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Abstract—There has been much attention to testing applica-
tions that interact with database management systems, and the
testing of individual database management systems themselves.
However, there has been very little work devoted to testing
arguably the most important artefact involving an application
supported by a relational database – the underlying schema.
This paper introduces a search-based technique for generating
database table data with the intention of exercising the integrity
constraints placed on table columns. The development of a
schema is a process open to flaws like any stage of application
development. Its cornerstone nature to an application means
that defects need to be found early in order to prevent knock-on
effects to other parts of a project and the spiralling bug-fixing
costs that may be incurred. Examples of such flaws include
incomplete primary keys, incorrect foreign keys, and omissions
of NOT NULL declarations. Using mutation analysis, this paper
presents an empirical study evaluating the effectiveness of our
proposed technique and comparing it against a popular tool for
generating table data, DBMonster. With competitive or faster
data generation times, our method outperforms DBMonster in
terms of both constraint coverage and mutation score.

I. INTRODUCTION

A database schema specifies the types of data that will be
used by an application, how the data will be organized into
tables, which data values are valid, and what relationships
may exist between them. For any application backed by a
database, the inception of the schema is one of the first stages
of the development cycle. It is perhaps surprising that there
has been almost no work devoted to schema testing. Previous
research has instead concentrated on the interface between
the database and application code [1], [2], [3], or on testing
the underlying database or management system [4], [5], [6].

A key aspect of a database schema is the definition of
its integrity constraints. Integrity constraints specify what
data values are valid for each column of a table – for
example specifying that they should be not null or in a
particular range denoted by a “check” constraint. They
also specify how types of data are interconnected through
foreign key constraints, and which values are responsible
for identifying sets of other values through primary key
declarations. The definition of correct integrity constraints
over a schema is a key concern for testing and is addressed
in this paper through a search-based approach. Search-
based methods have been successfully applied to many other

forms of test data generation [7] – most notably structural
testing – but have not, until now, been applied to generating
database table data. The approach creates a series of SQL
INSERT statements containing data generated to exercise
each integrity constraint of a schema as true or false. The aim
of the technique is to highlight potential flaws in the design
of the schema through the generation of data that is allowed
into the database where it should have been rejected by the
database management system (DBMS), and vice versa.

The paper evaluates the search-based technique with an
empirical study that required the design of a series of
mutation operators. These operators mutate the integrity con-
straints of a schema and give an indication of the thorough-
ness of the schema’s test suite. The search-based technique,
implemented into a tool called SchemaAnalyst, is compared
with the publicly available open-source tool DBMonster,
which uses a random method for generating database ta-
ble data. Employing 25 case studies and three DBMSs –
Postgres, HSQLDB, and SQLite – the experiments evaluate
the algorithms implemented in both of the tools.

The study finds that, for all of the case studies,
SchemaAnalyst obtains higher constraint coverage than
DBMonster while reaching 100% coverage on two schemas
for which DBMonster covers less than 10% of the con-
straints. The experiments also reveal that SchemaAnalyst’s
mutation score is higher than the random method’s for 96%
of the schemas and that it succeeds in generating data for
six schemas that cause the established method to crash.
SchemaAnalyst achieves these results with generated data
sets that are substantially smaller than DBMonster’s and in
an amount of execution time that is competitive or faster.

The contributions of this paper are therefore as follows:
1) A search-based method for generating data that is cap-

able of satisfying and negating the integrity constraints
of schemas across multiple DBMSs (Section III).

2) A set of mutation operators for evaluating table data
intended to test integrity constraints (Section IV).

3) An empirical study with 25 schemas and 3 different
DBMSs that compares the efficacy and efficiency of
our search-based technique to the same measures for
DBMonster, a popular publicly available and open-
source tool for generating table data (Section V).



II. THE NEED FOR SCHEMA TESTING

Figure 1 depicts an SQL schema declaration for the
database of a flight booking application that involves two
tables. The first declaration, for a table called Flights,
defines information to be stored in the database about
actual flights, with the declaration of eight columns and
their types (strings, integers, characters, and times). The
second declaration, for the FlightAvailable table, de-
fines seat availability information. Both tables have integrity
constraints declared on them.

