
Reducing the Cost of Regression Testing by Identifying Irreplaceable Test Cases

Chu-Ti Lin1, Kai-Wei Tang2, Cheng-Ding Chen1, Gregory M. Kapfhammer3

1Dept. of Computer Sci. and Info. Eng.
National Chiayi University

Chiayi, Taiwan
{chutilin,s0990394}@mail.ncyu.edu.tw

2Cloud System Software Institute
Institute for Information Industry

Taipei, Taiwan
kwtang@iii.org.tw

3Dept. of Computer Science
Allegheny College

Meadville, PA
gkapfham@allegheny.edu

Abstract—Test suite reduction techniques decrease the cost of
software testing by removing the redundant test cases from the
test suite while still producing a reduced set of tests that yields
the same level of code coverage as the original suite. Most of
the existing approaches to reduction aim to decrease the size of
the test suite. Yet, the difference in the execution cost of the
tests is often significant and it may be costly to use a test suite
consisting of a few long-running test cases. Thus, this paper
proposes an algorithm, based on the concept of test
irreplaceability, which creates a reduced test suite with a
decreased execution cost. Leveraging widely used benchmark
programs, the empirical study shows that, in comparison to
existing techniques, the presented algorithm is the most
effective at reducing the cost of running a test suite.

Keywords-regression testing; test suite reduction; code coverage

I. INTRODUCTION

According to the IEEE definition [1], a test case is a set
of input data and expected output results which are designed
to exercise a specific software function or test requirement.
During testing, the underlying software system will be
executed to examine the associated program path or to
determine the correctness of a software function. It is
difficult for a single test case to satisfy all of the specified
test requirements. Hence, a considerable number of test cases
are usually generated and collected in a test suite [2].

Evolutionary development, incremental delivery, and
software maintenance are common in software development
[3]. In such development processes, the functionality of a
software system may be refined to meet the customer’s needs
or may be delivered incrementally. Each time the software
developers modify the system, they may also introduce some
faults. New tests should be added to ensure the quality of
new functions. The existing test cases should also be re-
executed in order to detect the faults caused by imperfect
debugging. Such an activity is called regression testing [1].
In the process of software development, more and more test
cases will be included, thus often causing some test
requirements to be associated with more than one test case.

If software developers can reduce the test suite by
removing the redundant test cases, while still ensuring that
all test requirements are satisfied by the reduced test suite,
then testing may be more efficient. That is, given the original
test suite T={t1, t2, t3, ..., tn} and a set of test requirements

R={r1, r2, r3, ..., rm}, the goal is to find a subset of the test
suite T, denoted by a representative set RS, to satisfy all the
test requirements satisfied by T. The process of finding the
representative set is called test suite reduction [4], [5].

The minimum set cover problem can be reduced to the
test suite minimization problem in polynomial time [6]. Karp
proved that the set cover problem is NP-complete [7]. Many
techniques have been proposed to obtain the near-optimal
solution for the test suite reduction problem. Even though the
representative sets produced by these techniques are not
guaranteed to be optimal, they can significantly decrease
both the size of the test suite and the cost associated with its
execution. Yet, to the best of our knowledge, most of the
existing reduction algorithms ignore the significant
differences in the execution costs of the tests. In response to
this limitation, this paper describes and empirically evaluates
a technique that uses the concept of test irreplaceability to
create a representative set with low execution cost.

II. RELATED WORK

A. Greedy Algorithm

The Greedy algorithm is a commonly-used method for
finding the near-optimal solution to the test suite reduction
problem [8]. This algorithm repeatedly removes the test
which covers the most unsatisfied test requirements from the
test suite set T to RS until all of the requirements are covered.
Many existing test suite reduction methods are based on the
concept of the Greedy algorithm [9]. In other words, many
algorithms repetitively choose the “best” test case to obtain
the near-optimal solution from the locally optimal solutions.

