
Parameter Tuning for Search-Based Test-Data
Generation Revisited: Support for Previous Results

Anton Kotelyanskii
Department of Computer Science

Allegheny College

Gregory M. Kapfhammer
Department of Computer Science

Allegheny College

Abstract—Although search-based test-data generators, like
EVOSUITE, efficiently and automatically create effective JUnit
test suites for Java classes, these tools are often difficult to
configure. Prior work by Arcuri and Fraser revealed that the
tuning of EVOSUITE with response surface methodology (RSM)
yielded a configuration of the test data generator that did not
outperform the default configuration. Following the experimental
design and protocol described by Arcuri and Fraser, this paper
presents the results of a study that lends further support to prior
results: like RSM, the EVOSUITE configuration identified by the
well-known Sequential Parameter Optimization Toolbox (SPOT)
failed to significantly outperform the default settings. Although
this result is negative, it furnishes further empirical evidence
of the challenge associated with tuning a complex search-based
test data generator. Moreover, the outcomes of the presented
experiments also suggests that EVOSUITE’s default parameters
have been set by experts in the field and are thus suitable for
use in future experimental studies and industrial testing efforts.

I. INTRODUCTION

Since computers and software are used in every major
economic sector, software testing—the practice of ensuring
that a program works as intended—is a crucial, if challenging
and time-consuming, task [1]. Developers can use automated
testing tools, such as EVOSUITE [2], to generate test suites
that may help to both identify defects in and established a
confidence in the correctness of the program under test. While
test-data generation tools can automatically create a JUnit test
suite for a Java class, they are often difficult to configure and
may not always produce the desired output [3], [4].

Search-based testing tools that employ genetic algorithms
(GAs), like the award-winning EVOSUITE [2], have a wide
variety of parameters—such as the population size, chromo-
some length, and crossover rate—that the tester normally
needs to tune [3]. Since testers are usually not experts in the
configuration of GAs, they often must resort to either using the
default values of parameters or leveraging an optimizer that
can automatically pick these values. In prior work, Arcuri and
Fraser experimentally determined that parameters identified by
response surface methodology (RSM) failed to significantly
outperform the default configuration of EVOSUITE [4].

This paper further investigates whether the negative result
of Arcuri and Fraser was due to the fundamental challenge
of tuning search-based test data generation methods or, rather,
their choice of RSM as the parameter tuner. Following the
experimental design and protocol of the previous experiments,
we conducted a similar experiment to Arcuri and Fraser’s,

replacing RSM with the well-known sequential parameter
optimization toolbox (SPOT) [5]. We chose SPOT because
it worked well on similar algorithms, as mentioned in Section
II, and it has an easy-to-use implementation in the readily
available R language for statistical computation—thus making
it easier for others to reliably replicate our experiments.

This paper’s large-scale empirical study reveals that SPOT,
like RSM, failed to find a configuration of EVOSUITE that
performed better than the data generator’s default configura-
tion. This negative result lends support to the one arrived at
by Arcuri and Fraser, suggesting that, at least for the task of
selecting parameter values for a GA-based test data generator,
parameter tuning is fundamentally challenging. This paper’s
empirical outcomes also lend further credibility to the assertion
that EVOSUITE has been developed by experts who picked
default parameter values that are likely to be suitable both for
future testing experiments and industrial testing tasks.

The remainder of this paper is organized in the following
fashion. First, Section II gives an overview of related work.
In addition to explaining how EVOSUITE and SPOT work,
Section III furnishes details about the design of this paper’s
experiments. While Section IV reports on the outcomes of
the empirical study, Section V discusses the threats to the
experiments’ validity. Finally, Section VI concludes with a
summary of the paper’s results and a proposal for future work.

II. RELATED WORK

Arcuri and Fraser tried to tune EVOSUITE using response
surface methodology, which they describe as the “world’s
most used technique for optimizing parameters” [3]. First,
they sought to manually identify an optimal configuration for
a small subset of cases and parameter values, ultimately
determining that, while tuning did not necessarily provide
better results, it had potential. However, when they applied
RSM to a large subset consisting of 609 classes from 10
different Java applications it failed to find a configuration that
yielded substantially better results than the default settings [3].

