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Abstract—Test suite reduction techniques decrease the cost of 
software testing by removing the redundant test cases from the 
test suite while still producing a reduced set of tests that yields 
the same level of code coverage as the original suite. Most of 
the existing approaches to reduction aim to decrease the size of 
the test suite. Yet, the difference in the execution cost of the 
tests is often significant and it may be costly to use a test suite 
consisting of a few long-running test cases.  Thus, this paper 
proposes an algorithm, based on the concept of test 
irreplaceability, which creates a reduced test suite with a 
decreased execution cost. Leveraging widely used benchmark 
programs, the empirical study shows that, in comparison to 
existing techniques, the presented algorithm is the most 
effective at reducing the cost of running a test suite. 
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I.  INTRODUCTION 

According to the IEEE definition [1], a test case is a set 
of input data and expected output results which are designed 
to exercise a specific software function or test requirement. 
During testing, the underlying software system will be 
executed to examine the associated program path or to 
determine the correctness of a software function. It is 
difficult for a single test case to satisfy all of the specified 
test requirements. Hence, a considerable number of test cases 
are usually generated and collected in a test suite [2]. 

Evolutionary development, incremental delivery, and 
software maintenance are common in software development 
[3]. In such development processes, the functionality of a 
software system may be refined to meet the customer’s needs 
or may be delivered incrementally. Each time the software 
developers modify the system, they may also introduce some 
faults. New tests should be added to ensure the quality of 
new functions. The existing test cases should also be re-
executed in order to detect the faults caused by imperfect 
debugging. Such an activity is called regression testing [1]. 
In the process of software development, more and more test 
cases will be included, thus often causing some test 
requirements to be associated with more than one test case. 

If software developers can reduce the test suite by 
removing the redundant test cases, while still ensuring that 
all test requirements are satisfied by the reduced test suite, 
then testing may be more efficient. That is, given the original 
test suite T={t1, t2, t3, ..., tn} and a set of test requirements 

R={r1, r2, r3, ..., rm}, the goal is to find a subset of the test 
suite T, denoted by a representative set RS, to satisfy all the 
test requirements satisfied by T. The process of finding the 
representative set is called test suite reduction [4], [5]. 

The minimum set cover problem can be reduced to the 
test suite minimization problem in polynomial time [6]. Karp 
proved that the set cover problem is NP-complete [7]. Many 
techniques have been proposed to obtain the near-optimal 
solution for the test suite reduction problem. Even though the 
representative sets produced by these techniques are not 
guaranteed to be optimal, they can significantly decrease 
both the size of the test suite and the cost associated with its 
execution. Yet, to the best of our knowledge, most of the 
existing reduction algorithms ignore the significant 
differences in the execution costs of the tests.  In response to 
this limitation, this paper describes and empirically evaluates 
a technique that uses the concept of test irreplaceability to 
create a representative set with low execution cost. 

II. RELATED WORK 

A. Greedy Algorithm 

The Greedy algorithm is a commonly-used method for 
finding the near-optimal solution to the test suite reduction 
problem [8]. This algorithm repeatedly removes the test 
which covers the most unsatisfied test requirements from the 
test suite set T to RS until all of the requirements are covered. 
Many existing test suite reduction methods are based on the 
concept of the Greedy algorithm [9]. In other words, many 
algorithms repetitively choose the “best” test case to obtain 
the near-optimal solution from the locally optimal solutions. 

B.  GE and GRE Algorithms 

If a test requirement only can be satisfied by a specific 
test case, then that test can be called the essential test case for 
that requirement [10]. If the essential test cases are not 
inserted into the representative set early in the reduction 
process, some of the selected test cases may become 
redundant with a high probability. However, the Greedy 
algorithm does not specifically deal with the essential test 
cases as early as is possible. Because the Greedy algorithm 
does not ensure that the essential test cases are chosen first, 
Chen and Lau [10] proposed two algorithms, called GE and 
GRE, to address this problem. The GE algorithm will choose 
all of the essential test cases first and then will apply the 



Greedy algorithm to the remaining test suite. The GRE 
algorithm is the enhanced version of GE. In the test suite 
reduction process, the GRE algorithm will first adopt the 
essential strategy and then the 1-to-1 redundant strategy. 
Only when no essential test case can be found will the 
Greedy strategy then be adopted. GRE finds the optimal 
solution only when the essential and 1-to-1 redundant 
strategies are adopted during the reduction process [10].  