B. GE and GRE Algorithms

If a test requirement only can be satisfied by a specific
test case, then that test can be called the essential test case for
that requirement [10]. If the essential test cases are not
inserted into the representative set early in the reduction
process, some of the selected test cases may become
redundant with a high probability. However, the Greedy
algorithm does not specifically deal with the essential test
cases as early as is possible. Because the Greedy algorithm
does not ensure that the essential test cases are chosen first,
Chen and Lau [10] proposed two algorithms, called GE and
GRE, to address this problem. The GE algorithm will choose
all of the essential test cases first and then will apply the

Greedy algorithm to the remaining test suite. The GRE
algorithm is the enhanced version of GE. In the test suite
reduction process, the GRE algorithm will first adopt the
essential strategy and then the 1-to-1 redundant strategy.
Only when no essential test case can be found will the
Greedy strategy then be adopted. GRE finds the optimal
solution only when the essential and 1-to-1 redundant
strategies are adopted during the reduction process [10].

C. HGS Algorithm

The HGS algorithm proposed by Harrold et al. [4] is
another approach to test suite reduction that has received
considerable attention. Let Ti (for i = 1, 2, 3, …, m) represent
the subsets of T, with each subset Ti containing all of the test
cases that satisfy the i-th test requirement. The HGS
algorithm will determine the representative test cases for
each subset and include them in the representative set.

III. REDUCING THE EXECUTION COST OF A TEST SUITE

Due to the differences in the execution costs between the
test cases, the representative set with the smallest number of
tests may not be the one with the minimum execution cost.
As such, the cost of a test should be a more important
consideration for achieving cost-effective testing than the
size of the test suite. Thus, it is necessary to consider
individual execution costs when choosing the test cases.

A. Review of the ReduceWithRatio Algorithm

The coverage increase per unit of cost consumption may
be an intuitive metric to evaluate a test case. Given that
Coverage(t) represents the number of uncovered test
requirements satisfied by test case t, Ma et al. [11] and Smith
and Kapfhammer [12] evaluated the test cases using

)(

)(
)(

tCost

tCoverage
tRatio  , (1)

where Cost(t) represents the execution cost of the test case t.
A higher value of Ratio(t) implies that the test case is
expected to be more cost-effective; in contrast, a lower
value of Ratio(t) may indicate that the test is less desirable.

The Greedy algorithm repeatedly includes the test case
with the maximum Coverage(t) until all of the test
requirements are satisfied. Instead of Coverage(t), Smith and
Kapfhammer’s algorithm, hereafter called ReduceWithRatio,
repeatedly includes the test case with the maximum Ratio(t)
until all of the test requirements are satisfied.

B. Reducing with Irreplaceability

In preliminary studies, we found circumstances in which
ReduceWithRatio did not produce the best reduced test suite.
As an illustrative example, let’s consider Table I’s test suite
that satisfies six requirements with four tests that have
varying cost. Table II demonstrates the steps that
ReduceWithRatio would take to reduce the test suite from
Table I. This table shows that the ratio-based method creates
the representative set RS1={t1, t2, t3} with an execution cost
of 14. However, the subset {t2, t3}, with cost 10, is enough to
satisfy all test requirements. That is, the best representative
set will exclude t1 in order to minimize the execution cost.

In fact, if the test requirement r that is satisfied by the test
case t can also be satisfied by many other test cases, there is
a high probability that r can still be satisfied even though t is
not included in the representative set. Therefore, we posit
that t has a higher replaceability with respect to r in this case.
According to our initial observations, we found that:
1. A representative set may not have the lowest execution

cost if it includes a test case with high replaceability.
2. Because the ReduceWithRatio algorithm only considers

the coverage and execution cost of a test case, the test
cases with high replaceability frequently may be
selected for inclusion in the representative set.

In prior work, Jones and Harrold [13] pointed out that
test suite reduction algorithms may choose a test case
according to its contribution, or goodness, based on some
characteristics of a program. One measure of the contribution
of a test case t to the test suite T can be defined as





m

i

irtonContributitonToSuiteContributi
1

) ,()(, (2)

where R={r1, r2, r3, ..., rm} is the test requirements and









.i
i

i

i
rt

r

rt

rtonContributi
 satisfies if ,

satisfy that cases test ofnumber the

1

,satisfy cannot if 0,

) ,(

(3)
The number of test cases that satisfy the test requirement

ri in (3) is positively related to the replaceability of t with
respect to ri. A higher value of replaceability indicates that
more test cases can be used to replace t while maintaining
the original test coverage. In contrast, a higher value of
irreplaceability means that it is not easy to find other test
cases to replace t. Consequently, we use (2) to evaluate the
irreplaceability of test cases in the test suite. Based on this
concept, we combine the execution cost of a test with (2) and
evaluate the irreplaceability of test cases by

