from the standpoint of
execution cost in this example, thus indicating that it may be
1 r2 r3 Coverage(t)
� 2

� 1
� 1

1

– r3 Coverage(t)
– –
– � 1
– 0
– 0

– – Coverage(t)
– – –
– – –
– – 0
– – 0

r1 r2 r3 Ratio(t)
� � 0.33

� 0.50
� 1.00

� 0.33

r1 – r3 Ratio(t)
� – 0.17

– � 0.50
– –

� – 0.33

r1 – – Ratio(t)
� – – 0.17

– – –
– – –

� – – 0.33

– – – Ratio(t)
– – – 0.17
– – – –
– – – –
– – – –

s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


8 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
suitable for the Greedy algorithm to replace the Coverage metric by
Ratio to further decrease the execution cost.

Yet, in preliminary studies, we found some circumstances in
which GreedyRatio did not produce the best reduced test suite. As
an illustrative example, let us consider Example 2 shown in Table 8.
Tables 9 and 10 demonstrate the steps that Greedy and GreedyRatio

would take to reduce the test suite of Example 2, respectively.
Contrary to Example 1, RS4 = {t1, t2, t3} with cost 14 (reduced by
Table 8
Example 2– An example including the test requirements, the test cases, and the
associated execution costs.

Test suite T2 Requirement set R2

No. Cost r1 r2 r3 r4 r5 r6

t1 4 � � �
t2 7 � � � �
t3 3 � �
t4 4 � �

Table 9
Reduction steps when applying Greedy to Example 2.

Initial T2 = {t1, t2, t3, t4}, R2 = {r1, r2, r3, r4, r5, r6}, RS3 = {}

Test cases Cost r1 r2

t1 4 � �
t2 7 �
t3 3 �
t4 4

Step 1 T2 = {t1, t3, t4}, R2 = {r1, r6}, RS3 = {t2}

Test cases Cost r1 –
t1 4 � –
t2 7 –
t3 3 � –
t4 4 –

Step 2 T2 = {t1, t4}, R2 = {}, RS3 = {t2, t3}, Cost of RS3 = 10

Test cases Cost – –
t1 4 – –
t2 7 – –
t3 3 – –
t4 4 – –

Table 10
Reduction steps when applying GreedyRatio to Example 2.

Initial T2 = {t1, t2, t3, t4}, R2 = {r1, r2, r3, r4, r5, r6}, RS4 = {}

Test cases Cost r1 r2

t1 4 � �
t2 7 �
t3 3 �
t4 4

Step 1 T2 = {t2, t3, t4}, R2 = {r4, r5, r6}, RS4 = {t1}

Test cases Cost – –
t1 4 – –
t2 7 – –
t3 3 – –
t4 4 – –

Step 2 T2 = {t2, t4}, R2 = {r4, r5}, RS4 = {t1, t3}

Test cases Cost – –
t1 4 – –
t2 7 – –
t3 3 – –
t4 4 – –

Step 3 T2 = {t4}, R2 = {}, RS4 = {t1, t2, t3}, Cost of RS4 = 14

Test cases Cost – –
t1 4 – –
t2 7 – –
t3 3 – –
t4 4 – –

Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
GreedyRatio) takes more cost than RS3 = {t2, t3} with cost 10
(reduced by Greedy). Therefore, the Ratio metric does not always
lead to the test suite with the lowest execution time.

Considering Example 2, the representative set {t2, t3}, with cost
10, is enough to satisfy all of the test requirements. In other words,
the cost of a representative set will not be the lowest if test cases
other than t2 and t3 are chosen during the test suite reduction pro-
cess. Table 10 indicates that GreedyRatio identified t1 as the best
candidate at Step 1 because it provides the maximum Ratio(t).
Thus, t1 was included in the representative set, which means that
GreedyRatio will not create the representative set with the lowest
execution cost in this case. Actually, the test requirements satisfied
by t1 (i.e., {r1, r2, r3}) are also satisfied by other test cases. For exam-
ple, t2 satisfies {r2, r3} whereas t3 satisfies {r1}. If {t1} is replaced by
{t2, t3}, although the execution cost at the early step of reduction
increases, two extra test requirements, r4 and r5, can also be satis-
fied. For examples like this one, GreedyRatio cannot generate the
representative set with the lowest cost because the ratio metric
did not take into account the aforementioned trade-off.
r3 r4 r5 r6 Coverage(t)
� 3
� � � 4

� 2
� � 2

– – – r6 Coverage(t)
– – – 1
– – – –
– – – � 2
– – – � 1

– – – – Coverage(t)
– – – – 0
– – – – –
– – – – –
– – – – 0

r3 r4 r5 r6 Ratio(t)
� 0.75
� � � 0.57

� 0.67
� � 0.50

– r4 r5 r6 Ratio(t)
– –
– � � 0.29
– � 0.33
– � 0.25

– r4 r5 – Ratio(t)
– – –
– � � – 0.29
– – –
– – 0

– – – – Ratio(t)
– – – – –
– – – – –
– – – – –
– – – – 0

s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19

algorithm EvaluateIrreplaceability
input  t: a test case 
  CT: the set of considered test cases 
  UR: the set of uncovered requirements 
output the value of Irreplaceability(t), i.e., Eq. (5)
begin 
 if ( t ∉ CT) 

return ERROR;
irreplaceability = 0; 
for each (requirement r covered by t) 
{ 
 if (r ∈ UR) 

{ 
covNum = the number of test cases in CT covering r;  
irreplaceability += 1 / covNum; 

} 
} 
return irreplaceability / Cost(t); 

end 

Fig. 3. The pseudo code for evaluating the Irreplaceability of a test case.

C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 9
3.3.2. Reduction using the cost-aware metric called Irreplaceability
If the test requirement r that is satisfied by the test case t can

also be satisfied by many other test cases, there is a high probabil-
ity that r can still be satisfied even though t is not included in the
representative set. Thus, we posit that t has a higher replaceability
with respect to r in this case. According to our initial observations
from the reduction steps in Table 10, we surmise that:

1. A representative set may not have the lowest execution cost
if it includes test cases with high replaceability.

2. Because the Ratio metric only considers the code coverage
and execution cost of a test case, the test cases with high
replaceability frequently may be selected for inclusion in
the representative set.

In prior work, Jones and Harrold [27] pointed out that test suite
reduction algorithms may choose a test case according to its con-
tribution, or goodness, based on some characteristics of a program.
One measure of the contribution of a test case t to the test suite T
can be defined as

ContributionToSuiteðtÞ ¼
Xm

s¼1

Contributionðt; rsÞ; ð3Þ

where R = {r1, r2, . . . , rm} represents all of the test requirements, rs is
the s-th test requirement in R, and

Contributionðt; rsÞ

¼
0; if t cannot satisfy rs;

1
the number of test cases that satisfy rs

; if t satisfies rs:

(
ð4Þ

In fact, the number of test cases that satisfy the test require-
ment rs in Eq. (4) is positively related to the replaceability of t with
respect to rs. A higher value of replaceability indicates that more
test cases can be used to replace t while maintaining the original
test coverage. In contrast, a higher value of irreplaceability means
that it is not easy to find other test cases to replace t. Consequently,
we use Eq. (3) to evaluate the irreplaceability of test cases in the
test suite. Based on this concept, we combine the execution cost
of a test with Eq. (3) and evaluate the irreplaceability of test cases
by [9]

IrreplaceabilityðtÞ ¼
Pm

s¼1Contributionðt; rsÞ
CostðtÞ : ð5Þ

Fig. 3 shows the procedure used to calculate the value of Eq. (5).
The procedure accepts the following three input parameters:
(1) t – the test case to be evaluated; (2) CT – the set of available test
cases which include t; (3) UR – the set of test requirements which
are not yet satisfied. At the beginning, the procedure first checks
whether t belongs to the set CT or not (Lines 7–8). If not, it will
return an error message and interrupt the procedure’s execution.
If the condition holds, the for-each loop (Lines 10–17) will identify
all of the test requirements that can be satisfied by t but have not
yet been covered by the representative set. For each test require-
ment r, the procedure determines how many test cases which
are not in the representative set yet can satisfy r, and then
evaluates the irreplaceability of each test case on r (Lines 14–15).
Based on the irreplaceability of the test case with respect to each
test requirement, the irreplaceability of each test case to the test
suite can then be obtained.

In Section 3.3.1, we have shown how to incorporate Coverage(t)
and Ratio(t) into the Greedy algorithm to evaluate and choose the
test cases. Similarly, we can also incorporate Irreplaceability(t) into
the Greedy algorithm to evaluate test cases and repeatedly
choose the test with the maximum value until all of the test
requirements are satisfied. The Greedy algorithm integrated with
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
Irreplaceability(t) is called GreedyIrreplaceability in this paper. The
time complexity of GreedyIrreplaceability is O(m � n �min(m, n) � k).
Recall that k indicates the maximum number of requirements that
can be satisfied by a single test case. In comparison with the time
complexities of Greedy and GreedyRatio, the worst-case time
complexity of GreedyIrreplaceability is not much worse. Table 11
shows the steps associated with applying GreedyIrreplaceability to
Example 2. According to this table, it is evident that RS5={t2, t3}
with cost 10 (reduced by GreedyIrreplaceability) takes less cost than
RS4 with cost 14 (reduced by GreedyRatio).

3.3.3. Reduction using the enhanced cost-aware metric called
EIrreplaceability

Although the GreedyIrreplaceability algorithm can yield the repre-
sentative set with the lowest cost in Example 2, there is still room
for improvement. As an illustrative example, let us consider Exam-
ple 3 shown in Table 12, in which eight requirements are satisfied
by five test cases. In this example, the representative set with the
lowest cost is {t2, t3, t4} with cost 28. According to the steps of
applying GreedyIrreplaceability to Example 3 shown in Table 13,
GreedyIrreplaceability creates the representative set RS6={t1, t2, t3, t4}
with cost 32. Compared to the representative set with the lowest
cost, {t2, t3, t4}, t1 is also included. In fact, the test requirement sat-
isfied by t1 can also be satisfied by other test cases. On the other
hand, it should be noted that r7 and r8 only can be satisfied by t3

and t4, respectively. Thus, here we call t3 and t4 the essential test
cases according to the concept of the GRE algorithm. That is, it is
impossible to exclude t3 and t4 if the representative set can satisfy
all test requirements. In addition to r7 and r8, many requirements,
such as r2, r3, r4, r5, and r6, will also be satisfied early in the reduc-
tion process if t3 and t4 are chosen at the beginning. Consequently,
many of the non-essential test cases may become redundant so
that they will not be placed into the representative set, thus poten-
tially supporting a further decrease in total execution cost. As
mentioned in Section 2.2, the essential test cases should be
selected as early as is possible during the test suite reduction pro-
cess. Otherwise, the representative set may, with high probability,
include redundant test cases. Yet, to the best of our knowledge, all
test suite reduction algorithms that consider the execution cost of
test cases do not take into account the influence of the essential
test cases.

Now we will enhance the procedure in Fig. 3 by considering the
essential test cases. In Fig. 3, if the value of covNum (Line 14) equals
1, it indicates that a specific test requirement r is satisfied by one
test case t only (i.e., t is an essential test case). Because the essential
test cases should be added to the representative set as early as is
possible, we must assign t a large irreplaceability value to ensure
that the algorithm will select t early. Thus, the enhanced
cost-aware metric used to evaluate the test case is defined as
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


Table 11
Reduction steps when applying GreedyIrreplaceability to Example 2.