While Arcuri and Fraser’s empirical result suggests that
parameter tuning, or at the least RSM, may not be suited
to the tuning of search-based software testing tools like
EVOSUITE, the literature is replete with reports of tuning’s
efficacy. For instance, Myers et al. and Lenth report that
RSM has been successfully used in a wide variety of contexts
such as chemical reaction characterization and semiconductor



manufacturing [6], [7]. More germane to this paper, Preuß and
Bartz-Beielstein used SPOT to tune a variety of evolutionary
algorithms (EA); even though they were unable to make firm
conclusions about the usefulness of the EAs, they did find that
tuning them with SPOT improved their performance [8]. Also,
Flasch et al. demonstrated that SPOT-derived configurations of
genetic algorithms quickly made accurate predictions about the
behavior of environmental engineering systems [9].

This paper reports on a replication of Arcuri and Fraser’s
experimental study of parameter tuning for search-based test
data generation. In prior work Brooks et al. asserted that, while
replication in software engineering research is infrequent, it
is crucially important—these authors also pointed out that
exact replications of past studies are “unattainable” [10].
Furthermore, Kapfhammer suggested that a major reason for
the lackluster adoption of testing techniques by industry is a
dearth of large-scale empirical data supporting the efficiency
and effectiveness of techniques [11]. Finally, although Clark et
al. campaigned for increased replication of experiments in the
field of operating systems, their key point—that additional re-
sults increase the confidence in prior work and any supporting
tools—also applies to the field of software testing [12].

Much like the experimental outcomes of Arcuri and Fraser,
this paper’s experiments lead to the negative conclusion that
parameter tuning with SPOT does not improve the efficacy of
search-based test data generation. While it could be argued that
it is not useful to report that a technique was ineffective, sev-
eral leading experts, such as Gupta, Stopfer, and Schooler have
noted that the publication of negative outcomes is an important
mechanism for advancing scientific research [13], [14]. Since
Ioannidis previously pointed out that most published results—
the majority of which are positive—are normally refuted by
suqsequent evidence [15], negative results, like those identified
by both Arcuri and Fraser and this paper, clarify trends and
point out future research directions [3].

III. EXPERIMENTAL DESIGN AND IMPLEMENTATION

A. Sequential Parameter Optimization Toolbox

To ensure that this paper is self contained, this section
briefly reviews SPOT; for more details please reference [5],
[16]. The optimization algorithm implemented in SPOT takes
as input some SPOT configurations r and a parameter space P .
Using random sampling from the possible parameter space P ,
it selects a population P ′ of candidate configurations p. SPOT
evaluates these configurations by executing the algorithm be-
ing tuned—in this paper, the EVOSUITE test data generator—
and creates a prediction model F based on the results.

Using predictions made by F , SPOT generates a large set
of new candidate configurations and assigns a utility value
u to each one. Those with the best u are chosen to create a
new population of candidate configurations, P ′′. The candidate
configurations in P ′′ are then evaluated—again, in this paper
by running EVOSUITE—so that a total of rnumElite of the
best candidate configurations in P ′′ are then added to P ′.
Finally, SPOT updates the prediction model F with the results
from the previous EVOSUITE runs. SPOT repeats all of the

aforementioned steps until a termination criterion becomes
true; in the case of the experiments in this paper, SPOT ran for
a number of candidate configuration evaluations. Ultimately,
SPOT returns the best p in P ′, which corresponds, in this
paper, to a hopefully improved configuration of EVOSUITE.

The initial design, or set of candidate configurations to be
evaluated, and the subsequent designs were created by SPOT
with Latin Hypercube Design (LHD) [5], [16]. The initial
design size was set to 30, a value determined as the best
after running SPOT in preliminary small-scale experiments.
The prediction model F used to pick candidate configurations
for evaluation was the Kriging model, implemented based on
Matlab code by Forrester et al. [17]. Both are part of the SPOT
package available for the R language [5]. We chose LHD and
the Kriging model since they are used in a demonstration
problem similar to parameter tuning for EVOSUITE [5].

B. Search-based Test Data Generation with EVOSUITE

Again, to ensure that this paper is self contained, this section
briefly reviews the fundamentals of test data generation with
EVOSUITE; more details are available in [2], [4], [18]: As
mentioned in Section I, EVOSUITE is a tool that uses a genetic
algorithm to generate a JUnit test suite for a Java class. Briefly,
the steps in EVOSUITE’s genetic algorithm are:

1) Initialization: A population of individuals is randomly
generated. In the case of EVOSUITE, an individual is
a whole test suite made up of test cases that execute
methods in the program and then call test oracles.