Integrity constraints protect the consistency of data in
a relational database by causing the database management
system to reject the insertion of table rows – via SQL
INSERT statements – that do not satisfy certain restrictions.
NOT NULL constraints ensure that values for a table column
are never NULL. PRIMARY KEY declarations define subsets
of columns that must be unique for each row, so that
complete rows of data can be subsequently identified and
retrieved (columns for which row values must be unique
may also be declared with a UNIQUE constraint). FOREIGN
KEY constraints link rows in one table to rows in another –
for example, rows in FlightAvailable are linked to those
in Flights through the FLIGHT_ID and SEGMENT_NUMBER

columns. That is, every row in FlightAvailable must
have a value pair for FLIGHT_ID and SEGMENT_NUMBER

that appear as primary key values for the Flights table.
Finally, CHECK constraints involve the declaration of arbi-
trary predicates over table data. In Figure 1, the Flights

table has a CHECK constraint on the MEAL column, indicating
table cells of that column must be of a certain character. A
CHECK constraint may also involve relational predicates.

The definition of the structure of the schema is one of
the first steps in developing an application supported by a
database. As such, any errors made in this stage can be
costly to rectify later in the development cycle. For example,
suppose that the column SEGMENT_NUMBER (denoting an
individual stage of a long-haul journey) was omitted from
the primary key for the Flights table, with rows uniquely
identified by FLIGHT_ID only. Now, flight data involving
more than one flight stage may be rejected, due to the
violation of the table’s primary key. Such defects can be
caught early in the definition of the schema through testing.
Test data needs to be generated that first inserts some
arbitrary data into the database. For instance, consider

INSERT INTO Flights VALUES(’a’, 1, ... )

followed by an INSERT repeating the same FLIGHT_ID:
INSERT INTO Flights VALUES(’a’, 2, ...)

The latter statement is rejected by the DBMS when it
should not have been, thus pointing out the mistake in the
schema to the tester. Therefore, part of the schema testing
problem is the generation of test data suitable for identifying
defects in the schema. Although previously overlooked in the
literature, this is the challenge addressed by this paper.

CREATE TABLE Flights(
FLIGHT_ID CHAR(6) NOT NULL,
SEGMENT_NUMBER INT NOT NULL,
ORIGINAL_AIRPORT CHAR(3),
DEPART_TIME TIME,
DEST_AIRPORT CHAR(3),
ARRIVE_TIME TIME,
MEAL CHAR(1),
PRIMARY KEY(FLIGHT_ID, SEGMENT_NUMBER),
CHECK(MEAL IN (’B’, ’L’, ’D’, ’S’))

);

CREATE TABLE FlightAvailable (
FLIGHT_ID CHAR(6) NOT NULL,
SEGMENT_NUMBER INT NOT NULL,
FLIGHT_DATE DATE NOT NULL,
ECONOMY_SEATS_TAKEN INT,
BUSINESS_SEATS_TAKEN INT,
FIRSTCLASS_SEATS_TAKEN INT,
PRIMARY KEY(FLIGHT_ID, SEGMENT_NUMBER),
FOREIGN KEY(FLIGHT_ID, SEGMENT_NUMBER)
REFERENCES Flights(FLIGHT_ID, SEGMENT_NUMBER)

);

Figure 1. An Example Schema for a Flight Booking Application (integrity
constraints are highlighted in bold).

Previous work on database testing has only sought to test
database interaction from within an application (e.g., [1],
[2], [3]) or testing either the database or the DBMS
(e.g., [4], [5], [6], [8], [9], [10]). During application testing,
the implicit assumption is that the database schema is
correct. However, since integrity constraints encode a logic
of their own, it is also important to test the schema itself,
prior to integration with an application. The next section
introduces our technique for schema testing through the gen-
eration of data to exercise integrity constraints in databases.

III. SEARCH-BASED GENERATION OF
DATABASE TABLE DATA

Due to the potential presence of arbitrary CHECK con-
straints, the generation of database table data to test a
database schema is non-trivial in the general case. This
section describes our search-based technique for generating
table data, implemented in a tool called SchemaAnalyst, as
shown in Figure 2. SchemaAnalyst supports three DBMSs –
Postgres, HSQLDB, and SQLite – and further provides the
schema mutation analysis methods described in Section IV.