Initial T2 = {t1, t2, t3, t4}, R2 = {r1, r2, r3, r4, r5, r6}, RS5 = {}

Test cases Cost r1 r2 r3 r4 r5 r6 Irreplaceability(t)
t1 4 � � � 0.33
t2 7 � � � � 0.40
t3 3 � � 0.33
t4 4 � � 0.21

Step 1 T2 = {t1, t3, t4}, R2 = {r1, r6}, RS5 = {t2}

Test cases Cost r1 – – – – r6 Irreplaceability(t)
t1 4 � – – – – 0.13
t2 7 – – – – –
t3 3 � – – – – � 0.33
t4 4 – – – – � 0.13

Step 2 T2 = {t1, t4}, R2 = {}, RS5 = {t2, t3}, Cost of RS5 = 10

Test cases Cost – – – – – – Irreplaceability(t)
t1 4 – – – – – – 0.00
t2 7 – – – – – – –
t3 3 – – – – – – –
t4 4 – – – – – – 0.00

Table 12
Example 3– An example including the test requirements, the test cases, and the
associated execution costs.

Test suite T3 Requirement set R3

No. Cost r1 r2 r3 r4 r5 r6 r7 r8

10 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
EIrreplaceabilityðtÞ

¼
1; 9s; 16 s6m; rs can be satisfied by t only;Pm

s¼1
Contributionðt;rsÞ

CostðtÞ ; otherwise:

8<
:

ð6Þ

t1 4 � � �
t2 3 � �
t3 10 � � � �
t4 15 � � �
t5 10 �
To evaluate Eq. (6), we propose the new procedure EvaluateEn-
hancedIrreplaceability in Fig. 4 which is built upon the procedure
EvaluateIrreplaceability in Fig. 3. Compared to EvaluateIrreplaceability,
Table 13
Reduction steps when applying GreedyIrreplaceability to Example 3.

Initial T3 = {t1, t2, t3, t4, t5}, R3 = {r1, r2, r3, r4, r5, r6 r7, r8}, RS6 = {}

Test cases Cost r1 r2 r3 r4 r5 r6 r7 r8 Irreplaceability(t)
t1 4 � � � 0.38
t2 3 � � 0.33
t3 10 � � � � 0.30
t4 15 � � � 0.13
t5 10 � 0.05

Step 1 T3 = {t2, t3, t4, t5}, R3 = {r3, r4, r6 r7, r8}, RS6 = {t1}

Test cases Cost – – r3 r4 – r6 r7 r8 Irreplaceability (t)
t1 4 – – – –
t2 3 – – – � 0.17
t3 10 – – � � – � 0.25
t4 15 – – – � � 0.10
t5 10 – – � – 0.05

Step 2 T3 = {t2, t4, t5}, R3 = {r6, r8}, RS6 = {t1, t3}

Test cases Cost – – – – – r6 – r8 Irreplaceability (t)
t1 4 – – – – – – –
t2 3 – – – – – � – 0.17
t3 10 – – – – – – –
t4 15 – – – – – � – � 0.10
t5 10 – – – – – – 0

Step 3 T3 = {t4, t5}, R3 = {r8}, RS6 = {t1, t2, t3}

Test cases Cost – – – – – – – r8 Irreplaceability (t)
t1 4 – – – – – – – –
t2 3 – – – – – – – –
t3 10 – – – – – – – –
t4 15 – – – – – – – � 0.07
t5 10 – – – – – – – 0

Step 4 T3 = {t5}, R3 = {}, RS6 = {t1, t2, t3, t4}, Cost of RS6 = 32

Test cases Cost – – – – – – – – Irreplaceability (t)
t1 4 – – – – – – – – –
t2 3 – – – – – – – – –
t3 10 – – – – – – – – –
t4 15 – – – – – – – – –
t5 10 – – – – – – – – 0

Please cite this article in press as: C.-T. Lin et al., Test suite reduction methods that decrease regression testing costs by identifying irreplaceable tests,
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013

http://dx.doi.org/10.1016/j.infsof.2014.04.013


1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24

algorithm EvaluateEnhancedIrreplaceability
input  t: a test case 
  CT: the set of considered test cases 
  UR: the set of uncovered requirements 
output the value of EIrreplaceability(t), i.e., Eq. (6)
begin 
 if ( t ∉ CT) 

return ERROR;
eirreplaceability = 0; 
for each (requirement r covered by t) 
{ 
 if ( r ∈ UR) 
 { 

covNum = the number of test cases in CT covering r; 
if (covNum == 1)  // t is an essential test case 
{ 

eirreplaceability = ; 

break; 
} 
eirreplaceability += 1 / covNum; 

} 
} 
return eirreplaceability / Cost(t); 

end 

∞

Fig. 4. The pseudo code for evaluating the EIrreplaceability of a test case.

C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 11
the new procedure EvaluateEnhancedIrreplaceability will check
whether the number of test cases satisfying r equals 1. If the value
equals 1, we let EIrreplaceability(t)=1 and exit the for-each loop,
thus indicating that t is an essential test case that cannot be
replaced by any other test cases. Incorporating EIrreplaceability(t)
into the traditional Greedy algorithm, we obtain GreedyEIrreplaceability.
The time complexity of GreedyEIrreplaceability is O(m � n �min(m, n) � k).
Please notice that it has the same time complexity as
GreedyIrreplaceability and is not much more costly than Greedy and
GreedyRatio in the worst case. Table 14 demonstrates the reduction
steps of applying GreedyEIrreplaceability to Example 3. As seen in the
table, it creates the representative set RS7 = {t2, t3, t4} which, for this
example, has the lowest execution cost of 28.
Table 14
Reduction steps when applying GreedyEIrreplaceability to Example 3.

Initial T3 = {t1, t2, t3, t4, t5}, R3 = {r1, r2, r3, r4, r5, r6 r7, r8}, RS7 = {}

Test cases Cost r1 r2 r3

t1 4 � �
t2 3 �
t3 10 � �
t4 15
t5 10 �

Step 1 T3 = {t1, t2, t4, t5}, R3 = {r1, r5, r6, r8}, RS7 = {t3}

Test cases Cost r1 – –
t1 4 � – –
t2 3 � – –
t3 10 – –
t4 15 – –
t5 10 – –

Step 2 T3 = {t1, t2, t5}, R3 = {r1}, RS7 = {t3, t4}

Test cases Cost r1 – –
t1 4 � – –
t2 3 � – –
t3 10 – –
t4 15 – –
t5 10 – –

Step 3 T3 = {t1, t5}, R3 = {}, RS7 = {t2, t3, t4}, Cost of RS7 = 28

Test cases Cost – – –
t1 4 – – –
t2 3 – – –
t3 10 – – –
t4 15 – – –
t5 10 – – –

Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
4. Cost-aware test suite reduction algorithms

In this section, we will develop the cost-aware test suite reduc-
tion algorithms by incorporating the cost-aware metrics (i.e., Ratio,
Irreplaceability, and EIrreplaceability) into the traditional test suite
reduction algorithms.
4.1. Incorporating the cost-aware metrics into the Greedy algorithm

Inserting the cost-aware metrics into the Greedy algorithm is
intuitive; we have applied GreedyRatio, GreedyIrreplaceability, and
GreedyEIrreplaceability to Examples 2 and 3 in Section 3. Fig. 5 shows
the pseudo code of GreedyEIrreplaceability as an illustrative example.
Compared to the Greedy algorithm, we modify Line 10 of Fig. 5
to consider the influence of execution time on test suite reduction.
The pseudo code of GreedyEIrreplaceability is described as follows:

Step 1. Determine the test case t with the maximum value of
EIrreplaceability(t).
Step 2. Move the test case t from T to RS.
Step 3. Remove from R the requirements that are satisfied by t.
Step 4. Repeat Steps 1–3 until all of the requirements are
satisfied.

It is important to observe that, if the test cases are sorted
according to the value of irreplaceability at the beginning of the
while-loop (Lines 8–14), the time needed to execute Step 1 will sig-
nificantly decrease, and the time required to finish the algorithm
will decrease as well. Similarly, if we replace EIrreplaceability(t)
by Ratio(t) and Irreplaceability(t), we can obtain the GreedyRatio

and GreedyIrreplaceability algorithms, respectively. As shown in Sec-
tion 3.3, the time complexities of GreedyRatio, GreedyIrreplaceability

and GreedyEIrreplaceability are O(m � n �min(m, n)), O(m � n �min
(m, n) � k) and O(m � n �min(m, n) � k), respectively.
r4 r5 r6 r7 r8 EIrreplaceability(t)
� 0.38

� 0.33
� � 1

� � � 1
0.05

– r5 r6 – r8 EIrreplaceability(t)
– � – 0.25
– � – 0.33
– – –
– � � – � 1
– – 0

– – – – – EIrreplaceability(t)
– – – – – 0.13
– – – – – 0.17
– – – – – –
– – – – – –
– – – – – 0

– – – – – EIrreplaceability(t)
– – – – – 0
– – – – – –
– – – – – –
– – – – – –
– – – – – 0

s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16

algorithm GreedyEIrreplaceability

input  T: the set of test cases 
  R: the set of requirements 

S: the relation between T and R, S={(t, r)| t satisfies r, t∈T, and r∈R} 
output RS: a representative set of T
begin 

RS = { }; 
 while (R is not empty) 
 { 

t = the test case in T that has the max. return value of EvaluateEnhancedIrreplaceability(t,T,R); 

RS = RS  {t}; 

T = T − {t}; 
R = R − the set including all of the requirements covered by t;

 }
 return RS; 
end 

Fig. 5. The GreedyEIrreplaceability algorithm.

12 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
4.2. Incorporating the cost-aware metrics into the GRE algorithm

In this section, we propose the cost-aware GRE algorithms (i.e.,
GRERatio, GREIrreplaceability, and GREEIrreplaceability) by incorporating
the cost-aware metrics into the original GRE algorithm. Here we
consider GREEIrreplaceability as an illustration. The pseudo code of
GREEIrreplaceability is provided in Fig. 6, and the detailed algorithm
is described as follows:

Step 1. Determine all essential test cases, and move them from T
to RS.
Step 2. Remove the requirements that are satisfied by the essen-
tial test cases from R.
Step 3. Remove all of the 1-to-1 redundant test cases from R.
Step 4. Calculate the value of EIrreplaceability(t) for all test cases
t remaining in T and sort the test cases in descending order.
Step 5. Determine all essential test cases and move them from T
to the set list. Please notice that, although the essential test
cases are removed in Step 1, removing the one-to-one redun-
dant test cases in Step 5 may yield some new essential test
cases.
Step 6. Move the test case with the maximum value of irreplace-
ability from T to list (i.e., the Greedy strategy).
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35

algorithm GREEIrreplaceability

input  T: the set of test cases 
  R: the set of requirements 

  S: the relation between T and R, S={(t, r)| t satisfies r, t∈T, and r∈R} 
output RS: a representative set of T 
begin 
 // essential strategy 

RS = the set including all of the essential test cases in T; 
R = R − the set including all of the requirements covered by RS; 
T = T − RS; 

while (R is not empty)  
 { 

list = { }; 

   // 1-to-1 redundant strategy 
T = T – the set including all of the 1-to-1 redundant test cases in T; 

   sort the test cases in T in descending order according to  
the return value of EvaluateEnhancedIrreplaceability(t,T,R);

   // essential strategy 
if (T contains essential test cases) 

list = the set including all of the essential test cases in T; 

   // Greedy strategy 
else      

list = the set including the first test case in T;

RS = RS list; 

T = T − list; 
R = R − the set including all of the requirements covered by list; 

 } 
return RS;

end 

Fig. 6. The GREEIrreplaceability algorithm.

Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
Step 7. Check the set R, deleting the requirements that are satisfied
by the test cases in list and moving all test cases from list to RS.
Step 8. Repeat Steps 3–7 until all requirements are satisfied (i.e.,
until R becomes empty).

In Fig. 6, the highlighted part of GREEIrreplaceability (i.e., Line 19) is
different from the GRE algorithm. In the GRE algorithm, the test
cases will be sorted before conducting the 1-to-1 redundant strat-
egy. However, because the 1-to-1 redundant strategy will remove
some test cases, the irreplaceability of the remaining test cases
may change. If the sorting operation takes place before the 1-to-
1 redundant strategy, the sorting operation will be repeated again.
As such, the first sorting operation is unnecessary. Additionally, the
sorting operation does not impact the 1-to-1 redundant strategy.
Thus, we can exchange the order of the sorting and the 1-to-1
redundant strategy in GREEIrreplaceability. The time complexity of
GREEIrreplaceability is O(min(m, n) � (m + n2 � k) � k). Similar to the
GreedyEIrreplaceability algorithm, GRERatio and GREIrreplaceability can be
easily obtained by substituting Ratio(t) and Irreplaceability(t) for
EIrreplaceability(t), respectively. The time complexities of GRERatio

and GREIrreplaceability are O(min(m, n) � (m + n2 � k)) and O(min(m,
n) � (m + n2 � k) � k), respectively.
4.3. Incorporating the cost-aware metrics into the HGS algorithm

As mentioned in Section 2, the HGS algorithm can be divided
into the main program and the subprogram. The main program
iteratively chooses a set of candidate test cases and calls the sub-
program to find and return the best one. Here, we integrate the
cost-aware test-case metrics with the HGS algorithm and propose
the cost-aware HGS algorithms (i.e., the HGSRatio, HGSIrreplaceability,
and HGSEIrreplaceability algorithms). Let us consider HGSEIrreplaceability

as an illustration. Compared with the pseudo code of HGS that
can be found in [6], the main program of the HGSEIrreplaceability algo-
rithm shown in Fig. 7a is identical, but the highlighted part of the
subprogram shown in Fig. 7b is modified. The HGSEIrreplaceability

algorithm is described as follows:
Main program:

Step 1. Let the representative set RS be the union of all Sis with a
single element (i.e., cardinality = 1), and label all Sis containing
the elements in RS as ‘‘marked’’.
Step 2. Include the elements of all unmarked Sis that have two
elements (i.e., cardinality = 2) into the temporary set list, call
the subprogram selectTest to choose a test case, add the test case
into RS, and label all subsets containing the test case as
‘‘marked’’.
Step 3. Repeat Step 2 for the unmarked Sis with cardinality = 3,
4, 5, . . . , until the unmarked Sis of maximum cardinality are
examined.
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


1
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32

algorithm HGSEIrreplaceability

input Si: the set of test cases that covers the i-th requirement, 1 ≤ i ≤ m
output RS: a representative set 
declare  card(Si): returns the number of test cases in Si;
begin 

maxCard = the maximum cardinality of Sis; 
RS = all t ∈Si where card(Si) == 1; 
mark all Si containing elements in RS; 
curCard = 2;
while (curCard <= maxCard) 
{

while ( there are unmarked Si such that card(Si) == curCard )
{ 

list = the set including all test cases in unmarked Sis where card(Si curCard; 
  nextTest  = selectTest(curCard, list); 

RS = RS {nextTest}; 

mayReduce = false; 
// mark all Si containing elements in nextTest ;
for each (Si containing nextTest) 
{

mark Si;
if (card(Si) == maxCard) 

mayReduce = true; 
} 
// update the max cardinality 
if (mayReduce == true) 

maxCard = the maximum cardinality of unmarked Sis; 
} 

 curCard = curCard + 1;
} 
return RS; 

end

Fig. 7a. The main program of the HGSEIrreplaceability algorithm.

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17

function selectTest(size, list) 
begin 
 count[ ]: an array 
 for each (ti in list) 

{ 
CT = the union of unmarked Sjs; 
UR = the corresponding requirements of unmarked Sjs;
count[i] = the return value of EvaluateEnhancedIrreplaceability(ti,CT,UR); 

 } 
 testList = the set including the test cases in list for which count[i] is the maximum; 

if (card(testList)==1)
return the test case in testList; 

else if (size == maxCard) 
return any test case in testList; 

else 
return selectTest(size+1, testList); 

end 

Fig. 7b. The subprogram of the HGSEIrreplaceability algorithm.

C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 13
Subprogram selectTest:

Step 1. Calculate the value of EIrreplaceability(t) for all test cases
t in list.
Step 2. Identify the test case possessing the maximum
EIrreplaceability(t).
Step 3.

Condition 1: If there is only one test case t possessing the
maximum value of EIrreplaceability(t), then return t.
Condition 2: If size is equal to maxCard, randomly return one
of the test cases possessing the maximum EIrreplaceability(t)
value.
Condition 3: Recursively call selectTest(size + 1, testList) until
there exists only one test case possessing the maximum EIr-
replaceability(t) value.

Compared to the subprogram of the HGS algorithm, the subpro-
gram of HGSEIrreplaceability defines the value of count[i] according to
the return value of the function EvaluateEnhancedIrreplaceability. The
time complexity of HGSEIrreplaceability is O(m � (m + n) �maxCard � k).
Again, we can obtain the HGSRatio and HGSEIrreplaceability algorithms by
substituting Ratio(t) and Irreplaceability(t) for EIrreplaceability(t),
respectively. The time complexities of HGSRatio and HGSIrreplaceability

are O(m � (m + n) �maxCard) and O(m � (m + n) �maxCard � k),
respectively.
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
5. Experimental analyses

In this section, we will describe the details of the subject pro-
grams and the algorithms compared in the empirical studies,
explain the steps of the experiments, and then present and discuss
the empirical results.
5.1. Experimental setup

5.1.1. Algorithms and subject programs for comparison
In the experiments, we compare the capabilities of three met-

rics (i.e., Coverage(t), Ratio(t), and EIrreplaceability(t)) when they
are incorporated into the Greedy algorithm, the GRE algorithm,
and the HGS algorithm, respectively. Because EIrreplaceability(t)
is the enhanced version of Irreplaceability(t), it will strictly domi-
nate Irreplaceability(t). Thus, Irreplaceability(t) is not included in
the comparisons. Table 15 shows the nine algorithms to be com-
pared in the experiment. Please notice that we exclusively focused
on the SIR programs because: (1) the SIR subject programs (i.e., the
suite of the seven Siemens programs [7,42] and the Space program
[43]) are frequently chosen benchmarks for evaluating test suite
reduction methods; and (2) the SIR subject programs clearly exhi-
bit variability in the cost of the test cases, as demonstrated in Sec-
tion 3.1. The detailed descriptions of the SIR subject programs and
test suites are given in Table 16.

Before the experiments, we individually recorded the average of
the execution times of each test case on both Linux (Ubuntu 10.10)
and Windows (Windows 7 SP1) machines with Intel Core Duo pro-
cessors and 2 GB of memory. The consumed execution times are
measured in terms of microseconds. Besides, we also analyzed
the test requirements that are satisfied by each test case. In addi-
tion to R, T, and RS, we define the following terms in order to enable
discussions of the experiments:

� A: the pool of all test cases designed for the subject program,
with |A|P1.
� loc: the number of lines of code in the subject program.
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


Table 15
Algorithms that are compared in the empirical studies.

Algorithm Algorithm description Time Complexity Classification

Greedy The original Greedy algorithm O(m � n �min(m, n)) Greedy-based algorithms
GreedyRatio Incorporating Ratio into Greedy O(m � n �min(m, n))
GreedyEIrreplaceability Incorporating EIrreplaceability into Greedy O(m � n �min(m, n) � k)
GRE The original GRE algorithm O(min(m, n) � (m + n2 � k)) GRE-based algorithms
GRERatio Incorporating Ratio into GRE O(min(m, n) � (m + n2 � k))
GREEIrreplaceability Incorporating EIrreplaceability into GRE O(min(m, n) � (m + n2 � k) � k)
HGS The original HGS algorithm O(m � (m + n) �maxCard) HGS-based algorithms
HGSRatio Incorporating Ratio into HGS O(m � (m + n) �maxCard)
HGSEIrreplaceability Incorporating EIrreplaceability into HGS O(m � (m + n) �maxCard � k)

Table 16
Descriptions of the SIR subject programs and test suites.

Programs |A|: size of
test pool

|R|: num. of test
requirements

Description

printtokens 4130 140 A lexical analyzer
printtokens2 4115 138 A lexical analyzer
replace 5542 126 A program used for

pattern replacement
schedule 2650 46 A program used for

priority scheduler
schedule2 2710 72 A program used for

priority scheduler
tcas 1608 16 A program used for

altitude separation
totinfo 1052 44 A program used for

information measure
space 13,585 1067 An array definition

language interpreter

Randomly pick v test cases  

(1≤ v ≤ 0.5 loc) from the test pool, 

and include them in T. 

Can T satisfy all 
of the test 

requirements? 

Include the test case t in T. 

Randomly choose one more test case 
t from the test pool.  

Can t satisfy any 
of the unsatisfied 

requirements?

No

Return T.

NoYes 

Start  

Yes 

Fig. 8. The process of generating the test suite for each subject program.

Table 17
The averages of size and execution cost of the generated test suites for all subject
programs.

Subject programs Suite size Execution cost of test suite (ls)

printtokens 97.89 505,426
printtokens2 94.47 380,847
replace 133.46 848,038
schedule 78.11 414,835
schedule2 70.82 438,657
tcas 41.37 162,646
totinfo 8.82 419,690
space 2318.30 1.49 � 108

14 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
5.1.2. Experimental steps
After collecting the execution times of the tests, we followed an

empirical setup similar to the one described in [7,45]. The detailed
steps are shown in Fig. 8 and described as follows:

1. Randomly generate an integer v, 1 6 v 6 0.5 � loc.
2. Randomly pick v test cases from the test pool for each sub-

ject program, and include those v test cases in T.
3. Check whether the test cases in T can satisfy all of the test

requirements. If not, randomly choose one more test case
that can satisfy one or more unsatisfied test requirements,
and include the test case into T.

4. Repeat Step 3 until all test requirements are satisfied.

Following the aforementioned steps, we generate 1000 test
suites for each program. We perform test suite reduction for each
of the 1000 generated test suites, collect the related information,
and take the average. Table 17 shows the averages of size and exe-
cution cost of the 1000 generated test suites for each subject
program.
5.2. Research questions

As mentioned at the end of Section 2.4, because the focal points
of the previous empirical studies related to test suite reduction
problem are diverse, it is not advisable to address all of these past
considerations in this paper. Thus, with a focus on the metrics
adopted in [3], our empirical studies are designed to answer the
following three research questions.