2) Fitness: Every individual’s fitness is calculated ac-
cording to the given fitness function, a quantitative
measurement of an individual’s overall effectiveness.
Currently, EVOSUITE can use either statement coverage,
branch coverage, or mutation coverage, depending on the
configuration—with the default being statement cover-
age. Intuitively, these higher-is-better coverage metrics
indicate that the tests are exercising more of the program
under test and are thus more likely to find defects.

3) Crossover and Reproduction: Parts of two individu-
als’ chromosomes are joined together to form a new
individual. For EVOSUITE, this step involves combining
two test suites to form a new, and hopefully improved,
test suite. While all of the individuals have a chance of
reproducing, those with a better fitness value are more
likely to be combined to produce a new test suite.

4) Mutation: Without involving other members of the pop-
ulation, some individuals are randomly changed and kept
in the population, thus preserving diversity. EVOSUITE
mutates an entire test suite by adding new test cases or
mutating individual tests through the addition, deletion,
and modification of both statements and parameters.

5) Iteration and Termination: The new population is eval-
uated and evolution continues until a stopping criterion
is reached. Common stopping criteria include fitness
stagnation, when little to no fitness increase is observed
between generations, or the number of generations—
with EVOSUITE defaulting to overall execution time.



TABLE I: EVOSUITE parameters subject to tuning and the minimum
and maximum of their potential values, as given to SPOT.

Parameter Name Minimum Maximum
Population Size 5 99
Chromosome Length 5 99
Rank Bias 1.01 1.99
Number of Mutations 1 10
Max Initial Number of Tests 1 10
Crossover Rate 0.01 0.99
Probability of Using the Pool of Constants 0.01 0.99
Probability of Inserting New Test Case 0.01 0.99

TABLE II: EVOSUITE’s default configuration and the final param-
eter values resulting from optimization with SPOT.

Default SPOT
Population Size 50 74
Chromosome Length 40 45
Rank Bias 1.7 1.884547
Number of Mutations 1 1
Max Initial Number of Tests 10 5
Crossover Rate 0.75 0.6426859
Probability of Using Constant Pool 0.5 0.5289
Probability of Inserting Test Case 0.1 0.0355009

C. Experimental Design

Since our careful review of Arcuri and Fraser’s work sug-
gested that their methodology was sound, we based this paper’s
experimental design on the one they used when attempting to
tune EVOSUITE with response surface methodology [3]. Our
choice of this prior methodology also supports a comparison
of our results with those that were previously reported.

We picked a potential configuration space of eight EVO-
SUITE parameters, with continuous intervals of potential val-
ues for each one. We also randomly chose a total of 10 projects
from those available through the SF100, a set of 100 randomly
selected Java projects downloaded from the file-sharing site
SourceForge.net, as compiled by Arcuri and Fraser to provide
representative real-world examples for evaluating the effec-
tiveness of test data generation software [19]. Choosing these
10 projects resulted in a total of 475 Java classes for which
EVOSUITE would attempt to generate JUnit test suites.

SPOT was configured to run with a maximum of 280
evaluations for EVOSUITE, with each evaluation requiring an
execution of EVOSUITE on each of the 475 classes. That is,
when SPOT did an evaluation of EVOSUITE, it performed
test suite generation using the candidate configuration for the
first class and then for the second class, and so on until
the tool had attempted to generate test suites for all of the
475 Java classes. We decided that SPOT should run for 280
evaluations of EVOSUITE because Arcuri and Fraser used the
same number of evaluations for RSM [3]. In summary, except
for the fact that we purposefully made a random selection
of projects differing from those used in the prior study, our
experimental design is that same as that of Arcuri and Fraser.

Table I gives the potential parameter space—that is, the
parameters to be tuned and the range of their possible values—
for this paper’s experiments. Due to space constraints, we
furnish brief and intuitive definitions of each of these pa-
rameters. Population size is the number of candidate test
suites in the population pool, while the chromosome length

is the maximum length of each candidate. EVOSUITE can
employ rank selection to ensure that candidate test suites are
not selected by absolute fitness but rather by their rank in
the overall population, with the best candidate having the
highest numerical ranking. Ensuring that EVOSUITE is not
overly elitist, the rank bias parameter in Table I allows for the
probability of a ranking position to be weighted.