C. HGS Algorithm 

The HGS algorithm proposed by Harrold et al. [4] is 
another approach to test suite reduction that has received 
considerable attention. Let Ti  (for i = 1, 2, 3, …, m) represent 
the subsets of T, with each subset Ti containing all of the test 
cases that satisfy the i-th test requirement. The HGS 
algorithm will determine the representative test cases for 
each subset and include them in the representative set. 

III. REDUCING THE EXECUTION COST OF A TEST SUITE 

Due to the differences in the execution costs between the 
test cases, the representative set with the smallest number of 
tests may not be the one with the minimum execution cost. 
As such, the cost of a test should be a more important 
consideration for achieving cost-effective testing than the 
size of the test suite. Thus, it is necessary to consider 
individual execution costs when choosing the test cases. 

A. Review of the ReduceWithRatio Algorithm 

The coverage increase per unit of cost consumption may 
be an intuitive metric to evaluate a test case. Given that 
Coverage(t) represents the number of uncovered test 
requirements satisfied by test case t, Ma et al. [11] and Smith 
and Kapfhammer [12] evaluated the test cases using 
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where Cost(t) represents the execution cost of the test case t. 
A higher value of Ratio(t) implies that the test case is 
expected to be more cost-effective; in contrast, a lower 
value of Ratio(t) may indicate that the test is less desirable. 

The Greedy algorithm repeatedly includes the test case 
with the maximum Coverage(t) until all of the test 
requirements are satisfied. Instead of Coverage(t), Smith and 
Kapfhammer’s algorithm, hereafter called ReduceWithRatio, 
repeatedly includes the test case with the maximum Ratio(t) 
until all of the test requirements are satisfied. 

B. Reducing with Irreplaceability 

In preliminary studies, we found circumstances in which 
ReduceWithRatio did not produce the best reduced test suite. 
As an illustrative example, let’s consider Table I’s test suite 
that satisfies six requirements with four tests that have 
varying cost. Table II demonstrates the steps that 
ReduceWithRatio would take to reduce the test suite from 
Table I. This table shows that the ratio-based method creates 
the representative set RS1={t1, t2, t3} with an execution cost 
of 14. However, the subset {t2, t3}, with cost 10, is enough to 
satisfy all test requirements. That is, the best representative 
set will exclude t1 in order to minimize the execution cost. 

In fact, if the test requirement r that is satisfied by the test 
case t can also be satisfied by many other test cases, there is 
a high probability that r can still be satisfied even though t is 
not included in the representative set. Therefore, we posit 
that t has a higher replaceability with respect to r in this case. 
According to our initial observations, we found that: 
1. A representative set may not have the lowest execution 

cost if it includes a test case with high replaceability.  
2. Because the ReduceWithRatio algorithm only considers 

the coverage and execution cost of a test case, the test 
cases with high replaceability frequently may be 
selected for inclusion in the representative set. 

In prior work, Jones and Harrold [13] pointed out that 
test suite reduction algorithms may choose a test case 
according to its contribution, or goodness, based on some 
characteristics of a program. One measure of the contribution 
of a test case t to the test suite T can be defined as 
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where R={r1, r2, r3, ..., rm} is the test requirements and 
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(3) 
The number of test cases that satisfy the test requirement 

ri in (3) is positively related to the replaceability of t with 
respect to ri. A higher value of replaceability indicates that 
more test cases can be used to replace t while maintaining 
the original test coverage. In contrast, a higher value of 
irreplaceability means that it is not easy to find other test 
cases to replace t. Consequently, we use (2) to evaluate the 
irreplaceability of test cases in the test suite. Based on this 
concept, we combine the execution cost of a test with (2) and 
evaluate the irreplaceability of test cases by 

)(

 ) ,(
)( 1

tCost

rtonContributi
tbilityIrreplacea

m

i

i
 .       (4) 

As mentioned previously, Coverage(t) and Ratio(t) have 
been adopted to evaluate and choose the test cases. Similarly, 
Irreplaceability(t) can be used to evaluate test cases and 
repeatedly choose the test with the maximum value until all 
of the test requirements are satisfied. Fig. 1 gives the pseudo 
code of ReduceWithIrreplaceability and Table III shows the 
steps associated with applying this algorithm to the example 
in Table I.  In comparison to the sets produced by the other 
methods, it is evident that the ReduceWithIrreplaceability 
algorithm creates the representative set RS2={t2, t3} with the 
lowest overall execution cost. 