Research Question 1 (RQ1) – Can the algorithms integrated with
the Ratio metric and the EIrreplaceability metric provide better cost
reduction capability than the traditional algorithms (i.e., Greedy,
GRE, and HGS)?
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
The size of the representative set is a direct and valid measure
for comparing the effectiveness of the test suite reduction algo-
rithms. However, instead of the size of the representative set, here
our focus is the cost of executing the test cases in the representa-
tive set. The execution cost of test suite T is defined as

SuiteCostðTÞ ¼
X
t2T

ExecutionTimeðtÞ; ð7Þ

where ExecutionTime(t) represents the time required to execute the
test case t.

Additionally, we also use the percentage of suite cost reduction
(SCR) [9], as defined in Eq. (8), to evaluate the reduction capability.

SCRðT;RSÞ ¼ SuiteCostðTÞ � SuiteCostðRSÞ
SuiteCostðTÞ � 100%; ð8Þ

where SuiteCost(T) represents the cost required to execute the origi-
nal test suite T, and SuiteCost(RS) represents the cost associated with
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 15
running the representative set RS. A high SCR value indicates that
the cost reduction capability is satisfactory.

Moreover, we perform statistical tests on the SCR values to exam-
ine whether the difference in the capabilities between two specific
reduction algorithms is statistically significant and whether the
experimental results are repeatable. Because the sample data in
the experiments are not approximately normally distributed and
are highly skewed left, nonparametric tests should be more appro-
priate for our empirical studies in comparison to parametric ones.
Also, according to the discussions in [46,47], the Mann–Whitney
U-test, a well-known nonparametric test, is suggested for comparing
two data samples when analyzing data in the domain of software
engineering. The ‘‘null hypothesis’’ is that there is no difference in
the capabilities between two specific reduction algorithms. In the
statistical tests, we consider a confidence level of 95% (i.e., the p-
value below 0.05). If the p-value is less than 0.05, the null hypothesis
is rejected (i.e., the difference in the reduction capability between
two algorithms is statistically significant).

Research Question 2 (RQ2) – Do the representative sets produced
by the algorithms integrated with different metrics have many test
cases in common?

As mentioned in Section 3, the traditional algorithms aim to
decrease the number of test cases in the representative set, while
the algorithms integrated with cost-aware test case metrics are
designed to decrease the time required to execute all of the test
cases in the representative set. Thus, it is important to analyze
whether the representative sets produced by them have many test
cases in common. According to Zhong et al.’s concept in [3], we
define the common rate of the representative sets produced by
the algorithms in the comparison as

CommonRateðRS1;RS2; . . . ;RSzÞ ¼
j
Tz

h¼1RShj
j
Sz

h¼1RShj
� 100%; ð9Þ

where z is the number of algorithms in the comparison, and RSh

denotes the representative set reduced by the h-th algorithm. A
higher value of common rate reveals that the representative sets
have more test cases in common. If two test suite reduction algo-
rithms often create representative sets that have a high percentage
of test cases in common, then their cost reduction capabilities may
be close to each other and they can be used interchangeably. In
other words, if a traditional algorithm and its cost-aware version
often create representative sets that have a high percentage of test
cases in common, the presented technique is unlikely to represent a
significant improvement over the traditional method.

Research Question 3 (RQ3) – Considering all of the nine algo-
rithms that are compared in the study, what is the ranking in terms
of the cost reduction capability?

We plan to answer this question via multiple comparisons in
the nine algorithms in terms of the average SCR across all subject
Table 18
Reduction capability for the three Greedy-based algorithms.

Program Suite

Original RSnative1

Cost# Cost# SCR (%)

printtokens 505425.70 48402.75 90.42
printtokens2 380846.80 23362.42 93.87
replace 848037.60 66697.85 92.14
schedule 414834.80 14701.83 96.46
schedule2 438657.40 33636.91 92.33
tcas 162646.30 21161.35 86.99
totinfo 419689.50 28868.62 93.12
space 1.49 � 108 6.55 � 106 95.59
Mean 1.90 � 107 848555.22 92.62

# Measured in microsecond (ls).

Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
programs. Based on the multiple comparisons, we will rank all of
the nine algorithms and determine whether the difference
between each pair of algorithms is statistically significant. Yet,
because the number of algorithms that are compared in this study
is considerable, we will not involve the common rates of represen-
tative sets in the multiple comparisons.

5.3. Experimental results and analyses

The analyses are divided into two parts. First, in Sections 5.3.1–
5.3.3, we respond to RQ1 and RQ2 by analyzing how the three tra-
ditional algorithms improve when the Coverage metric is replaced
by EIrreplaceability and Ratio, respectively. Second, we reply to
RQ3 by comparing the overall capabilities of all of the nine algo-
rithms in Section 5.3.4.

5.3.1. Discussion 1: comparing the Greedy-based algorithms
For the ease of the comparison, we let RSnative1, RSRatio1, and

RSEIrreplaceability1 denote the representative sets reduced from T via
the Greedy-based algorithms (i.e., Greedy, GreedyRatio, and
GreedyEIrreplaceability), respectively.

5.3.1.1. Replying to RQ1. Table 18 lists the execution costs and the
SCR values of the representative sets produced by the three
Greedy-based algorithms for each subject program. From the high
SCR values in this table, we can see that all of the three algorithms
significantly reduce the execution costs of the test suites, and
GreedyEIrreplaceability provides the best reduction capability for all
of the subject programs. Additionally, the reduction capabilities
in the order of largest to smallest are GreedyEIrreplaceability,
GreedyRatio, and Greedy for most of the subject programs, except
for printtokens and schedule. Considering printtokens and sche-
dule, even though the Ratio metric is designed under the consider-
ation of minimizing execution cost, the cost reduction capability of
GreedyRatio is second to that of Greedy. Overall, GreedyRatio still
outperforms Greedy according to the average execution cost and
SCR across all of the subject programs.

It should be noticed that, the execution cost of the original test
suite for each subject program is so high that the SCR values of the
three representative sets are close to each other. In fact, the differ-
ences in the execution costs of the representative sets are consid-
erable. Table 19 shows the improvement on the Greedy algorithm
when Coverage(t) is replaced by Ratio(t) and EIrreplaceability(t),
respectively. The table indicates that the improvements in the exe-
cution cost of the representative sets are significant, especially for
the large-scale program, space. It is clear that the EIrreplaceability
metric can improve the Greedy algorithm for all subject programs,
and the differences in the cost reduction capability between
GreedyEIrreplaceability and Greedy are all statistically significant. On
RSRatio1 RSEIrreplaceability1

Cost# SCR (%) Cost# SCR (%)

49434.84 90.22 37867.13 92.51
23294.41 93.88 21470.30 94.36
58051.27 93.15 53657.01 93.67
14859.85 96.42 13140.77 96.83
32523.82 92.59 30022.68 93.16
17156.95 89.45 16202.89 90.04
20382.22 95.14 19752.15 95.29

3.64 � 106 97.55 3.50 � 106 97.64
482514.17 93.55 461544.87 94.19

s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


Table 19
The Comparisons Regarding the Improvement on the Greedy Algorithm when Coverage(t) is replaced by Ratio(t) and EIrreplaceability(t), respectively.a

Program GreedyRatio versus Greedy GreedyEIrreplaceability versus Greedy

p-Valueb Improvement p-Valueb Improvement

Costc Percentaged (%) Coste Percentagef (%)

printtokens .746 �1032.09 �2.13 .000 10535.62 21.77
printtokens2 .892 68.01 0.29 .009 1892.12 8.10
replace .000 8646.58 12.96 .000 13040.84 19.55
schedule .514 �158.02 �1.07 .001 1561.06 10.62
schedule2 .094 1113.09 3.31 .000 3614.23 10.74
tcas .000 4004.40 18.92 .000 4958.46 23.43
totinfo .000 8486.40 29.40 .000 9116.47 31.58
space .000 2.91 � 106 44.37 .000 3. 05 � 106 46.57
Mean — 366041.05 13.26 — 387010.35 21.55

a The italic part indicates that the improvement is significantly different according to the Mann–Whitney U-test.
b Indicates the p-value of statistical test on the SCR values.
c Indicates SuiteCost(RSnative1)�SuiteCost(RSRatio1).
d Indicates (SuiteCost(RSnative1)�SuiteCost(RSRatio1))/SuiteCost(RSnative1).
e Indicates SuiteCost(RSnative1)�SuiteCost(RSEIrreplaceability1).
f Indicates (SuiteCost(RSnative1)�SuiteCost(RSEIrreplaceability1))/SuiteCost(RSnative1).

16 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
the other hand, the Ratio metric degrades the effectiveness of the
Greedy algorithm for two programs, printtokens and schedule.
Even though it can improve the Greedy algorithm for six out of
the eight subject programs, not all improvements are statistically
significant. On the whole, both the EIrreplaceability and Ratio met-
rics can enhance the capability of the Greedy algorithm, but the
EIrreplaceability metric outperforms the Ratio metric.

Although GreedyEIrreplaceability generally provides the best cost
reduction capability for all of the subject programs, Table 15 indi-
cates that GreedyEIrreplaceability shows less satisfactory time com-
plexity than Greedy and GreedyRatio. Actually, the costs taken to
perform regression testing include the time taken to produce the
representative set of test cases and the time taken to execute the
test cases. Thus, it is important to determine if the decrease in the
cost of executing the test cases achieved by GreedyEIrreplaceability

can compensate for the increase in the cost of producing the repre-
sentative set. Table 20 lists the aforementioned regression testing
costs associated with the three Greedy-based algorithms for each
subject program. As seen in Table 20, it is evident that the
Table 20
Regression testing cost comparisons for the three Greedy-based algorithms.a

Program Suite

RSnative1
d RSRatio1

d

Costb Wasted timec Costb

Cost for regression test Cost for

printtokens 48402.75 1.72 49434.
48404.47 49436.

printtokens2 23362.42 1.68 23294.
23364.10 23296.

replace 66697.85 2.00 58051.
66699.85 58053.

schedule 14701.83 0.75 14859.
14702.58 14860.

schedule2 33636.91 1.00 32523.
33637.91 32524.

tcas 21161.35 0.11 17156.
21161.46 17157.

totinfo 28868.62 0.64 20382.
28869.26 20382.

space 6.55 � 106 103.28 3.64 � 1
6.55 � 106 3.64 � 1

Mean 848555.22 13.90 482514.
848569.12 482528.

a Measured in microsecond (ls).
b Indicates the time cost taken to execute the test cases in the test suite.
c Indicates the time taken to run the test suite reduction algorithm.
d RSnative1, RSRatio1, and RSEIrreplaceability1 represent the representative sets produced by

Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
EIrreplaceability metric indeed improves the total regression test-
ing costs for all of the subject programs.