A. Abstract Representation of Schemas

The first step of our technique involves converting a
database schema to a DBMS-independent form known as its
“abstract representation.” Different DBMSs support different
sets of column types, and as part of this conversion process,
a mapping must be made from each concrete DBMS column
type to one of seven “universal” types: Boolean, DateTime,
Date, Numeric, String, Time, and Timestamp. The mapping
of several common DBMS column types to these universal
types is shown in Table I. Each universal type belongs to one
of two general categories. Atomic types are singular values,
such as the Numeric and Boolean universal types. Compound
types are made up of a number of values of atomic type,
and include Strings, which consist of a series of Numeric
values corresponding to the String’s individual characters.
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Figure 2. Overview of the Main Components of SchemaAnalyst.

B. Overview of the Test Data Generation Algorithm

The goal of the data generation algorithm is to generate
a test suite consisting of INSERT statements containing data
values that exercise each of the schema’s integrity constraints
as true and false. That is, for each integrity constraint,
the test suite will contain at least one INSERT statement
for which data will be accepted into the table where the
constraint is satisfied, and one for which the data will be
rejected because the constraint is violated.

The percentage of constraints satisfied and violated by a
test suite is referred to as the level of constraint coverage.
Since each INSERT statement has the potential to be rejected,
an important part of the test suite generation algorithm is
to keep track of both the INSERT statements whose data
is successfully entered into the database and the current
database “state.” This is because the acceptance or rejection
of data involved in each INSERT statement is dependent on
the data entered into the database by the INSERT statements
that went before it. For example, a PRIMARY KEY constraint
cannot be violated unless the column values are generated
that match those of an existing row in the database.

The test suite generation algorithm requires an initially
empty database state, and proceeds as follows:

Stage 1) Satisfy the schema: For each schema table,
generate ns (ns ≥ 2) rows of data, with the aim of satisfying
all integrity constraints in the schema. To prevent PRIMARY
KEY and UNIQUE constraints from being trivially satisfied ns

should not be less than two. Furthermore, FOREIGN KEY,
UNIQUE, and CHECK constraints can be trivially satisfied
with NULL values, so the usage of NULL values is disallowed
for this stage. Assuming successful generation of data that
satisfies all of the integrity constraints, INSERT statements
are formed for each row of table data generated. These
INSERTs will be accepted by the DBMS, the data inserted
becomes the state of the database, and 50% coverage
will have been obtained.

Stage 2) Individually violate each integrity constraint: For
each constraint c in each table t of the schema, generate nv

(nv ≥ 1) rows of data for t and any tables referenced through
FOREIGN KEY declarations, with the aim of violating c
while satisfying all other constraints. Assuming successful
data generation, INSERT statements may be formed for each
table row of data. The INSERT statement for t corresponding
to the violation of c will be rejected by the DBMS, while
rows for tables referenced by t will be inserted and entered
into the state of the relational database.

Table I
MAPPINGS OF DBMS COLUMN TYPES TO UNIVERSAL TYPES

DBMS Universal General Default
Type Type Type Value

BOOLEAN Boolean Atomic False
DATETIME DateTime Compound 0/0/0 00:00:00
DATE Date Compound 0/0/0
DECIMAL, DOUBLE, Numeric Atomic 0
FLOAT, INTEGER,
NUMERIC, REAL . . .
CHAR, VARCHAR . . . String Compound Empty string
TIMESTAMP Timestamp Atomic 0
TIME Time Compound 00:00:00

C. Formation of the Fitness Function

For both stages of the aforementioned overall algorithm, a
constraint system is constructed. For stage 1, the constraint
system is simply the conjunction of all integrity constraints.
For stage 2, the constraint system is the conjunction of all
constraints to be satisfied and the negation of the constraint
to be violated. From this constraint system, a fitness function
is formed. The purpose of a fitness function in search-based
testing is to guide a search algorithm towards some test goal
of interest. Here, the test goal is the generation of rows of
INSERT statement data that will satisfy a constraint system
formed for stage 1 or 2. The fitness function computes
a numeric value to be minimized by the search. That is,
the closer the generated row values are to satisfying the
constraint system, the lower the fitness value will be. When
the fitness function evaluates to zero, the generated row
values satisfy the constraint system.

The fitness function involves the computation of a series
of distance values. A distance value indicates how close
some constraint, or some component of a constraint, was to
being satisfied. In fitness function design, it is important
to balance different objectives such that one aspect of
the search problem does not dominate the rest. In order
to ensure that all constraints are weighted equally, their
distance values are normalized to the range [0,1] using
the function norm(d) = d

d+1 (due to Arcuri [11]). The
normalized distance values for each of the constraints are
added together to form the complete fitness value. We now
detail how distance values are computed for each type of
integrity constraint using the functions shown in Figure 3.