)(

) ,(
)(1

tCost

rtonContributi
tbilityIrreplacea

m

i

i
 . (4)

As mentioned previously, Coverage(t) and Ratio(t) have
been adopted to evaluate and choose the test cases. Similarly,
Irreplaceability(t) can be used to evaluate test cases and
repeatedly choose the test with the maximum value until all
of the test requirements are satisfied. Fig. 1 gives the pseudo
code of ReduceWithIrreplaceability and Table III shows the
steps associated with applying this algorithm to the example
in Table I. In comparison to the sets produced by the other
methods, it is evident that the ReduceWithIrreplaceability
algorithm creates the representative set RS2={t2, t3} with the
lowest overall execution cost.

TABLE I. AN EXAMPLE OF A TEST SUITE AND TEST REQUIREMENTS.

Test case Requirements to be satisfied
No. Cost r1 r2 r3 r4 r5 r6

t1 4 • • •
t2 7 • • • •
t3 3 • •
t4 4 • •

TABLE II. APPLYING ReduceWithRatio TO THE EXAMPLE.

T = {t1, t2, t3, t4}, R = {r1, r2, r3, r4, r5, r6}, RS1 = { }
Test case Cost r1 r2 r3 r4 r5 r6 Ratio(t)

t1 4 • • • 0.75
t2 7 • • • • 0.57
t3 3 • • 0.67

Initial

t4 4 • • 0.50
T = {t2, t3, t4}, R = {r4, r5, r6}, RS1 = {t1}

Test case Cost    r4 r5 r6 Ratio(t)
t1 4    
t2 7    • • 0.29
t3 3    • 0.33

Step 1

t4 4    • 0.25
T = {t2, t4}, R = {r4, r5}, RS1 = {t1, t3}

Test case Cost    r4 r5  Ratio(t)
t1 4     
t2 7    • •  0.29
t3 3     

Step 2

t4 4     0
T = {t4}, R = { }, RS1 = {t1, t2, t3}, Cost of RS1 = 14

Test case Cost       Ratio(t)
t1 4       
t2 7       
t3 3       

Step 3

t4 4       0

TABLE III. APPLYING ReduceWithIrreplaceability TO THE EXAMPLE.

T = {t1, t2, t3, t4}, R = {r1, r2, r3, r4, r5, r6}, RS5 = { }
Test case Cost r1 r2 r3 r4 r5 r6 Irreplaceability(t)

t1 4 • • • 0.33
t2 7 • • • • 0.40
t3 3 • • 0.33

Initial

t4 4 • • 0.21
T = {t1, t3, t4}, R = {r1, r6}, RS2 = {t2}

Test case Cost r1     r6 Irreplaceability(t)
t1 4 •     0.13
t2 7     
t3 3 •     • 0.33

Step 1

t4 4     • 0.13
T = {t1, t4}, R = { }, RS2 = {t2, t3}, Cost of RS2 = 10

Test case Cost       Irreplaceability(t)
t1 4       0.00
t2 7       
t3 3       

Step 2

t4 4       0.00

IV. EXPERIMENTAL ANALYSES

A. Experiment Description

In addition to the proposed algorithm that uses test
irreplaceability, we also selected Greedy, GRE, HGS and
ReduceWithRatio for comparison. Moreover, since the
Siemens suite of programs [5], [14], as described in Table IV
and obtained from the Software-artifact Infrastructure
Repository (SIR) [15], are frequently chosen benchmarks for
evaluating test suite reduction methods, we used them in the
experiments. Following an empirical setup similar to the one
in [5] and [16], we took these steps:

1. Randomly generate an integer z, 1 ≤ z ≤ 0.5 × loc;
2. Randomly pick z test cases from the test pool for each

subject program, and include those z test cases in T;
3. Check whether the test cases in T can satisfy all of the

test requirements or not. If not, randomly choose one
more test case that can satisfy one or more unsatisfied
test requirements, and include the test case into T;

4. Repeat Step 3 until all test requirements are satisfied.
After collecting the execution times of the tests and

taking their average, we performed test suite reduction for
each of the 1000 generated test suites. In these experiments,
we use the percentage of suite cost reduction (SCR), as
defined in (5), to evaluate the reduction capability.