 
TABLE I.  AN EXAMPLE OF A TEST SUITE AND TEST REQUIREMENTS. 

Test case Requirements to be satisfied
No. Cost r1 r2 r3 r4 r5 r6

t1 4 • • •    
t2 7  • • • •  
t3 3 •     • 
t4 4   •   • 

 



TABLE II.  APPLYING ReduceWithRatio TO THE EXAMPLE. 

T = {t1, t2, t3, t4}, R = {r1, r2, r3, r4, r5, r6}, RS1 = { } 
Test case Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 • • •    0.75  
t2 7  • • • •  0.57  
t3 3 •     • 0.67  

Initial 

t4 4   •   • 0.50  
T = {t2, t3, t4}, R = {r4, r5, r6}, RS1 = {t1} 

Test case Cost    r4 r5 r6 Ratio(t)
t1 4       
t2 7    • •  0.29  
t3 3      • 0.33  

Step 1 

t4 4      • 0.25  
T = {t2, t4}, R = {r4, r5}, RS1 = {t1, t3} 

Test case Cost    r4 r5  Ratio(t)
t1 4       
t2 7    • •  0.29  
t3 3       

Step 2 

t4 4       0 
T = {t4}, R = { }, RS1 = {t1, t2, t3}, Cost of RS1 = 14 

Test case Cost       Ratio(t)
t1 4       
t2 7       
t3 3       

Step 3 

t4 4       0 
 

TABLE III.  APPLYING ReduceWithIrreplaceability TO THE EXAMPLE. 

T = {t1, t2, t3, t4}, R = {r1, r2, r3, r4, r5, r6}, RS5 = { } 
Test case Cost r1 r2 r3 r4 r5 r6 Irreplaceability(t)

t1 4 • • •    0.33 
t2 7  • • • •  0.40 
t3 3 •    • 0.33 

Initial 

t4 4   •   • 0.21 
T = {t1, t3, t4}, R = {r1, r6}, RS2 = {t2} 

Test case Cost r1     r6 Irreplaceability(t)
t1 4 •      0.13 
t2 7       
t3 3 •     • 0.33 

Step 1 

t4 4      • 0.13 
T = {t1, t4}, R = { }, RS2 = {t2, t3}, Cost of RS2 = 10 

Test case Cost       Irreplaceability(t)
t1 4       0.00 
t2 7       
t3 3       

Step 2 

t4 4       0.00 

IV. EXPERIMENTAL ANALYSES 

A. Experiment Description 

In addition to the proposed algorithm that uses test 
irreplaceability, we also selected Greedy, GRE, HGS and 
ReduceWithRatio for comparison. Moreover, since the 
Siemens suite of programs [5], [14], as described in Table IV 
and obtained from the Software-artifact Infrastructure 
Repository (SIR) [15], are frequently chosen benchmarks for 
evaluating test suite reduction methods, we used them in the 
experiments. Following an empirical setup similar to the one 
in [5] and [16], we took these steps:   

1. Randomly generate an integer z, 1 ≤ z ≤ 0.5 × loc; 
2. Randomly pick z test cases from the test pool for each 

subject program, and include those z test cases in T;  
3. Check whether the test cases in T can satisfy all of the 

test requirements or not. If not, randomly choose one 
more test case that can satisfy one or more unsatisfied 
test requirements, and include the test case into T; 

4. Repeat Step 3 until all test requirements are satisfied. 
After collecting the execution times of the tests and 

taking their average, we performed test suite reduction for 
each of the 1000 generated test suites. In these experiments, 
we use the percentage of suite cost reduction (SCR), as 
defined in (5), to evaluate the reduction capability. 
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where Cost(T) represents the cost required to execute the 
original test suite T, and Cost(RS) represents the cost 
associated with running the representative set RS. 

TABLE IV.  DESCRIPTION OF THE SIR SUBJECT PROGRAMS. 