5.3.1.2. Replying to RQ2. Table 21 lists the common rates of differ-
ent pairs of representative sets for each subject program, respec-
tively. As seen from the table, the common rate between
RSEIrreplaceability1 and RSRatio1 is usually much higher than others
for most of the subject programs, except for printtokens. That is,
GreedyEIrreplaceability and GreedyRatio usually choose more test cases
in common than other pairs during the reduction process. This
phenomenon is explained by the fact that both the Ratio and the
EIrreplaceability metrics take into account the minimization of
the test execution cost. However, even though the common rates
between RSEIrreplaceability1 and RSRatio1 are high, GreedyEIrreplaceability

does not pick exactly the same test cases as GreedyRatio. Because
GreedyEIrreplaceability shows the best SCR values for all of the subject
programs, then this would suggest that it picks better test cases
than GreedyRatio during the cost reduction process. Additionally,
although the common rate of the pair of RSnative1 and RSRatio1 and
RSEIrreplaceability1
d

Wasted timec Costb Wasted timec

regression test Cost for regression test

84 1.91 37867.13 7.15
75 37874.28
41 1.76 21470.30 6.51
17 21476.81
27 2.05 53657.01 10.93
32 53667.94
85 0.74 13140.77 1.81
59 13142.58
82 1.02 30022.68 3.41
84 30026.09
95 0.13 16202.89 0.32
08 16203.21
22 0.60 19752.15 1.83
82 19753.98
06 107.35 3.50 � 106 4245.64
06 3.50 � 106

17 14.45 461544.87 534.70
62 462079.57

Greedy, GreedyRatio, and GreedyEIrreplaceability, respectively.

s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


Table 21
Common rate for the three Greedy-based algorithms.

Program Common rate

RSnative1 & RSRatio1 (%) RSnative1 & RSEIrreplaceability1 (%) RSRatio1 & RSEIrreplaceability1 (%) All

printtokens 47.65 63.10 59.19 43.44
printtokens2 45.92 51.31 71.07 41.53
replace 46.72 48.32 71.38 41.04
schedule 47.67 54.72 73.91 44.75
schedule2 42.12 47.48 77.88 40.07
tcas 32.21 31.85 83.50 29.54
totinfo 19.26 18.40 62.44 14.97
space 19.86 21.08 74.07 18.33
Mean 37.68 42.03 71.68 34.21

C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 17
that of the pair of RSnative1 and RSEIrreplaceability1 are close to each
other for most of the subject programs, the former usually provides
the lowest common rate. It is also important to note that, according
to Tables 17 and 21, the common rates of all possible combinations
are not related to the size of the original test suite. This observation
may indicate that the effectiveness of adopting cost-aware test
case metrics is satisfactory for the test suites of various scales.

5.3.2. Discussion 2: comparing the GRE-based algorithms
Similar to Section 5.3.1, RSnative2, RSRatio2 and RSEIrreplaceability2

denote the representative sets reduced from T via the GRE-based
algorithms (i.e., GRE, GRERatio, and GREEIrreplaceability), respectively.

5.3.2.1. Replying to RQ1. The results of test suite reduction for three
GRE-based algorithms are shown in Table 22. The table indicates
that all GRE-based algorithms can significantly reduce the
Table 22
Reduction capability for the three GRE-based algorithms.

Program Suite

Original RSnative2

Cost# Cost# SCR (%)

printtokens 505425.70 43293.50 91.43
printtokens2 380846.80 22809.39 94.01
replace 848037.60 63973.69 92.46
schedule 414834.80 14183.82 96.58
schedule2 438657.40 32480.80 92.60
tcas 162646.30 20418.31 87.45
totinfo 419689.50 28179.61 93.29
space 1.49 � 108 6.11 � 106 95.89
Mean 1.90 � 107 792098.77 92.96

# Measured in microsecond (ls).

Table 23
The Comparisons regarding the improvement on the GRE algorithm when Coverage(t) is r

Program GRERatio versus GRE

p-Valueb Improvement

Costc Percentaged

printtokens .083 2230.12 5.15
printtokens2 .456 �310.04 �1.36
replace .101 2601.18 4.07
schedule .414 �281.00 �1.98
schedule2 .830 �75.01 �0.23
tcas .034 1057.10 5.18
totinfo .000 3647.10 12.94
space .000 1.10 � 106 18.08
Mean — 139254.06 5.23

a The italic part indicates that the improvement is significantly different according to
b Indicates the p-value of statistical test on the SCR values.
c Indicates SuiteCost(RSnative2)�SuiteCost(RSRatio2).
d Indicates (SuiteCost(RSnative2)�SuiteCost(RSRatio2))/SuiteCost(RSnative2).
e Indicates SuiteCost(RSnative2)�SuiteCost(RSEIrreplaceability2).
f Indicates (SuiteCost(RSnative2)�SuiteCost(RSEIrreplaceability2))/SuiteCost(RSnative2).

Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
execution costs of the test suites. The cost reduction capabilities
in order of rank are GREEIrreplaceability, GRERatio, and GRE for five
out of eight subject programs (i.e., printtokens, replace, tcas,
totinfo, and space). Again, GREEIrreplaceability and GRE provide the
best and the worst reduction capabilities for most of the subject
programs, respectively. Notice that GRERatio performs worse than
GRE for three programs (i.e., printtokens2, schedule, and sche-
dule2). However, considering the averages across all of the subject
programs, the reduction capabilities in order of rank are still
GREEIrreplaceability, GRERatio, and GRE.

Table 23 quantifies the influence on the GRE algorithms caused
by the Ratio and EIrreplaceability metrics. On the whole, both Ratio
and EIrreplaceability can upgrade the reduction capability of the
GRE algorithm. It should be observed that they impair the cost
capability of the GRE algorithm on the subject program schedule,
but the impairments are very slight; the statistical test also
RSRatio2 RSEIrreplaceability2

Cost# SCR (%) Cost# SCR (%)

41063.38 91.88 40846.38 91.92
23119.43 93.93 22661.40 94.05
61372.51 92.76 60722.47 92.84
14464.82 96.51 14379.82 96.53
32555.81 92.58 32344.81 92.63
19361.21 88.10 19306.20 88.13
24532.51 94.15 24292.50 94.21

5.01 � 106 96.63 4.83 � 106 96.75
652844.71 93.32 630455.45 93.38

eplaced by Ratio(t) and EIrreplaceability(t), respectively.a

GREEIrreplaceability versus GRE

p-Valueb Improvement

(%) Coste Percentagef (%)

.047 2447.12 5.65

.977 147.99 0.65

.030 3251.22 5.08

.550 �196.00 �1.38

.951 135.99 0.42

.028 1112.11 5.45

.000 3887.11 13.79

.000 1.28 � 106 20.98
— 161643.32 6.33

the Mann–Whitney U-test.

s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


Table 24
Regression testing cost comparisons for the three GRE-based algorithms.a

Program Suite

RSnative2
d RSRatio2

d RSEIrreplaceability2
d

Costb Wasted timec Costb Wasted timec Costb Wasted timec

Cost for regression test Cost for regression test Cost for regression test

printtokens 43293.50 4.29 41063.38 4.27 40846.38 4.41
43297.79 41067.65 40850.79

printtokens2 22809.39 5.82 23119.43 6.28 22661.40 6.52
22815.21 23125.71 22667.92

replace 63973.69 6.99 61372.51 7.16 60722.47 7.67
63980.68 61379.67 60730.14

schedule 14183.82 1.38 14464.82 1.36 14379.82 1.31
14185.20 14466.18 14381.13

schedule2 32480.80 2.03 32555.81 2.03 32344.81 2.10
32482.83 32557.84 32346.91

tcas 20418.31 0.19 19361.21 0.19 19306.20 0.21
20418.50 19361.40 19306.41

totinfo 28179.61 1.63 24532.51 1.69 24292.50 1.78
28181.24 24534.20 24294.28

space 6.11 � 106 12082.67 5.01 � 106 14188.01 4.83 � 106 22362.05
6.12 � 106 5.02 � 106 4.85 � 106

Mean 792098.77 1513.13 652844.71 1776.37 630455.45 2798.26
793611.90 654621.08 633253.71

a Measured in microsecond (ls).
b Indicates the time cost taken to execute the test cases in the test suite.
c Indicates the time taken to run the test suite reduction algorithm.
d RSnative2, RSRatio2, and RSEIrreplaceability2 represent the representative sets produced by GRE, GRERatio, and GREEIrreplaceability, respectively.

18 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
indicates that the impairments are not statistically significant.
With the exception of schedule, EIrreplaceability improves the
GRE algorithm for the other seven subject programs, and the
improvements on five out of the seven programs are statistically
significant. On the other hand, Ratio degrades the capability of
the GRE algorithm for printtokens2, schedule, and schedule2.
Although it still improves the GRE algorithm for the other five pro-
grams, the improvements are statistically significant for only three
out of the five programs. Moreover, the improvement achieved by
the EIrreplaceability metric tops that which was achieved by the
Ratio metric for all of the subject programs.

From Tables 19 and 23, it is evident that Ratio and EIrreplace-
ability make more significant improvement in the Greedy
algorithm than in the GRE algorithm. This is because the Greedy
algorithm only takes into account the value, or importance, of
the candidates when selecting test cases. Consequently, the
adopted test case metric directly decides whether the test cases
will be placed into the representative set; thus, changing the test
case metric may lead to the most significant improvement. On
the other hand, because the GRE algorithm involves the 1-to-1
redundant strategy, the test case metric is not the only factor that
controls the reduction process.

Additionally, Table 24 lists the total regression testing costs
associated with the three GRE-based algorithms for each subject
program. Table 24 indicates that even though GREEIrreplaceability
Table 25
Common rate for the three GRE-based algorithms.

Program Common rate

RSnative2 & RSRatio2 (%) RSnative2 & RSEIrrep

printtokens 84.98 85.75
printtokens2 62.55 64.99
replace 71.12 71.57
schedule 82.47 82.16
schedule2 71.39 71.82
tcas 72.26 71.71
totinfo 45.69 44.47
space 70.42 67.56
Mean 70.11 70.00

Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
generally takes more time to perform the test suite reduction in
comparison with the other two GRE-based algorithms, it still
shows lower total regression testing costs for seven out of eight
subject programs.
5.3.2.2. Replying to RQ2. Table 25 shows the common rates for all
possible combinations of the representative sets produced by the
GRE-based algorithms. These results indicate that, for all of the
subject programs, the common rate of the pair of RSEIrreplaceability2

and RSRatio2 is much higher than those of other combinations,
and the common rates of the other two pairs are close to each
other. Yet, RSEIrreplaceability2 and RSRatio2 still have different test
cases. That is, GREEIrreplaceability does not pick exactly the same test
cases as GRERatio, thus resulting in a better cost reduction. Besides,
according to Tables 17 and 25, it seems that the common rates for
all combinations are not related to the size of the original test suite.
This may show that the effectiveness of adopting cost-aware test
case metrics is satisfactory for the test suites of various scales.
5.3.3. Discussion 3: comparing the HGS-based algorithms
Again, RSnative3, RSRatio3 and RSEIrreplaceability3 denote the repre-

sentative sets reduced from T via the HGS-based algorithms (i.e.,
HGS, HGSRatio, and HGSEIrreplaceability), respectively.
laceability2 (%) RSRatio2 & RSEIrreplaceability2 (%) All (%)

96.80 84.21
85.31 59.68
86.47 66.84
96.03 80.99
94.43 69.88
94.50 70.22
72.58 38.91
78.20 62.22
88.04 66.62

s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


Table 26
Reduction capability for the three HGS-based algorithms.