%100
)(

)()(
) ,SCR(




TCost

RSCostTCost
RST , (5)

where Cost(T) represents the cost required to execute the
original test suite T, and Cost(RS) represents the cost
associated with running the representative set RS.

TABLE IV. DESCRIPTION OF THE SIR SUBJECT PROGRAMS.

Subject Programs Size of Test Pool Num. of Test Requirements
printtokens 4,130 140
printtokens2 4,115 138

replace 5,542 126
schedule 2,650 46
schedule2 2,710 72

tcas 1,608 16
totinfo 1,052 44

B. Experimental Results

Table V furnishes the experimental results for the five
algorithms. Here RSGreedy, RSGRE, RSHGS, RSReduceWithRatio
and RSReduceWithIrreplaceability denote the representative sets
obtained by applying the selected algorithms, respectively.
From this table, it is clear that all selected algorithms can
significantly reduce the execution costs of test suites; the
SCR values are greater than 87% in all cases. Among all of
the algorithms, ReduceWithIrreplaceability achieves the
best SCR scores for all of the subject programs. With the
exception of schedule, the Greedy algorithm produces the
worst representative set for the programs. Moreover, even
though ReduceWithRatio considers test execution cost, it
performs worse than the traditional algorithms (i.e., GRE
and HGS) for printtokens and printtokens2. On the whole,
both ReduceWithIrreplaceability and ReduceWithRatio
exhibit excellent cost reduction capabilities, but the SCR
scores of ReduceWithRatio are not as good as those of
ReduceWithIrreplaceability. It should be noted that the
SCR values shown in Table V are close to each other
because the execution cost of the original generated test
suite is quite high. However, the differences in the
execution costs of the representative sets are considerable.

One threat to the validity of our empirical study
includes the measurement of the execution time of each
test case. Although we executed each test 1000 times and
took the average of the execution costs, the measure for
each test case may change if we performed the experiment
in another environment. The second threat to validity is
related to the fact that the experiments focused on the
relatively small Siemens programs. While these programs
are a good starting point for experimentation, our findings
may not be relevant to larger programs and test suites.

algorithm ReduceWithIrreplaceability
input T: the set of test cases

 R: the set of requirements
 S: the relation between T and R, S={(t, r)| t satisfies r, tT, and rR}

output RS: a representative set of T
begin
 RS = { };
 while (R is not empty)
 {
 t = the test case in T that has the maximum irreplaceability;
 RS = RS  {t};
 T = T  {t};
 R = R  {the requirements covered by t};
 }
 return RS;
end

Figure 1. Pseudo code of the ReduceWithIrreplaceability algorithm.

TABLE V. COMPARISON OF THE REPRESENTATIVE SETS PRODUCED BY THE SELECTED ALGORITHMS.

Original RSGreedy RSGRE RSHGS RSReduceWithRatio RSReduceWithIrreplaceabilityTest Suite
Program Costa Costa SCR Costa SCR Costa SCR Costa SCR Costa SCR

Printtokens 914.67 117.32 87.17% 100.63 89.00% 98.26 89.26% 115.04 87.42% 81.73 91.06%
printtokens2 717.84 58.29 91.88% 53.98 92.48% 56.65 92.11% 56.19 92.17% 48.53 93.24%

Replace 1068.90 88.28 91.74% 83.51 92.19% 87.46 91.82% 81.06 92.42% 76.06 92.88%
Schedule 493.77 18.71 96.21% 18.14 96.33% 19.45 96.06% 16.35 96.69% 15.32 96.90%
schedule2 651.82 40.14 93.84% 37.70 94.22% 37.04 94.32% 28.60 95.61% 26.80 95.89%

Tcas 219.39 23.74 89.18% 22.85 89.58% 22.85 89.58% 21.53 90.19% 20.74 90.55%
Totinfo 690.97 52.15 92.45% 48.62 92.96% 43.82 93.66% 26.43 96.17% 26.14 96.22%

a. Indicates the cost required to execute the original test suite or the representative set, which is measured in millisecond (ms).