The number of mutations is the number of genes of an
individual’s chromosome that are changed when a mutation
event occurs. In addition, the maximum initial number of tests
is the maximum number of tests that each candidate in the
population can have when the population is first generated.
The crossover rate is the chance that the two chosen candidates
will be crossed over instead of being directly passed on to
the next generation; if EVOSUITE performs crossover, then
the offspring resulting from this operation become a part of
the subsequent population. When EVOSUITE generates a test
suite for a Java class, it first parses it and places all of the
class constants into a pool. The probability of using the pool
of constants, as given in Table I, is the probability of picking
one of these constants instead of a random value or a variable.
Finally, the probability of inserting a new test is the probability
of inserting a new test case into a test suite during a mutation.

The metric used to guide both the SPOT parameter tuner
and to evaluate EVOSUITE’s effectiveness was inverse branch
coverage. Branch coverage is the percentage of source code
branches in the Java class that are covered by the generated
test suite; intuitively, higher coverage suggests a better test
suite [18]. We used the inverse of this metric—that is, for
branch coverage score b, the value of (1− b)—because SPOT
always seeks to minimize the fitness value. To collect enough
data points to support a rigorous statistical analysis, we ran
EVOSUITE for 100 trials with the default configuration and
100 trials with the configuration returned by SPOT [3].

To evaluate the statistical significance of the results, we
followed the guidelines in [20] and used the Mann-Whitney
U-Test to evaluate the null hypothesis that two populations—
in this case, the results from using the SPOT-derived and
EVOSUITE-default configurations, respectively—are the same.
If the test returns a p-value less than 0.05, then we reject the
null hypothesis, concluding that the two configurations are not
the same; otherwise we confirm the null hypothesis.

Again adhering to the standard set in [20], we evaluate the
effect size with the Vargha-Delaney Â12 effect size measure
that discerns the difference between the results from using
either the SPOT-derived configuration or the configuration
with EVOSUITE’s default settings [21]. The values of this
measure range from 0 to 1; if it is < 0.29 or > 0.71, the effect
is “large”. If the size is < 0.36 or > 0.64, we classify the effect
as “medium.” If it is < 0.44 or > 0.56, then we judge the effect
to be “small”. Otherwise, it is labeled as “none”. An effect
size > 0.5 means that the results returned by the SPOT-chosen
parameters are higher, while < 0.5 means that the SPOT-based
results are lower. Since we are using an inverse—or lower-is-
better metric—a value > 0.5 means SPOT performed worse,
while < 0.5 means it performed better than the defaults.



TABLE III: Values of the Vargha-Delaney Â12 effect size measure and the Mann-Whitney U-test, with the scores from SPOT’s configuration
being the first input to the statistical procedures and the default configuration being second. Since we use the lower-is-better inverse fitness
metric, an Â12 value greater than 0.5 means that the SPOT configuration performed worse than EVOSUITE’s default parameter setting.

Â12 Effect Size Measure Mann-Whitney U-Test p-value
All results for all trials and all classes (“all results”) 0.5029 0.1045
“All results” without the “easy” or “hard” classes 0.5048 0.0314
Mean of results by trial, across all classes (“all trials”) 0.6085 0.0081
“All trials” without the “easy” or “hard” classes 0.6196 0.0034
Mean of results by class, across all trials (“all classes”) 0.5034 0.8507
“All classes” without the “easy” or “hard” classes 0.5061 0.7886

D. Implementation

All experiments were run in R, a high-level, open-source
language for statistical computing [22]. We chose R for the
experimentation infrastructure both because SPOT is imple-
mented in R and since it offers an environment in which data
can be saved and commands can be run both automatically
and interactively, allowing for easy experimentation and im-
plementation. SPOT is provided by R’s SPOT package [5].

As in Arcuri and Fraser’s experiment, running the param-
eter tuning algorithms proved to be very computationally
expensive. Performing the 280 evaluations of the candidate
configurations, with 475 EVOSUITE executions for all the
Java classes and each run taking approximately two minutes,
required 280∗475∗2 = 266000 minutes—or over 184 days of
computational time—only for SPOT to identify the optimized
configuration. Since we also had to complete 100 trials of test
data generation with EVOSUITE in both the default and SPOT-
derived configurations, we leveraged a cluster of computers.

