
A Framework to Support Research in and
Encourage Industrial Adoption of Regression Testing Techniques

Jonathan Miller Kauffman
Department of Computer Science

Allegheny College
kauffmj@allegheny.edu

Gregory M. Kapfhammer
Department of Computer Science

Allegheny College
gkapfham@allegheny.edu

Abstract—When software developers make changes to a
program, it is possible that they will introduce faults into
previously working parts of the code. As software grows, a
regression test suite is run to ensure that the old functionality
still works as expected. Yet, as the number of test cases
increases, it becomes more expensive to execute the test suite.
Reduction and prioritization techniques enable developers to
manage large and unwieldy test suites. However, practitioners
and researchers do not always use and study these methods due,
in part, to a lack of availability. In response to this issue, this
paper describes an already released open-source framework
that supports both research and practice in regression testing.
The sharing of this framework will enable the replication of
empirical studies in regression testing and encourage faster
industrial adoption of these useful, yet rarely used, techniques.

Keywords-open-source framework; regression testing;

I. INTRODUCTION

Software developers modify a program P to fix existing
defects or add new features. The goal of regression testing
is to ensure that the changes to P do not introduce faults
into the old functionality by running a test suite T = 〈t1, t2,
. . . , tn〉 [1] [2]. Each test case ti ∈ T exercises some part
of P to ensure that the program still works as expected.

As the number of test cases in the test suite grows,
re-executing all of the tests becomes increasingly expen-
sive. There are two noteworthy techniques for managing
regression test suites. The first is test suite reduction, which
removes redundant test cases from the test suite in order to
decrease execution time [1]. The second is test suite prior-
itization, which reorders test cases so that the ones which
are run first are those that best fulfill some objective [2].

Despite the benefits of these regression testing methods,
their lack of availability often limits their use in prac-
tice and causes research to stagnate [3]. Moreover, some
researchers and practitioners are unwilling to use these
algorithms unless they are freely available, fully docu-
mented, properly supported, and/or useful with minimal
configuration. In order to address these issues, we have
developed a framework consisting of two free and open-
source (FOSS) tools: Proteja (http://proteja.googlecode.com)
and Modificare (http://modificare.googlecode.com). Before
we released this framework, there was no way to use these

algorithms without independently implementing them from
their descriptions in published research articles. This paper
describes these two tools and explains how they encourage
both research and practice in regression testing.

II. OPEN-SOURCE TESTING TOOLS

A. Proteja

Proteja (“protect” in Romanian) is a tool written in Java
for executing and performing coverage monitoring on JUnit
test suites. It supports three types of coverage criteria: state-
ment, method, and class coverage. As illustrated in Figure 1,
Proteja accepts a program and test suite as input, so that,
after a negligible amount of configuration, a tester can use it
to execute the tests and collect coverage and test case timing
information. To acquire the per-test coverage reports, Proteja
extends Cobertura [4], a widely-used and well-supported
coverage monitor that alone cannot produce the per-test
information needed by most regression testing methods.

In addition to executing entire test suites, Proteja can also
be configured to run a subset of the test suite or to execute
the test cases in a different ordering. The tool accepts a
modified test suite T

′
that indicates which test cases are to

be run and in what order they should be executed, as shown
in Figure 1. Proteja can then execute the test suite according
to the reduction or prioritization represented by T

′
.

B. Modificare

Modificare (“modify” in Italian), a tool written in the R
language for statistical computing [5], performs test suite
reduction and prioritization and supports experimentation in
regression testing. This tool provides implementations of
six reduction and prioritization algorithms: random, adap-
tive random, greedy, hill climbing, simulated annealing,
and genetic. As illustrated in Figure 1, Modificare accepts
coverage and test case timing information in a language-
independent format and performs either test suite reduction
or prioritization, ultimately producing both a modified test
suite T

′
and a fitness score indicating the quality of the

reduction or ordering. If modifying the test suite improved
its quality (e.g., a large percentage of seeded faults are



P, T

Test Suite
Executor

JUnit

Cobertura

Coverage/
Timing

Reduction

Prioritization

T
′

Data
Set

Experimentation

Visualization

Analysis

Figure 1. Open-source framework containing the Proteja (single-line box) and Modificare (double-line boxes) tools.

detected quickly), then T
′

can be provided as input to Proteja
and used during subsequent rounds of test suite execution.