Program Suite

Original RSnative3 RSRatio3 RSEIrreplaceability3

Cost# Cost# SCR (%) Cost# SCR (%) Cost# SCR (%)

printtokens 505425.70 43461.50 91.40 42062.41 91.68 40725.33 91.94
printtokens2 380846.80 26165.54 93.13 28089.59 92.62 24904.49 93.46
replace 848037.60 67134.83 92.08 62384.54 92.64 60838.41 92.83
schedule 414834.80 15185.88 96.34 15389.88 96.29 14730.84 96.45
schedule2 438657.40 32922.86 92.49 33318.87 92.40 32101.80 92.68
tcas 162646.30 20495.31 87.40 18495.12 88.63 18366.13 88.71
totinfo 419689.50 26870.58 93.60 25591.54 93.90 24503.51 94.16
space 1.49 � 108 5.93 � 106 96.01 4.31 � 106 97.10 4.27 � 106 97.13
Mean 1.90 � 107 770765.56 92.81 567277.49 93.16 560854.31 93.42

# Measured in microsecond (ls).

Table 27
The comparisons regarding the improvement on the HGS algorithm when Coverage(t) is replaced by Ratio(t) and EIrreplaceability(t), respectively.a

Program HGSRatio versus HGS HGSEIrreplaceability versus HGS

p-Valueb Improvement p-Valueb Improvement

Costc Percentaged (%) Coste Percentagef

printtokens .392 1399.09 3.22 .027 2736.17 6.30
printtokens2 .004 �1924.05 �7.35 .082 1261.05 4.82
replace .007 4750.29 7.08 .000 6296.42 9.38
schedule .521 �204.00 �1.34 .416 455.04 3.00
schedule2 .639 �396.01 �1.20 .399 821.06 2.49
tcas .000 2000.19 9.76 .000 2129.18 10.39
totinfo .074 1279.04 4.76 .001 2367.07 8.81
space .000 1.62 � 106 27.32 .000 1.66 � 106 28.03
Mean — 203488.07 5.28 — 209911.25 9.15

a The italic part indicates that the improvement is significantly different according to the Mann–Whitney U-test.
b Indicates the p-value of statistical test on the SCR values.
c Indicates SuiteCost(RSnative3)�SuiteCost(RSRatio3).
d Indicates (SuiteCost(RSnative3)�SuiteCost(RSRatio3))/SuiteCost(RSnative3).
e Indicates SuiteCost(RSnative3)�SuiteCost(RSEIrreplaceability3).
f Indicates (SuiteCost(RSnative3)�SuiteCost(RSEIrreplaceability3))/SuiteCost(RSnative3).

C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 19
5.3.3.1. Replying to RQ1. Table 26 compares the cost reduction
capabilities of the three HGS-based algorithms. HGSEIrreplaceability

achieves the best cost reduction capability in all of the subject
programs. Although HGSRatio provides better capabilities than
HGS for five out of eight programs (i.e., printtokens, replace, tcas,
totinfo, and space), it performs worse for the remaining three
subject programs. However, the averages across all of the subject
programs indicate that the reduction capabilities in order of rank
are HGSEIrreplaceability, HGSRatio, and HGS.

Table 27 quantifies how Ratio and EIrreplaceability enhance the
HGS algorithm. According to the table, EIrreplaceability upgrades
the cost reduction capability of the HGS algorithm for all of the sub-
ject programs, and the improvements are statistically significant for
five out of the eight programs. On the other hand, Ratio can improve
the HGS algorithm for only some of the subject programs, and the
improvements are statistically significant for only three subject
programs. It is clear that selecting EIrreplaceability as the test case
metric is a better choice to improve the cost reduction capability of
the HGS algorithm. In general, the results reveal that EIrreplaceabil-
ity and Ratio are better at improving the HGS algorithm than they
are at bettering GRE. Yet, these two metrics cannot improve HGS
as much as they can enhance the Greedy algorithm.

Moreover, Table 28 lists the total regression testing costs
associated with the three HGS-based algorithms for each subject
program. As seen from Table 28, although HGSEIrreplaceability may
take a little bit more time than the other two HGS-based algorithms
to produce the representative set of test cases, it still achieves
the lowest total regression testing costs for all of the subject
programs.
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
5.3.3.2. Replying to RQ2. Table 29 compares the common rates of all
possible combination of the representative sets produced by the
HGS-based algorithms. Similar to the results given in Sections
5.3.1.2 and 5.3.2.2, the pair of RSEIrreplaceability3 and RSRatio3 shows
higher common rates compared to the other pairs. However, while
RSEIrreplaceability3 and RSRatio3 show high common rates, they still
have different test cases. Because HGSEIrreplaceability shows better
SCR values than HGSRatio, this would suggest that it picks better
test cases than HGSRatio during the cost reduction process. The
common rates of the other two pairs are close to each other for
most of the subject programs, except for printtokens2. Addition-
ally, we cannot identify the correlation between the common rate
and the original suite size according to Tables 17 and 29. Again,
this may indicate that the effectiveness of adopting cost-aware test
case metrics is satisfactory for the test suites of various scales.
Overall, the results look similar to those in Sections 5.3.1.2 and
5.3.2.2.

5.3.4. Discussion 4: the overall comparison of the nine test suite
reduction algorithms
5.3.4.1. Replying to RQ3. Table 30 presents the reduction capabili-
ties and the rankings of the nine algorithms with respect to each
subject program. From this table, it is clear that GreedyEIrreplaceability

provides the best reduction capability for all of the subject
programs. GreedyRatio and the other two algorithms integrated
with EIrreplaceability (i.e., GREEIrreplaceability and HGSEIrreplaceability)
also demonstrate good effectiveness for most of the subject pro-
grams. Although the remaining two algorithms integrated with
Ratio (i.e., GRERatio and HGSRatio) demonstrate effectiveness that is
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


Table 28
Regresion test cost comparisons for the three HGS-based algorithms.a

Program Suite

RSnative3
d RSRatio3

d RSEIrreplaceability3
d

Costb Wasted timec Costb Wasted timec Costb Wasted timec

Cost for regression test Cost for regression test Cost for regression test

printtokens 43461.50 0.25 42062.41 0.22 40725.33 0.30
43461.75 42062.63 40725.63

printtokens2 26165.54 0.22 28089.59 0.27 24904.49 0.29
26165.76 28089.86 24904.78

replace 67134.83 0.29 62384.54 0.30 60838.41 0.38
67135.12 62384.84 60838.79

schedule 15185.88 0.06 15389.88 0.07 14730.84 0.05
15185.94 15389.95 14730.89

schedule2 32922.86 0.10 33318.87 0.10 32101.80 0.12
32922.96 33318.97 32101.92

tcas 20495.31 0.03 18495.12 0.03 18366.13 0.03
20495.34 18495.15 18366.16

totinfo 26870.58 0.09 25591.54 0.07 24503.51 0.10
26870.67 25591.61 24503.61

space 5.93 � 106 18.91 4.31 � 106 9.03 4.27 � 106 12.19
5.93 � 106 4.31 � 106 4.27 � 106

Mean 770765.56 2.49 567277.49 1.26 560854.31 1.68
770768.05 567278.75 560855.99

a Measured in microsecond (ls).
b Indicates the time cost taken to execute the test cases in the test suite.
c Indicates the time taken to run the test suite reduction algorithm.
d RSnative3, RSRatio3, and RSEIrreplaceability3 represent the representative sets produced by HGS, HGSRatio, and HGSEIrreplaceability, respectively.

Table 29
Common rate for the three HGS-based algorithms.

Program Common rate

RSnative3 & RSRatio3 (%) RSnative3 & RSEIrreplaceability3 (%) RSRatio3 & RSEIrreplaceability3 (%) All (%)

printtokens 67.98 73.87 88.96 67.03
printtokens2 50.99 67.72 69.55 48.49
replace 55.01 62.61 83.26 53.44
schedule 65.75 72.53 88.49 64.43
schedule2 59.50 66.93 85.58 58.16
tcas 46.21 52.04 86.59 44.77
totinfo 44.08 54.83 69.88 39.71
space 39.20 43.13 87.37 38.24
Mean 53.59 61.71 82.46 51.78

Table 30
Reduction capability in terms of SCR for all of the nine algorithms.

Program Suite
SCR (Ranking)

RSnative1 RSRatio1 RSEIrreplaceability1 RSnative2 RSRatio2 RSEIrreplaceability2 RSnative3 RSRatio3 RSEIrreplaceability3

printtokens 90.42%(8) 90.22%(9) 92.51%(1) 91.43%(6) 91.88%(4) 91.92%(3) 91.40%(7) 91.68%(5) 91.94%(2)
printtokens2 93.87%(6) 93.88%(5) 94.36%(1) 94.01%(3) 93.93%(4) 94.05%(2) 93.13%(8) 92.62%(9) 93.46%(7)
replace 92.14%(8) 93.15%(2) 93.67%(1) 92.46%(7) 92.76%(5) 92.84%(3) 92.08%(9) 92.64%(6) 92.83%(4)
schedule 96.46%(5) 96.42%(7) 96.83%(1) 96.58%(2) 96.51%(4) 96.53%(3) 96.34%(8) 96.29%(9) 96.45%(6)
schedule2 92.33%(9) 92.59%(5) 93.16%(1) 92.60%(4) 92.58%(6) 92.63%(3) 92.49%(7) 92.40%(8) 92.68%(2)
tcas 86.99%(9) 89.45%(2) 90.04%(1) 87.45%(7) 88.10%(6) 88.13%(5) 87.40%(8) 88.63%(4) 88.71%(3)
totinfo 93.12%(9) 95.14%(2) 95.29%(1) 93.29%(8) 94.15%(5) 94.21%(3) 93.60%(7) 93.90%(6) 94.16%(4)
space 95.59%(9) 97.55%(2) 97.64%(1) 95.89%(8) 96.63%(6) 96.75%(5) 96.01%(7) 97.10%(4) 97.13%(3)
Mean 92.62%(9) 93.55%(2) 94.19%(1) 92.96%(7) 93.32%(5) 93.38%(4) 92.81%(8) 93.16%(6) 93.42%(3)

20 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
less satisfactory overall, they still perform better than the three
traditional algorithms for most of the subject programs. In Table 31,
we combine the test suites of all subject programs, report the pair-
wise comparisons of all algorithms and present the result of the
statistical tests. For each pair of algorithms, the mean difference
between the results of applying the algorithms is given along with
the significance level. The SCR values in order of rank are
GreedyEIrreplaceability, GreedyRatio, HGSEIrreplaceability, GREEIrreplaceability,
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
GRERatio, HGSRatio, GRE, HGS, and Greedy. However, it should be
noted that there is no significant difference in the reduction capa-
bility among HGSEIrreplaceability, GREEIrreplaceability, and GRERatio.
Additionally, both the difference between HGSRatio and GRE and
the difference between HGS and Greedy are not statistically signif-
icant. Overall, the rankings shown in Tables 30 and 31 indicate that
the EIrreplaceability metric demonstrates better improvement
than the Ratio metric for all of the three traditional algorithms.
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


Table 31
Pairwise comparisons (mean SCR across all subject programs).