The experiments were run on a cluster containing about 70
computers. Allowing for the fact that some computers might
crash or otherwise be temporarily unavailable, our cluster
implementation included fault tolerance mechanisms. Each
cluster node ran Ubuntu 12.04 and a 3.5.0-49-generic Linux
kernel. Except for EVOSUITE, which is implemented in Java,
all other programs used R version 3.1; EVOSUITE executed
in the version 1.7.0 55 of the Java SE Runtime Environment.
All inputs (e.g., Java classes subject to testing and SPOT
configuration files) and outputs (e.g., EVOSUITE output and
R result files) were stored on a network file system.

SPOT executed the program subject to tuning by invoking
a user-defined wrapper function with the current candidate
configuration and other relevant information. The wrapper runs
EVOSUITE and returns a fitness value for the chosen Java class
and the provided parameter values. After SPOT found its best
configuration, EVOSUITE ran in an identical fashion to the
tuning phase, with the exception that, for 100 trials each, it
first used the tuned parameter values and then the defaults.

IV. EXPERIMENTAL RESULTS

After randomly selecting the sample of 475 Java classes
from the SF100, we determined that 139 of them were “easy”
subjects because EVOSUITE always achieved perfect coverage
regardless of the configuration. In addition, we found a total
of 21 “hard” subjects, or classes for which EVOSUITE always
achieved 0% coverage; EVOSUITE crashed on most of these,
citing errors regarding Java’s inheritance mechanism.

As mentioned in Section III, the evaluation metric for these
experiments was the lower-is-better inverse branch coverage
metric; Table III furnishes the values of the Â12 effect size
measure and the Mann-Whitney U-Test for this metric. Know-
ing that our sample of Java classes contained “easy” and
“hard” cases, we ran the statistical procedures both with and
without these two types of classes. To account for different
types of variability, we arranged the data in three different
ways: (i) all of the individual scores for 100 trials and all
of the 475 classes (i.e., 47500 observations in total) (ii) the
mean score for each trial across all of the 475 classes (i.e., 100
observations in total), and (iii) the mean score for each class
across all of the 100 trials (i.e., a total of 475 observations).

For the “all results” and “all classes” categories, Table III
shows that, according to both Â12 and the p-values, the SPOT-
derived and default configurations are indistinguishable. Look-
ing at the results in the “all trials” category, we see that SPOT’s
configuration is worse than the defaults. In summary, these
results support Arcuri and Fraser’s conclusion: A configuration
returned by a parameter tuning algorithm yields results that are
either the same as or worse than EVOSUITE’s defaults.

Even though our results support Arcuri and Fraser’s, further
exploration is useful as a means of developing an understand-
ing of this negative phenomenon. The box-and-whisker plots
in Figures 1a and 1b visualize the means from the “all trials”
and “all classes” categories. In these plots the bottom and
top whiskers show the minimum and maximum data values
excluding outliers, while the box itself represents the inter-
quartile range (i.e., the measure of statistical dispersion that is
the difference between the first and third quartiles), the middle
line represents the median value, and open circles are outliers.
These plots visually confirm that SPOT’s configuration either
performs worse than or no better than the defaults.

Further investigation revealed that there were only 11
classes, out of the 475 in total, in which the SPOT config-
uration led to results that were better than the defaults in a
statistically significant way. Even though we could not discern
a pattern in the projects and Java classes for which the SPOT-
derived parameters were better, we did note that four classes
performed types of input and output (e.g., MyInputStream
from lagoon and jgaapGUI from jgaap).

Figure 2 visualizes how SPOT optimized EVOSUITE’s pa-
rameters, with two broad strategies emerging: either quickly
discarding a substantial range of potential values (as evident
in Figures 2c, 2d, and 2h) or continuing to explore almost the
entire range of possible values (as seen in Figures 2a, 2b, and



Figures 2e through 2g). Whether or not SPOT stops examining
a large part of a parameter’s range of values, the fact that half
of the parameters are floats and that their ranges often contain
many values prevents it from finding a good configuration. As
shown by the graph in Figure 2i, after SPOT causes an initial
undesirable spike in inverse fitness, the quality of the best
configuration hovers in the same range. In essence, parameter
tuning of search-based test data generation has a “soft floor”
beyond which it is hard to make meaningful progress.

Yet, it is important to recall that Table III shows that the
default configuration is only better than SPOT’s by a small
degree. While our results suggest that it is not likely to be
the case, it is possible that, if SPOT was given a larger search
budget or configured in a different manner, it might break past
the soft floor and find better parameters for EVOSUITE.