V. CONCLUSION AND FUTURE WORK

Most existing test suite reduction algorithms attempt to
minimize the size of a regression test suite. Since the
ReduceWithRatio algorithm does not always perform in a
satisfactory manner, this paper presents an algorithm that
uses irreplaceability to evaluate the importance of tests and
ultimately produce reduced test suites with a substantially
decreased execution cost. The experimental results indicate
that ReduceWithIrreplaceability is the best method for
decreasing the cost of test suite execution, according to the
SCR metric. In future work, we intend to enhance the cost
reduction capabilities of GRE and HGS by incorporating test
irreplaceability into their operation. Furthermore, we will
conduct additional experiments with larger subject programs.

ACKNOWLEDGMENT

This research was sponsored by the National Science
Council of Taiwan (Grant: NSC 100-2221-E-415-007-MY2).

REFERENCES
[1] D. Binkley, “Semantics Guided Regression Test Cost Reduction,”

IEEE Trans. on Software Engineering, Vol. 23, No. 8, pp. 498-516,
August 1997.

[2] H. Zhong, L. Zhang, and H. Mei, “An Experimental Study of Four
Typical Test Suite Reduction Techniques,” Information and Software
Technology, Vol. 50, No. 6, pp. 534-546, May 2008.

[3] I. Sommerville, Software Engineering, Addison-Wesley, ninth ed.,
2010.

[4] M. J. Harrold, R. Gupta, and M. L. Soffa, “A Methodology for
Controlling the Size of a Test Suite,” ACM Trans. on Software
Engineering and Methodology, Vol. 2, No. 3, pp. 270-285, July 1993.

[5] D. Jeffrey and N. Gupta, “Improving Fault Detection Capability by
Selectively Retaining Test Cases During Test Suite Reduction,” IEEE
Trans. on Software Engineering, Vol. 33, No. 2, pp. 108-123,

February 2007.
[6] J. W. Lin and C. Y. Huang, “Analysis of Test Suite Reduction with

Enhanced Tie-Breaking Techniques,” Information and Software
Technology, Vol. 51, No. 4, pp. 679-690, April 2009.

[7] R. M. Karp, “Reducibility among Combinatorial Problems,”
Complexity of Computer Computations, Plenum Press, pp. 85-103,
1972.

[8] V. Chvatal, “A Greedy Heuristic for the Set-Covering Problem,”
Mathematics Operations Research, Vol. 4, No. 3, pp. 233-235, August
1979.

[9] S. Yoo and M. Harman, “Regression Testing Minimization, Selection
and Prioritization: a Survey,” Software Testing, Verification and
Reliability, Vol. 22, No. 2, March 2012.

[10] T. Y. Chen and M. F. Lau, “A New Heuristic for Test Suite
Reduction,” Information and Software Technology, Vol. 40, No. 5-6,
pp. 347-354, July 1998.

[11] X. Y. Ma, Z. F. He, B. K. Sheng, and C. Q. Ye, “A Genetic Algorithm
for Test-Suite Reduction,” Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, October 2005.

[12] A. M. Smith and G. M. Kapfhammer, “An Empirical Study of
Incorporating Cost into Test Suite Reduction and Prioritization,”
Proceedings of the 24th ACM SIGAPP Symposium on Applied
Computing, Software Engineering Track, March 2009.

[13] J. A. Jones and M. J. Harrold, “Test-Suite Reduction and
Prioritization for Modified Condition/Decision Coverage,” IEEE
Trans. on Software Engineering, Vol. 29 No. 3, pp. 195-209, March
2003.

[14] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on
the Effectiveness of Dataflow- and Controlflow-based Test Adequacy
Criteria,” Proceedings of the 16th International Conference on
Software Engineering, pp. 191-200, May 1994.

[15] H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact,” Empirical Software Engineering, Vol. 10, No. 4, pp.
405-435, October 2005.

[16] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An Empirical
Study of the Effects of Minimization on the Fault Detection
Capabilities of Test Suites,” Proceedings of the 14th International
Conference on Software Maintenance, pp. 34-43, November 1998.