Reduced Set x
(rank)

Statistics Reduced Set y (rank)

RSnative1

(9)
RSRatio1

(2)
RSEIrreplaceability1

(1)
RSnative2

(7)
RSRatio2

(5)
RSEIrreplaceability2

(4)
RSnative3

(8)
RSRatio3

(6)
RSEIrreplaceability3

(3)

RSnative1 (9) Difference+ — �0.93 �1.57 �0.34 �0.70 �0.76 �0.19 �0.54 �0.80
p-Value .000 .000 .000 .000 .000 .156 .000 .000

RSRatio1 (2) Difference+ 0.93 — �0.64 0.59 0.23 0.17 0.74 0.39 0.13
p-Value .000 .000 .000 .000 .000 .000 .000 .000

RSEIrreplaceability1 (1) Difference+ 1.57 0.64 — 1.23 0.87 0.81 1.38 1.03 0.77
p-Value .000 .000 .000 .000 .000 .000 .000 .000

RSnative2 (7) Difference+ 0.34 �0.59 �1.23 — �0.36 �0.42 0.15 �0.20 �0.46
p-Value .000 .000 .000 .000 .000 .023 .143 .000

RSRatio2 (5) Difference+ 0.70 �0.23 �0.87 0.36 — �0.06 0.51 0.16 �0.10
p-Value .000 .000 .000 .000 .324 .000 .010 .448

RSEIrreplaceability2 (4) Difference+ 0.76 �0.17 �0.81 0.42 0.06 — 0.57 0.22 �0.04
p-Value .000 .000 .000 .000 .324 .000 .000 .816

RSnative3 (8) Difference+ 0.19 �0.74 �1.38 �0.15 �0.51 �0.57 — �0.35 �0.61
p-Value .156 .000 .000 .023 .000 .000 .000 .000

RSRatio3 (6) Difference+ 0.54 �0.39 �1.03 0.20 �0.16 �0.22 0.35 — �0.26
p-Value .000 .000 .000 .143 .010 .000 .000 .001

RSEIrreplaceability3 (3) Difference+ 0.80 �0.13 �0.77 0.46 0.10 0.04 0.61 0.26 —
p-Value .000 .000 .000 .000 .448 .816 .000 .001

⁄The italic part indicates that the mean difference between the pair of reduced suites is statistically significant.
+ Indicates SCRx–SCRy, where SCRx and SCRy are the mean SCR values for the reduced sets x and y, respectively.

C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 21
5.3.5. Threats to validity
5.3.5.1. Threats to internal validity. The primary threat to the inter-
nal validity of our empirical studies is the measurement of the exe-
cution time of each test case. That is, the measure for each test case
may change if we performed the experiment in another environ-
ment. To reduce this threat, we executed each test 1000 times in
both of two frequently used execution environments, the Windows
and Linux operating systems, and took the average of the 2000 trials.

5.3.5.2. Threats to external validity. The Siemens programs are of a
small size and the space program is of a medium size. Therefore,
we cannot definitively claim that our findings are representative
for all programs. As part of future work, we aim to reduce this
threat by conducting additional experiments with larger subject
programs and test suites.

5.3.5.3. Threats to construct validity. Defects in implementing the
compared reduction algorithms could be a threat to construct
validity of the empirical studies; we controlled this threat by
examining our implementation with several small programs. We
manually inspected the differences in step-by-step traces between
our implementation and the manual operation, and found that the
results are totally consistent with each other. Another threat to
construct validity is related to the metric, SCR, which was used to
evaluate the effectiveness of the test suite reduction algorithms.
It is true that, given a specific original test suite, a representative
set with lower costs than the others always yields a higher SCR
value. However, the execution costs of the original test suites gen-
erated for the empirical studies are usually so high that the SCR val-
ues of the representative sets are close to each other; thus, it is
difficult to clearly understand the amounts of the differences in
the cost reduction capability between two algorithms. To address
this concern, we use Tables 19, 23 and 27 to quantify the amount
of the difference in execution cost between two representative
sets and highlight whether or not the difference in the reduction
capability between two algorithms is statistically significant.

6. Conclusions and future work

In the literature, most of the existing test suite reduction algo-
rithms attempt to reduce the size of a test suite (e.g., [6,16,26]).
However, due to the differences in execution costs among test
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
cases, the representative set with the fewest test cases may not
be the one with the lowest execution cost. This paper considered
this phenomenon and presented a cost-aware metric, called EIrre-
placeability, that evaluates the possibility that each test case can
be replaced by others when reducing test suites. This paper further
presented several cost-aware test suite reduction algorithms in
which EIrreplaceability and an existing test case metric (i.e., Ratio)
were incorporated into three well-known test suite reduction algo-
rithms (i.e., Greedy, GRE, and HGS). The cost reduction capabilities
of the presented cost-aware algorithms were evaluated through an
empirical study that was based on eight subject programs collected
from SIR. From the results, we have some findings that are revealed
through the replies to the three research questions.

(1) Replying to RQ1: On the whole, both Ratio and EIrreplaceabil-
ity can improve the reduction capabilities of the three tradi-
tional reduction algorithms. Please notice that:
i. For each traditional algorithm, the improvements

achieved by EIrreplaceability are usually more significant
than those achieved by Ratio, as revealed in Tables 19, 23
and 27.

ii. Both Ratio and EIrreplaceability make more significant
improvements to the Greedy algorithm than to the GRE
and HGS algorithms. That is, among the three traditional
algorithms, the Greedy algorithm benefits more than the
others from the use of test case metrics. Additionally,
the overall improvements for GRE are relatively minor,
as revealed in Tables 19, 23 and 27.

(2) Replying to RQ2: If we incorporate Ratio or EIrreplaceability
into the Greedy algorithm, then more than half of the test
cases in the representative set for most of the subject pro-
grams are replaced by different test cases. This phenomenon
is rarely seen for GRE and HGS, especially for GRE. Please
also notice that:
i. The common rates between GreedyRatio and

GreedyEIrreplaceability are usually greater than those between
Greedy and GreedyEIrreplaceability and those between Greedy
and GreedyRatio. This may imply that, although Ratio and
EIrreplaceability evaluate test cases based on different
criteria, they may achieve similar results. This phenome-
non also exists for the GRE-based and the HGS-based
algorithms, as shown in Tables 21, 25 and 29.
s that decrease regression testing costs by identifying irreplaceable tests,

http://dx.doi.org/10.1016/j.infsof.2014.04.013


22 C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx
ii. The common rate between a traditional algorithm and
its cost-aware version (e.g., between Greedy and
GreedyEIrreplaceability) is often low and this phenomenon
usually leads to a significant improvement in the reduc-
tion capability of the traditional reduction algorithms,
thus indicating that the improvements achieved by the
presented technique are satisfactory; see Tables 19, 21,
23, 25, 27 and 29 for more details.

(3) Replying to RQ3: When we involve all the nine algorithms in
the comparisons, the GreedyEIrreplaceability algorithm always
provides the best cost reduction capability for all of the
selected subject programs. The three traditional algorithms,
especially the Greedy algorithm, generally demonstrate less
satisfactory cost reduction capabilities. Additionally, it
should be noticed that, with the exception of GreedyRatio,
the algorithms integrated with Ratio generally perform
worse than those integrated with EIrreplaceability. That is,
although GreedyRatio normally demonstrates worse reduc-
tion capability than GreedyEIrreplaceability, it often outperforms
GREEIrreplaceability and HGSEIrreplaceability, as revealed in Tables
30 and 31.

On the whole, the empirical studies indicate that incorporat-
ing the concept of test case irreplaceability into the traditional
test suite reduction algorithms, especially for the Greedy algo-
rithm, can lead to the representative sets with low execution
costs.

In future work, there are some open issues that we want to
address in order to further improve the efficiency of regression
testing. First, we plan to examine the effectiveness of applying
the proposed approach to programs from different domains, such
as database applications [48–50], since we currently focused on
standard programs from SIR. Second, the presented method is gen-
eral and can handle the different types of execution costs, such as
memory usage, network-bandwidth, disk input/output, and
energy. Thus, we also intend to examine the effectiveness of apply-
ing it to reduce the other types of costs associated with test suites.
Third, we will apply the concept of test irreplaceability to address
the test case prioritization problem [13,20,27]. Fourth, we aim to
upgrade the presented approach by enhancing the capability of
revealing faults since the current version only focuses on reducing
the execution cost of a test suite. For example, we intend to inves-
tigate the interaction between test irreplaceability and fault local-
ization techniques [51,52] and then incorporate fault localization
information into the cost-aware reduction algorithms to achieve
better fault detection capabilities. We also want to use fault seed-
ing tools such as MAJOR [53] to insert faults into the subject pro-
grams and conduct an empirical study to evaluate the upgraded
algorithms (i.e., the algorithms associated with fault localization
information) in terms of fault detection rate (i.e., the number of
faults detected by per unit of execution cost). Ultimately, combin-
ing the concept of test case irreplaceability with the results from
the suggested future work will yield a comprehensive framework
for achieving efficient and effective regression testing.

Acknowledgement

This work was supported by the National Science Council Tai-
wan, under Grants NSC 100-2221-E-415-007-MY2 and NSC 102-
2221-E-415-009.

References

[1] P. Ammann, J. Offutt, Introduction to Software Testing, Cambridge University
Press, 2008.
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
[2] D. Binkley, Semantics guided regression test cost reduction, IEEE Trans. Softw.
Eng. 23 (8) (1997) 498–516.

[3] H. Zhong, L. Zhang, H. Mei, An experimental study of four typical test suite
reduction techniques, Inform. Softw. Technol. 50 (6) (2008) 534–546.

[4] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, B. Meyer, Efficient unit test case
minimization, in: Proceedings of the 22nd IEEE/ACM International Conference
on Automated Software Engineering, ACM, November 2007, pp. 417–420.

[5] M. Prasanna, S.N. Sivanandam, R. Venkatesan, R. Sundarrajan, A survey on
automatic test case generation, Acad. Open Internet J. 15 (2005).

[6] M.J. Harrold, R. Gupta, M.L. Soffa, A methodology for controlling the size of a
test suite, ACM Trans. Softw. Eng. Methodol. 2 (3) (1993) 270–285.

[7] D. Jeffrey, N. Gupta, Improving fault detection capability by selectively
retaining test cases during test suite reduction, IEEE Trans. Softw. Eng. 33 (2)
(2007) 108–123.

[8] I. Sommerville, Software Engineering, ninth ed., Addison-Wesley, 2010.
[9] C.T. Lin, K.W. Tang, C.D. Chen, G.M. Kapfhammer, Reducing the cost of

regression testing by identifying irreplaceable test cases, in: Proceedings of the
6th International Conference on Genetic and Evolutionary Computing, IEEE
Computer Society, August 2012, pp. 257–260.

[10] G.M. Kapfhammer, Regression Testing, The Encyclopedia of Software
Engineering, Taylor and Francis – Auerbach Publications, 2010.

[11] J.W. Lin, C.Y. Huang, Analysis of test suite reduction with enhanced tie-
breaking techniques, Inform. Softw. Technol. 51 (4) (2009) 679–690.

[12] R.M. Karp, Reducibility among Combinatorial Problems, Complexity of
Computer Computations, Plenum Press, 1972. pp. 85–103.

[13] S. Yoo, M. Harman, Regression testing minimization, selection and
prioritization: a survey, Softw. Test., Verif. Reliab. 22 (2) (2012) 67–120.

[14] E. Engstrom, P. Runeson, M. Skoglund, A systematic review on regression test
selection techniques, Inform. Softw. Technol. 52 (1) (2010) 14–30.

[15] V. Chvatal, A Greedy heuristic for the set-covering problem, Math. Oper. Res. 4
(3) (1979) 233–235.

[16] T.Y. Chen, M.F. Lau, A new heuristic for test suite reduction, Inform. Softw.
Technol. 40 (5–6) (1998) 347–354.

[17] T.Y. Chen, M.F. Lau, A simulation study on some heuristics for test suite
reduction, Inform. Softw. Technol. 40 (13) (1998) 777–787.