V. THREATS TO VALIDITY

Since this paper’s experimental design is largely based on
that of Arcuri and Fraser [3], the threats to the validity of our
experiments are similar to theirs. Threats to internal validity
might come from either how we implemented the components
of the experimental framework (e.g., the cluster distribution
mechanism and the integration of SPOT and EVOSUITE)
or how we configured SPOT. Even though we checked the
correctness of our framework on several small examples, it is
possible that defects may still exist in it. Since SPOT has been
successfully used in other real-world applications [8], [16], it
is possible that a smaller region of interest, another initial
design size, alternative methods for generating the designs,
different prediction models, or the choice of new EVOSUITE
parameters may produce results that either reveal the efficacy
of tuning or highlight different challenges.

It is also important to note that we did not use a dedicated
cluster to run the experiments. Yet, evidence from running
preliminary experiments during peak and non-use times sug-
gests that both the practical and the statistical significance of
the results were not influenced by this choice. Additionally,
since the experiments measured the effectiveness of a test
data generation tool that employs random numbers, we used
different random seeds and conducted multiple trials, thus
allowing us to create box-and-whisker plots in addition to
employing rigorous statistical methods such as the Mann-
Whitney U-test and the Vargha-Delaney effect size.

As with Fraser and Arcuri’s experiment, construct validity
threats may arise from the fact that branch coverage was
used as EVOSUITE’s fitness function, even though developers
may prioritize other aspects of their test suites, such as
execution time, size, or fault-finding capability. Threats to
external validity might come from the chosen projects not
being representative of Java programs in general. Even though
they were selected randomly, it is possible that the random
selection process did not pick Java classes that are emblematic
of the entire population. Yet, leveraging programs from the
SF100—a very large and representative set of open-source
projects [19]—enabled us to make statistically sound claims
and to compare our results with those of Arcuri and Fraser.

●

Default SPOT

0.
39

0.
40

0.
41

0.
42

Mean Inverse Fitness per Trial

M
ea

n 
In

ve
rs

e 
F

itn
es

s

(a) Mean of results by trial, across all classes.
For 100 trials and 475 classes, we calculated
the mean inverse statement coverage score for
each trial across all of the classes, with this plot
showing the variability in these 100 mean values.

Default SPOT

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mean Inverse Fitness per Class

M
ea

n 
In

ve
rs

e 
F

itn
es

s

(b) Mean of results by class, across all trials.
For 100 trials and 475 classes, we calculated
the mean inverse statement coverage score for
each class across all of the trials, with this plot
showing the variability in these 475 mean values.

Fig. 1: Box-and-whisker plots of the lower-is-better inverse fitness.

VI. CONCLUSION AND FUTURE WORK

This paper revisits the challenge of parameter tuning for
search-based test data generation, ultimately lending support
to the prior negative results of Arcuri and Fraser: tuning EVO-
SUITE’s parameters with the well-known SPOT optimizer does
not yield configurations significantly better than the defaults.
On a randomly selected set of 10 Java projects available in the
SF100 repository, with 475 classes in total, the configurations
returned by the parameter tuning algorithm only performed
better on eleven of the classes. Since there were many Java
classes in the randomly chosen experimental subset that were
either “easy” (i.e., all configurations always achieved perfect
coverage) or “hard” (i.e, all configurations always achieved
no coverage because, in some cases, EVOSUITE could not
generate any data), there were times in which SPOT could not
improve on the default values. Of the remaining Java classes,
the SPOT-derived configuration either performed worse than
the defaults or had no statistically significant impact.



20

40

60

80

100

0 50 100 150 200 250

(a) Population Size

20

40

60

80

100

0 50 100 150 200 250

(b) Chromosome Length

1.0

1.2

1.4

1.6

1.8

2.0

0 50 100 150 200 250

(c) Rank Bias

2

4

6

8

10

0 50 100 150 200 250

(d) Num. of Mutations

2

4

6

8

10

0 50 100 150 200 250

(e) Max. Num. Initial Tests

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

(f) Crossover Rate

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

(g) Prob. Using Const. Pool

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

(h) Prob. Insert New Test Case

0.35

0.40

0.45

0.50

0 50 100 150 200 250

(i) Inverse Fitness

Fig. 2: SPOT’s search trajectory, with the horizontal axis of the graph showing the number of evaluations and the vertical one giving the
value of the parameter in the title. For descriptions of the parameters whose values are visualized in this graph, please refer to Section III.