1) Primary Keys: Distance value computation for pri-
mary key constraints involves the use of the row unique
and row non unique functions, shown in Figure 3. These
functions compare a row r, a tuple of column values, to a se-
ries of other rows s1...sn, which are further tuples of column
values. For primary key distance computation, the column
values for r are the primary key column values for the row
of data currently being generated for an INSERT statement,
while s1...sn consist of primary key column values for rows
already inserted into the database state or are currently being
generated at the same time as r. If the primary key is to be



value dist(a, op, b)
a b

NULL any return 1
any NULL return 1
Atomic Atomic return norm(atomic dist(a, op, b))

Compound Compound return norm(compound dist(a, op, b))

atomic dist(a, op, b)
op

= if (|a− b| = 0) then return 0 else return |a− b|+ 1
6= if (|a− b| 6= 0) then return 0 else return 1

< if (a− b < 0) then return 0 else return (a− b) + 1

≤ if (a− b ≤ 0) then return 0 else return (a− b) + 1
> if (b− a < 0) then return 0 else return (b− a) + 1

≥ if (b− a ≤ 0) then return 0 else return (b− a) + 1

compound dist((a1 . . . ap), op, (b1 . . . bq))
op

= return |p− q|+
∑min(p,q)

i=1
norm(atomic dist(ai,=, bi))

6= if (p 6= q) then return 0
else return minmin(p,q)

i=1 norm(atomic dist(ai, 6=, bi))

other d← 0
while (i ≤ min(p, q) ∧ d = 0)

if (ai 6= bi) then d← norm(atomic dist(ai, op, bi))
i← i+ 1

end while
return d+ atomic dist(p, op, q)

and dist(d1, . . . , dn)
return norm(

∑i=n

i=0
di)

or dist(d1, . . . , dn)
return mini=n

i=0 di

row dist((a1 . . . an), op, (b1 . . . bn))
return norm(

∑i=n

i=1
value dist(ai, op, bi))

row unique(r, s1 . . . sn, allow null))
if (allow null ∧ any values of r = NULL) then return 0

else return norm(
∑i=n

i=1
row dist(r, 6=, si))

row non unique(r, s1 . . . sn, allow null))
if (allow null ∧ any values of r = NULL) then return 0
else return mini=n

i=1 row dist(r,=, si)

Figure 3. Distance Functions.

satisfied, row unique is used, whereas row non unique is
used if the constraint should be violated. (The allow null
parameter results in the function trivially returning true if
any values in r are NULL, however this is disabled for
primary key constraint evaluation). Both functions involve
the collation of distances for each row using the row dist
function. The row dist function computes how far some
relational predicate involving two rows was to being satis-
fied, performed by summing individual distances for pairs
of column values from the value dist function.

Take the example of Figure 4, where rows 1 and 2 have
already been entered into the database for the Flights

table of Figure 1. A new row (row 3) is required that
violates the primary key constraint. That is, values are
required for FLIGHT_ID and SEGMENT_NUMBER that match

FLIGHT_ID SEGMENT_NUMBER . . .

1 ’UA21’ 1 . . .

2 ’UA3750’ 1 . . .

3 ’UA22’ 2 . . .

Figure 4. Example for Demonstrating How Fitness Values Are Calculated.

the values already in the database for those columns in either
row 1 or 2. To compute the distance, row non unique
is called with r = (‘UA22’, 2) and s1 = (‘UA21’, 1),
s2 = (‘UA3750’, 1). This function calls row dist with the
row pairs (r, s1) and (r, s2), respectively, with ‘=’ for the
op argument, since equal column values are required for
constraint violation. Then, row dist compares the column
values for each pair of rows using the value dist function.
The value distance of ‘UA22’ and ‘UA21’ is computed
by a call to compound dist, since the column is of type
CHAR, which is mapped to the String universal type, a
compound of Numeric values (see Table I). ‘UA22’ and
‘UA21’ are identical but for the last character, so the distance
is norm(1 + 1). Following this, the value distance func-
tion is called for the SEGMENT_NUMBER column, with the
values 2 and 1. Integer values are Numeric “atomic” types,
so atomic dist is called, evaluating to 1 + 1. Therefore,
the overall result of row dist((‘UA22’, 2),‘=’, (‘UA21’,
1)) is norm(norm(norm(1 + 1)) + norm(1 + 1)) =
0.516. The corresponding calculation comparing row 2
and 3 is row dist((‘UA22’, 2),‘=’, (‘UA3750’, 1)) =
norm(norm(norm(1 + 1) + (2 + 1)) + norm(1 + 1)) =
0.592. Since 0.516 < 0.592 , the individual row distance
calculations indicate that row 3 is “closer” to being the same
to row 1 than row 2. Therefore, the overall value returned
by row non unique is 0.516.