[18] H. Zhong, L. Zhang, H. Mei, An experimental comparison of four test suite
reduction techniques, in: Proceedings of the 28th ACM/IEEE International
Conference on Software Engineering, ACM, May 2006, pp. 636–640.

[19] X.Y. Ma, Z.F. He, B.K. Sheng, C.Q. Ye, A genetic algorithm for test-suite
reduction, in: Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, IEEE, October 2005, pp. 133–139.

[20] A.M. Smith, G.M. Kapfhammer, An empirical study of incorporating cost into
test suite reduction and prioritization, in: Proceedings of the 24th ACM
Symposium on Applied Computing, Software Engineering Track, ACM, March
2009, pp. 461–467.

[21] S. Yoo, M. Harman, Pareto efficient multi-objective test case selection, in:
Proceedings of the 16th ACM International Symposium on Software Testing
and Analysis, ACM, July 2007, pp. 140–150.

[22] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[23] S. Yoo, M. Harman, Using hybrid algorithm for Pareto efficient multi-objective
test suite minimisation, J. Syst. Softw. 83 (4) (2010) 689–701.

[24] M. Bozkurt, Cost-aware pareto optimal test suite minimization for service-
centric systems, in: Proceedings of the 15th ACM International Conference on
Genetic and Evolutionary Computation, ACM, July 2013, pp. 1429–1436.

[25] C.G. Chung, J.G. Lee, An enhanced zero-one optimal path set selection method,
J. Syst. Softw. 39 (2) (1997) 145–164.

[26] S. Tallam, N. Gupta, A concept analysis inspired greedy algorithm for test suite
minimization, Softw. Eng. Notes 31 (1) (2006) 35–42.

[27] J.A. Jones, M.J. Harrold, Test-suite reduction and prioritization for
modified condition/decision coverage, IEEE Trans. Softw. Eng. 29 (3) (2003)
195–209.

[28] G.V. Jourdan, P. Ritthiruangdech, H. Ural, Test suite reduction based on
dependence analysis, Lect. Notes Comput. Sci. 4263 (2006) 1021–1030.

[29] S. McMaster, A. Memon, Call-stack coverage for GUI test suite reduction, IEEE
Trans. Softw. Eng. 34 (1) (2008) 99–115.

[30] J.G. Lee, C.G. Chung, An optimal representative set selection method, Inform.
Softw. Technol. 42 (1) (2000) 17–25.

[31] S. Elbaum, A.G. Malishevsky, G. Rothermel, Test case prioritization: a family of
empirical studies, IEEE Trans. Softw. Eng. 28 (22) (2002) 159–182.

[32] S. Elbaum, A. Malishevsky, G. Rothermel, Incorporating varying test costs and
fault severities into test case prioritization, in: Proceedings of the 23rd ACM/
IEEE International Conference on Software Engineering, IEEE Computer
Society, May 2001, pp. 329–338.

[33] A.G. Malishevsky, J.R. Ruthruff, G. Rothermel, S. Elbaum, Cost-Cognizant Test
Case Prioritization, Technical Report TR-UNL-CSE-2006-0004, University of
Nebraska-Lincoln, March 2006, Lincoln, USA.

[34] H. Park, H. Ryu, J. Baik, Historical value-based approach for cost-cognizant test
case prioritization to improve the effectiveness of regression testing, in:
Proceedings of the 2nd IEEE International Conference on Secure System
Integration and Reliability Improvement, IEEE Computer Society, July 2008, pp.
39–46.

[35] Y.C. Huang, K.L. Peng, C.Y. Huang, A history-based cost-cognizant test case
prioritization technique in regression testing, J. Syst. Softw. 85 (3) (2012) 626–
637.
s that decrease regression testing costs by identifying irreplaceable tests,

http://refhub.elsevier.com/S0950-5849(14)00094-9/h0270
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0270
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0270
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0010
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0015
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0015
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0025
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0025
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0030
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0035
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0035
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0035
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0040
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0040
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0275
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0275
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0275
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0055
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0055
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0060
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0060
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0060
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0065
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0065
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0070
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0070
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0075
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0075
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0080
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0080
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0085
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0110
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0110
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0115
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0115
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0125
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0125
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0130
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0130
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0135
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0135
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0135
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0140
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0140
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0145
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0145
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0150
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0150
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0155
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0155
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0175
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0175
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0175
http://dx.doi.org/10.1016/j.infsof.2014.04.013


C.-T. Lin et al. / Information and Software Technology xxx (2014) xxx–xxx 23
[36] K.R. Walcott, M.L. Soffa, G.M. Kapfhammer, R.S. Roos, Time-aware test suite
prioritization, in: Proceedings of the 15th ACM International Symposium on
Software Testing and Analysis, ACM, July 2006, pp. 1–12.

[37] S. Alspaugh, K.R. Walcott, M. Belanich, G.M. Kapfhammer, M.L. Soffa, Efficient
time-aware prioritization with knapsack solvers, in: Proceedings of the 1st
ACM International Workshop on Empirical Assessment of Software
Engineering Languages and Technologies, ACM, November 2007, pp. 17–31.

[38] L. Zhang, S.S. Hou, C. Guo, T. Xie, H. Mei, Time-aware test-case prioritization
using integer linear programming, in: Proceedings of the 18th ACM
International Symposium on Software Testing and Analysis, ACM, July 2009,
pp. 213–224.

[39] D. You, Z. Chen, B. Xu, B. Luo, C. Zhang, An empirical study on the effectiveness
of time-aware test case prioritization techniques, in: Proceedings of the 26th
ACM Symposium on Applied Computing, ACM, March 2011, pp. 1451–1456.

[40] T. Mücke, M. Huhn, Minimizing test execution time during test generation, Int.
Fed. Inform. Process. 227 (2007) 223–235.

[41] H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation with
testing techniques: an infrastructure and its potential impact, Empirical Softw.
Eng. 10 (4) (2005) 405–435.

[42] M. Hutchins, H. Foster, T. Goradia, T. Ostrand, Experiments of the effectiveness
of dataflow- and controlflow-based test adequacy criteria, in: Proceedings of
the 16th ACM/IEEE International Conference on Software Engineering, IEEE
Computer Society, May 1994, pp. 191–200.

[43] F.I. Vokolos, P.G. Frankl, Empirical evaluation of the textual differencing
regression testing technique, in: Proceedings of the 14th IEEE International
Conference on Software Maintenance, IEEE Computer Society, November 1998,
pp. 44–53.

[44] L. Corral, A.B. Georgiev, A. Sillitti, G. Succi, A method for characterizing energy
consumption in Android smartphones, in: Proceedings of the 2nd International
Workshop on Green and Sustainable Software, IEEE, May 2013, pp. 38–45.

[45] G. Rothermel, M.J. Harrold, J. Ostrin, C. Hong, An empirical study of the effects
of minimization on the fault detection capabilities of test suites, in:
Please cite this article in press as: C.-T. Lin et al., Test suite reduction method
Inform. Softw. Technol. (2014), http://dx.doi.org/10.1016/j.infsof.2014.04.013
Proceedings of the 14th IEEE International Conference on Software
Maintenance, IEEE Computer Society, November 1998, pp. 34–43.

[46] A. Arcuri, L. Briand, A practical guide for using statistical tests to assess
randomized algorithms in software engineering, in: Proceedings of the 33rd
ACM/IEEE International Conference on Software Engineering, ACM, May 2011,
pp. 1–10.

[47] S. Kpodjedo, F. Ricca, G. Antoniol, P. Galinier, Evolution and search based
metrics to improve defects prediction, in: Proceedings of the 1st International
Symposium on Search Based Software Engineering, IEEE Computer Society,
May 2009, pp. 23–32.

[48] S.R. Clark, J. Cobb, G.M. Kapfhammer, J.A. Jones, M.J. Harrold, Localizing SQL
faults in database applications, in: Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering, IEEE,
November 2011, pp. 213–222.

[49] G.M. Kapfhammer, M.L. Soffa, Database-aware test coverage monitoring, in:
Proceedings of the 1st India Software Engineering Conference, ACM, February
2008, pp. 77–86.

[50] F. Haftmann, D. Kossmann, E. Lo, A framework for efficient regression
tests on database applications, Int. J. Very Large Data Bases 16 (1) (2007)
145–164.

[51] Y. Yu, J.A. Jones, M.J. Harrold, An empirical study of the effects of test-suite
reduction on fault localization, in: Proceedings of the 30th ACM/IEEE
International Conference on Software Engineering, ACM, May 2008, pp. 201–
210.

[52] B. Jiang, Z. Zhang, W.K. Chan, T.H. Tse, T.Y. Chen, How well does test case
prioritization integrate with statistical fault localization?, Inform. Softw.
Technol. 54 (7) (2012) 739–758.

[53] R. Just, F. Schweiggert, G.M. Kapfhammer, MAJOR: an efficient and extensible
tool for mutation analysis in a Java compiler, in: Proceedings of the 26th IEEE/
ACM International Conference on Automated Software Engineering, IEEE,
November 2011, pp. 612–615.
s that decrease regression testing costs by identifying irreplaceable tests,

http://refhub.elsevier.com/S0950-5849(14)00094-9/h0200
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0200
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0205
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0250
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0250
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0250
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0260
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0260
http://refhub.elsevier.com/S0950-5849(14)00094-9/h0260
http://dx.doi.org/10.1016/j.infsof.2014.04.013

	Test suite reduction methods that decrease regression testing costs by identifying irreplaceable tests
	1 Introduction
	2 Related work
	2.1 Reviews of well-known test suite reduction techniques
	2.1.1 Additional Greedy algorithm
	2.1.2 GE and GRE algorithms
	2.1.3 HGS algorithm
	2.1.4 Other test suite reduction techniques

	2.2 Cost-aware test case prioritization techniques

	3 Test suite cost reduction
	3.1 Execution costs of test cases
	3.2 Execution cost of a test suite
	3.3 Evaluating the test cases
	3.3.1 Reduction using the existing metrics called Coverage and Ratio
	3.3.2 Reduction using the cost-aware metric called Irreplaceability
	3.3.3 Reduction using the enhanced cost-aware metric called EIrreplaceability


	4 Cost-aware test suite reduction algorithms
	4.1 Incorporating the cost-aware metrics into the Greedy algorithm
	4.2 Incorporating the cost-aware metrics into the GRE algorithm
	4.3 Incorporating the cost-aware metrics into the HGS algorithm

	5 Experimental analyses
	5.1 Experimental setup
	5.1.1 Algorithms and subject programs for comparison
	5.1.2 Experimental steps

	5.2 Research questions
	5.3 Experimental results and analyses
	5.3.1 Discussion 1: comparing the Greedy-based algorithms
	5.3.1.1 Replying to RQ1
	5.3.1.2 Replying to RQ2

	5.3.2 Discussion 2: comparing the GRE-based algorithms
	5.3.2.1 Replying to RQ1
	5.3.2.2 Replying to RQ2

	5.3.3 Discussion 3: comparing the HGS-based algorithms
	5.3.3.1 Replying to RQ1
	5.3.3.2 Replying to RQ2

	5.3.4 Discussion 4: the overall comparison of the nine test suite reduction algorithms
	5.3.4.1 Replying to RQ3

	5.3.5 Threats to validity
	5.3.5.1 Threats to internal validity
	5.3.5.2 Threats to external validity
	5.3.5.3 Threats to construct validity



	6 Conclusions and future work
	Acknowledgement
	References