In summary, this paper’s negative result suggests that EVO-
SUITE’s default parameters have been set by experts and
are thus suitable for use in future experimental studies and
industrial testing efforts. In future work, we plan to extend
the current experiment by using a different, and larger, ran-
dom sampling of Java classes. Additionally, we will try new
configurations of SPOT and select both different EVOSUITE
parameters and value ranges as inputs to SPOT. Finally,
experiments with different parameter tuning algorithms, such
as ParamILS [23], and test-data generation techniques, like
Randoop [24], may yield more insight into the benefits and
challenges of parameter tuning in software testing.

REFERENCES

[1] G. Tassey, “The economic impacts of inadequate infrastructure for
software testing,” Planning Report 02-3, NIST, Tech. Rep., 2002.

[2] G. Fraser and A. Arcuri, “EvoSuite at the SBST 2013 tool competition,”
in Proc. of SBST, 2013.

[3] A. Arcuri and G. Fraser, “Parameter tuning or default values? An
empirical investigation in search-based software engineering,” ESE,
vol. 18, no. 3, 2013.

[4] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated white-box test generation really help software testers?” in
Proc. of ISSTA, 2013.

[5] T. Bartz-Beielstein, “SPOT: An R package for automatic and interactive
tuning of optimization algorithms by sequential parameter optimization,”
arXiv preprint arXiv:1006.4645, 2010.

[6] R. V. Lenth, “Response-surface methods in R, using rsm,” JSM, vol. 32,
no. 7, 2009.

[7] R. Myers, D. Montgomery, and C. Anderson-Cook, Response Surface
Methodology: Process and Product Optimization Using Designed Ex-
periments. Wiley, 2009.

[8] M. Preuß and T. Bartz-Beielstein, “Sequential parameter optimization
applied to self-adaptation for binary-coded evolutionary algorithms,” in
Parameter Setting in Evolutionary Algorithms. Springer, 2007.

[9] O. Flasch, T. Bartz-Beielstein, A. Davtyan, P. Koch, W. Konen, T. D.
Oyetoyan, and M. Tamutan, “Comparing CI methods for prediction
models in environmental engineering,” in Proc. of CEC, 2010.

[10] A. Brooks, M. Roper, M. Wood, J. Daly, and J. Miller, “Replication’s
role in software engineering,” in Guide to Advanced Empirical Software
Engineering, F. Shull, J. Singer, and D. Søjberg, Eds., 2008.

[11] G. M. Kapfhammer, “Empirically evaluating regression testing tech-
niques: Challenges, solutions, and a potential way forward,” in Proc.
of RT, 2011.

[12] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne,
and J. N. Matthews, “Xen and the art of repeated research,” in Proc. of
FREENIX, 2004.

[13] N. Gupta and M. Stopfer, “Negative results need airing too,” Nature,
vol. 470, no. 39, 2011.

[14] J. Schooler, “Unpublished results hide the decline effect,” Nature, vol.
470, 2011.

[15] J. P. A. Ioannidis, “Why most published research findings are false,”
PLoS Med, vol. 2, no. 8, 2005.

[16] T. Bartz-Beielstein, C. W. Lasarczyk, and M. Preuß, “Sequential param-
eter optimization,” in Proc. of CEC, 2005.

[17] A. Forrester, A. Sobester, and A. Keane, Engineering Design via
Surrogate Modelling: A Practical Guide. Wiley, 2008.

[18] G. Fraser and A. Arcuri, “EvoSuite: Automatic test suite generation for
object-oriented software,” in Proc. of ESEC/FSE, 2011.

[19] ——, “Sound empirical evidence in software testing,” in Proc. of ICSE,
2012.

[20] A. Arcuri and L. Briand, “A practical guide for using statistical tests
to assess randomized algorithms in software engineering,” in Proc. of
ICSE, 2011.

[21] A. Vargha and H. D. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” Jour. of
Educ. and Behav. Stat., vol. 25, no. 2, 2000.

[22] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2013. [Online]. Available: http://www.R-project.org

[23] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS:
An automatic algorithm configuration framework,” JAIR, vol. 36, no. 1,
2009.

[24] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proc. of ICSE, 2007.