In addition, Modificare can run the reduction and priori-
tization techniques for a number of trials and in a variety of
configurations. Since running such experiments can be time
consuming1, the tool also provides facilities for distributing
the execution of experiments over a cluster of computers.
Following the standards in [6], the data set produced by
performing reduction or prioritization can be both visualized
and statistically analyzed in order to highlight the most sig-
nificant trends in the data. For example, the greedy algorithm
produces slightly better results for certain programs, yet the
hill climbing algorithm executes over four times faster than
greedy. This suggests that a small decrease in algorithm
effectiveness may result in a large increase in efficiency.
We also found that randomly prioritizing the test suite for
a Java application that solves sudoku puzzles caused the
average percentage of faults detected to increase from 39%
to 72%. This indicates that a simple prioritization strategy
may significantly decrease the time needed to reveal a fault.

III. SUPPORTING RESEARCH AND PRACTICE

A. Research
Proteja supports research in regression testing because it

allows developers to easily and efficiently collect coverage
information for a wide variety of applications, thus improv-
ing the external validity of empirical results [3]. While we
chose coverage because it is impossible to reveal a fault
unless it is first executed by the tests [7], other objectives,
such as executing the transitions in a model, may be used as
long as tools for acquiring per-test information are available.

Modificare supports research in regression testing because
it allows data to be collected for algorithms run both in
a wide variety of configurations and for many trials. In
addition, support for the distributed execution of experiments
will encourage researchers to perform studies that are greater
in size and more thorough, allowing for more comprehensive
comparisons to be made between reduction and prioritization
algorithms. Also, the features of visualization and statistical
analysis will aid researchers in identifying the most inter-
esting and statistically significant trends in their data [3].

1For example, running the adaptive random algorithm in six configura-
tions took 36.3 hours when experiment execution was distributed over 19
Ubuntu Linux workstations with a 3.06 GHz Intel Core 2 Duo processor.

B. Practice

Proteja supports practice in regression testing in the same
way that it supports research — by allowing practitioners to
efficiently collect coverage reports for Java programs, thus
encouraging them to use regression testing techniques.

Modificare supports practice in regression testing because,
after performing test suite reduction or prioritization, it re-
turns a modified test suite that can be input to Proteja for fur-
ther rounds of test suite execution and coverage monitoring.

Both tools are designed to be easy to use and amenable to
configuration and extension and they currently integrate with
widely-used open-source tools such as JUnit and Cobertura.

IV. CONCLUSION AND FUTURE WORK

In order to encourage researchers and practitioners to use
regression testing methods, we have released a framework
consisting of two open-source tools: Proteja and Modificare.
In future work, we will continue to refine and extend these
tools. As an example, we plan to enhance the interface
for integrating coverage monitors, thus allowing Proteja to
support a variety of coverage criteria, such as definition-use
and path coverage [8]. For Modificare, we plan to automate
the process of experimentation, visualization, and statistical
analysis and to enable testers to define and use their own
fitness scores for guiding and evaluating regression testing.

REFERENCES

[1] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for
controlling the size of a test suite,” ACM Trans. on Softw. Eng.
and Method., vol. 2, no. 3, 1993.

[2] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies,” IEEE Trans.
Softw. Eng., vol. 28, no. 2, 2002.

[3] G. M. Kapfhammer, “Empirically evaluating regression testing
techniques: Challenges, solutions, and a potential way for-
ward,” in Proc. of the 1st Intl. Wkshp. on Regr. Test., 2011.

[4] Cobertura, “Calculates the percentage of code accessed by
tests.” http://cobertura.sourceforge.net/.

[5] R Core Development Team, “R: A language and environment
for statistical computing,” http://www.R-project.org.

[6] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Proc. of the 33rd Intl. Conf. on Softw. Eng., 2011.

[7] J. M. Voas, “PIE: A dynamic failure-based technique,” IEEE
Trans. Softw. Eng., vol. 18, no. 8, 1992.

[8] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test
coverage and adequacy,” ACM Comp. Sur., vol. 29, no. 4, 1997.