Subject Programs Size of Test Pool Num. of Test Requirements
printtokens 4,130 140                    
printtokens2 4,115 138                    

replace 5,542 126                    
schedule 2,650 46                    
schedule2 2,710 72                    

tcas 1,608 16                    
totinfo 1,052 44                    

B. Experimental Results 

Table V furnishes the experimental results for the five 
algorithms. Here RSGreedy, RSGRE, RSHGS, RSReduceWithRatio 
and RSReduceWithIrreplaceability denote the representative sets 
obtained by applying the selected algorithms, respectively. 
From this table, it is clear that all selected algorithms can 
significantly reduce the execution costs of test suites; the 
SCR values are greater than 87% in all cases. Among all of 
the algorithms, ReduceWithIrreplaceability achieves the 
best SCR scores for all of the subject programs. With the 
exception of schedule, the Greedy algorithm produces the 
worst representative set for the programs. Moreover, even 
though ReduceWithRatio considers test execution cost, it 
performs worse than the traditional algorithms (i.e., GRE 
and HGS) for printtokens and printtokens2. On the whole, 
both ReduceWithIrreplaceability and ReduceWithRatio 
exhibit excellent cost reduction capabilities, but the SCR 
scores of ReduceWithRatio are not as good as those of 
ReduceWithIrreplaceability. It should be noted that the 
SCR values shown in Table V are close to each other 
because the execution cost of the original generated test 
suite is quite high. However, the differences in the 
execution costs of the representative sets are considerable. 

One threat to the validity of our empirical study 
includes the measurement of the execution time of each 
test case. Although we executed each test 1000 times and 
took the average of the execution costs, the measure for 
each test case may change if we performed the experiment 
in another environment. The second threat to validity is 
related to the fact that the experiments focused on the 
relatively small Siemens programs.  While these programs 
are a good starting point for experimentation, our findings 
may not be relevant to larger programs and test suites. 



 

algorithm ReduceWithIrreplaceability 
input T: the set of test cases 

  R: the set of requirements 
  S: the relation between T and R, S={(t, r)| t satisfies r, tT, and rR} 

output RS: a representative set of T 
begin 
 RS = { }; 
 while (R is not empty) 
 { 
        t = the test case in T that has the maximum irreplaceability; 
  RS = RS   {t}; 
  T = T  {t}; 
  R = R  {the requirements covered by t}; 
 } 
 return RS; 
end  

Figure 1.  Pseudo code of the ReduceWithIrreplaceability algorithm. 

TABLE V.  COMPARISON OF THE REPRESENTATIVE SETS PRODUCED BY THE SELECTED ALGORITHMS. 

Original RSGreedy RSGRE RSHGS RSReduceWithRatio RSReduceWithIrreplaceabilityTest Suite 
Program Costa Costa SCR Costa SCR Costa SCR Costa SCR Costa SCR 

Printtokens 914.67 117.32 87.17% 100.63 89.00% 98.26 89.26% 115.04 87.42% 81.73 91.06%
printtokens2 717.84 58.29 91.88% 53.98 92.48% 56.65 92.11% 56.19 92.17% 48.53 93.24%

Replace 1068.90 88.28 91.74% 83.51 92.19% 87.46 91.82% 81.06 92.42% 76.06 92.88%
Schedule 493.77 18.71 96.21% 18.14 96.33% 19.45 96.06% 16.35 96.69% 15.32 96.90%
schedule2 651.82 40.14 93.84% 37.70 94.22% 37.04 94.32% 28.60 95.61% 26.80 95.89%

Tcas 219.39 23.74 89.18% 22.85 89.58% 22.85 89.58% 21.53 90.19% 20.74 90.55%
Totinfo 690.97 52.15 92.45% 48.62 92.96% 43.82 93.66% 26.43 96.17% 26.14 96.22%

a. Indicates the cost required to execute the original test suite or the representative set, which is measured in millisecond (ms). 
 

V. CONCLUSION AND FUTURE WORK 

Most existing test suite reduction algorithms attempt to 
minimize the size of a regression test suite. Since the 
ReduceWithRatio algorithm does not always perform in a 
satisfactory manner, this paper presents an algorithm that 
uses irreplaceability to evaluate the importance of tests and 
ultimately produce reduced test suites with a substantially 
decreased execution cost. The experimental results indicate 
that ReduceWithIrreplaceability is the best method for 
decreasing the cost of test suite execution, according to the 
SCR metric.  In future work, we intend to enhance the cost 
reduction capabilities of GRE and HGS by incorporating test 
irreplaceability into their operation.  Furthermore, we will 
conduct additional experiments with larger subject programs. 
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