A Genetic Algorithm to Improve Linux Kernel Performance
on Resource-Constrained Devices

~James Kukunas
jkukunas@acm.org

Robert D. Cupper
bcupper@allegheny.edu

Gregory M. Kapfhammer
gkapfham@allegheny.edu

Department of Computer Science
Allegheny College

ABSTRACT

As computers become increasingly mobile, users demand
more functionality, longer battery-life, and better perfor-
mance from mobile devices. In response, chipset fabrica-
tors are focusing on elegant architectures to provide solu-
tions that are both low-power and high-performance. Since
these architectures rely on unique x86 extensions rather than
fast clock speeds and large caches, careful thought must be
placed into effective optimization strategies for not only user
applications, but also the kernel itself, as the typical default
optimizations used by modern compilers do not often take
advantage of these specialized features. Focusing on the
Intel Diamondyville platform, this paper presents a genetic
algorithm that evolves the compiler flags needed to build a
Linux kernel that exhibits reduced response times.

Categories and Subject Descriptors: D.3.4 [Program-
ming Languages|: Processors-compilers, optimization
General Terms: Performance

Keywords: Genetic Algorithm, Linux Kernel, Compilers

1. INTRODUCTION

Resource constrained mobile devices, such as netbooks,
have become increasingly popular due to their low cost and
minimal size and weight. Many motivations exist for op-
timizing the Linux kernel for netbooks, such as increased
battery life, reduced heat generation, and improved kernel
performance. Intel offers an optimizing C compiler that is
capable of performing architecture-specific optimizations for
Intel chipsets, including the Intel Atom processors currently
available in most netbooks. The LinuxDNA project patches
the Linux kernel to build with the Intel C compiler, thus
allowing the kernel to take advantage of these architecture-
specific optimizations. Initial results from LinuxDNA found
up to a 40% increase in performance within the kernel [4].

Careful consideration must be used when choosing com-
piler optimizations. While certain optimizations comple-
ment other ones and provide further opportunity for per-

Permission to make digital or hard copies of all or part of this work for

formance gains, some hinder the performance of others and
thus can lead to kernels that are both larger and slower.
The most straightforward approach to solving this problem
is to perform exhaustive compilation by building each pos-
sible kernel and then selecting the best. However, this is
not a feasible approach due to the size of the search space.
The system described by this paper examines 107 different
compiler flags, which would yield 2'°7 different kernels. We
use a genetic algorithm (GA) to perform a focused search,
thereby reducing the time to find good compiler flags.

Previous work using GAs to evolve compiler flags has seen
significant success. Cooper et. al. presented a genetic al-
gorithm to evolve compiler flags to reduce the space over-
head of code and achieved up to 40% smaller code size [1].
Davidson et. al. presented a genetic algorithm to evolve op-
timization orderings within the VPO compiler on the ARM
platform, and achieved near-optimal performance [3]. Un-
like previous work, this paper focuses on a new and cur-
rently unstudied architecture, the Intel Diamondville, and
on a different compiler, the Intel C Compiler, and uses re-
sponse time as an optimization metric rather than code size.

The Intel Diamondville is a micro-architecture designed
for netbooks and mobile devices. The Diamondyville includes
the Intel Atom n270 processor and the 945GME chipset.
Operating at a steppable frequency of 1.6 GHz and a front-
side bus speed of 533 MHz, the Atom n270 operates signif-
icantly more slowly than recent Intel processors. The n270
utilizes an in-order instruction scheduler designed to reduce
the footprint, heat generation, and power consumption of
the processor. As a result, the n270 is more vulnerable to
dependency stalls in the pipeline that are caused by poorly
placed instructions. Thus, it becomes the compiler’s job
to emulate the pipeline and produce an efficient instruction
ordering. Since most 86 processors contain out-of-order in-
struction schedulers and many compilers do not perform this
optimization by default, instruction throughput may suffer
when programs are compiled for the n270 [2].

2. GENETIC ALGORITHM

Depending on the compiler flags, processor, and kernel
configuration, compiling a Linux kernel can take anywhere
from 30 to 60 minutes. When designing the GA, which needs

personal or classroom use is granted without fee provided that copies areto build a large number of kernels in order to evaluate fitness,
not made or distributed for profit or commercial advantage and that copies performance was a high priority in the design.

bear this notice and the full citation on the first page. To copy otherwise, 1o Fitness. To properly measure kernel performance the fit-

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
GECCO’10,July 7-11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0073-5/10/07 ...$10.00.

ness operator only considers the time spent in the kernel.
Since user applications interact with the kernel through sys-
tem calls, timing these operations can adequately character-

System Calls with Non-Zero Counts

1.0

0.8

0.6

0.4

Empirical CDF

0.2

0.0

0 50 100 150 200
System Call Counts (#)

System Calls with Counts > 26

open

3
El
B
g
R

statg4g ——————————@
——e
—e

close

System Calls

fstat6d —@
getxattr [—@
e

read

T T T
50 100 150 200
System Call Counts (#)

| Only 33/330=10% of System Calls Have Non-Zero Counts

Figure 1: Profile Data Used in Fitness Evaluation.

ize kernel performance. With over 300 system calls available,
the GA focuses on those that that are frequently invoked by
user programs. The GA framework uses the ptrace profiler
to determine which system calls to consider during fitness
evaluation. As input, the profiler takes a set of executable(s)
for which the user wants to improve performance. Next,
the profiler runs every executable and determines the total
counts for each system call.

After profiling a small number of commonly used applica-
tions (e.g., 1s, mkdir, and du), Figure 1 shows that a small
number of system calls are frequently referenced, with only
33 system calls having a non-zero invocation count. The top
graph in Figure 1 gives an empirical cumulative distribution
function (ECDF) that shows the range of counts for the non-
zero calls. The ECDF curve represents the probability that
the count is less than or equal to a specific value on the
horizontal axis. The ECDF shows that over 80% of system
calls have an invocation count less than or equal to 50. The
dot plot in Figure 1 also reveals that, for the 7 system calls
with a count greater than 26, user programs most often call
open. For this paper, the GA’s fitness function focuses on
open, close, fstat64, read, and write, although we intend
to investigate others in subsequent studies.

The fitness operator times these system calls for all indi-
viduals in the population. Each individual is first searched
for in a global lookup table, which persists between GA runs.
This lookup table stores already evaluated compiler flags and
their corresponding fitness, in order to obviate duplicated
kernel compilations. If the fitness is not available in the
lookup table, the compressed kernel image is built, and then
sent to a netbook with the System.map file. After the net-
book installs the new kernel and reboots into it, the fitness
function uses the chosen system calls as microbenchmarks.
By building and sending both the compressed kernel image
and the System.map file, as opposed to the whole kernel, the
GA eliminates approximately 30 minutes of compression,
archive, and network transfer time. These optimizations,
along with direct memory access network transfers and par-
allel compiler construction, support kernel compilation and
installation in approximately 6 minutes, thereby improving
the response time and throughput of fitness evaluation.

Kernel Fork (ns) | Mmap (ns) | Socket (ns)
Fedora Default 254212 33552 31187
Evolved Kernel 191953 23498 25959
% Reduction 24.49% 29.97% 16.76 %

Table 1: System Call Performance Results.

Initialization. The initialization phase of the GA focuses
on two main goals: parsing the chosen compiler flags and
creating the initial population. The compiler options file
follows a simple grammar in which each line is either a com-
piler option followed by a newline or an “EITHER m,” where
the next m lines contain compiler options which cannot be
used in tandem. After parsing the options, the GA creates
a random population where every member is represented by
a binary string. Each bit in the binary string determines
whether a specific compiler option is either on or off. For
example, if we had three compiler options, Oy, O1, and Oq,
an individual, say 101, would correspond to using both opti-
mization Op and Oz together, since bit 0 corresponds to the
first optimization and bit 2 corresponds to the third. Binary
strings were chosen due to their efficient structure and low
overhead, thus enabling each individual to be [n/8] bytes
long when the GA considers n compiler flags.

Selection, Reproduction, and Mutation. The selection
operator uses truncation to pick the top 75% of the popula-
tion as candidates for crossover. Returning the population
to the specified size, crossover takes the higher bits of the
first parent and the lower bits from the second parent and
combines them by using a bitwise or operator. With a 10%
chance, the mutation operator reads a random byte from
/dev/urandom and uses a bitwise or operator to combine it
with a random byte from the chosen individual. The GA
runs until it completes the specified number of generations.

3. PRELIMINARY RESULTS

The genetic algorithm was run with a population size of
10 for 5 generations. As shown in Table 1, we compared the
performance of the evolved kernel with the default Fedora
kernel by measuring the time overhead of three frequently
invoked system calls not used in the GA’s fitness function.
The kernel resulting from the genetic algorithm performed
approximately 17% to 30% better than the default Fedora
kernel. This result stems from the fact that the GA selected
compiler flags such as -axSSE3, which utilizes SSE instruc-
tions, -vec, which vectorizes loops, and -vec-guard-write,
which avoids unnecessary stores during vectorized loops. It
is anticipated that the profiling and inclusion of additional
system calls and increasing both the population size and the
number of generations will confirm these early results. We
intend to conduct further experiments in order to study how
well a wide variety of GA configurations produce Linux ker-
nels that improve user-perceived performance for commonly
executed netbook-based software applications.

4. REFERENCES

[1] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing
for reduced code space using genetic algorithms. In Proc. of
LCTES, 1999.

[2] Intel. Mobile Intel Atom Processor N270 Single Core
Datasheet, May 2008.

[3] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson.
Practical exhaustive optimization phase order exploration and
evaluation. Trans. Archit. Code Optim., 6(1):1-36, 2009.

[4] J. Ryan. LinuxDNA supercharges Linux with the Intel C/CT+
compiler. Linux Journal, Feb. 2009.