Note that row 3 satisfies the primary key constraint.
Performing the sub-fitness calculation using row unique,
which performs row distance calculations using the 6= oper-
ator rather than =, returns a value of 0.

2) Unique constraints: Distance values for satisfying and
falsifying UNIQUE constraints are computed in the same way
as for primary keys. UNIQUE constraints can be satisfied with
the use of NULL values and so allow null is true for calls
to row unique in stage 2 of the overall algorithm.

3) Foreign Keys: Foreign key distance value computation
is performed using the row distance functions of Figure 3
again, but with a different configuration. For violating for-
eign keys, unique values of r are required that do not match
corresponding column values in rows of the referenced table.
Therefore, row unique is used, where s1 . . . sn are tuples
of foreign key column values in each row of the referenced
table. For satisfying foreign key constraints, values of r are
required that match the values in corresponding columns of
rows in the referenced table, so row non unique is used.
Foreign keys may be satisfied with NULL values – that is, in
stage 2 of the overall algorithm, allow null is true for calls
to the row non unique function.



4) Not Null constraints: Generating a distance value for
a NOT NULL constraint involves checking the column value
that needs to be NULL (violating the constraint) or not
NULL (satisfying). Where the intended value is found, the
distance is 0, otherwise it is 1.

5) Check constraints: There are three different
types of CHECK constraint. The first type is
composed of arbitrary relational predicates, for
example CHECK DAY >= 1 AND DAY <= 31. For
such predicates, distance values are collated for each
sub-predicate using the value distance function. In
this instance, satisfaction of the constraint involves
making two calls: value distance(DAY,≥, 1) and
value distance(DAY,≤, 31) An overall distance value
is formed depending on the conjunction and disjunction of
the sub-predicates using and dist or or dist, respectively.
Falsifying the constraint involves negation of the overall
predicate and following the same procedure – that is,
computing a distance for DAY < 1 OR DAY > 31.

The second type of CHECK constraint uses the BETWEEN

operator to ensure that a value falls into a certain range – for
example, CHECK MONTH BETWEEN 1 AND 12. Such con-
straints are rewritten internally to the equivalent relational
predicate (e.g., CHECK MONTH >= 1 AND MONTH <= 12)
and the distance value computed as previously discussed.

The third type of CHECK constraint involves the use
of the IN operator, as in the example of Figure 1 with
the MEAL field. The IN operator checks that a column
value takes on one of the values specified in a set. It
is equivalent to writing a disjunction of equality predi-
cates, that is, MEAL = ’B’ OR MEAL = ’L’ OR MEAL =

’D’ OR MEAL = ’S’. Predicates are internally rewritten to
this form, and distance calculation follows that for arbitrary
relational predicates, as detailed previously.

D. Search Using the Alternating Variable Method

Our technique applies a specialized version of Korel’s
Alternating Variable Method [12] (AVM) as the search
technique to minimize the fitness function. The rows of
values for each INSERT statement are formed into a list with
each value set to its default value, as summarized in Table
I. The AVM sequentially makes adjustments to each value
in the list, referred to as “moves.” After each move, the list
of values is evaluated according to the fitness function. If a
move on a value leads to an improvement in fitness, the new
adjusted value is kept, else the value reverts to the original.

The initial set of moves attempted for a value are re-
ferred to as “exploratory” moves. The value first has its
NULL status flipped. If, following this move, the value
is not NULL, further moves are performed depending on
the value’s universal type. If the value is a Boolean, its
value is flipped. If the value is of Numeric or Timestamp
type, two moves are attempted, one which decreases the

value, and one that increases the value. If either move is
found to improve fitness, a series of “pattern” moves are
made, which accelerate modifications to the value in the
direction of improvement. Pattern move steps are computed
using the function mi = 2i · 10−d · dir, where mi is the
ith successive move, dir is the direction of improvement,
dir ∈ {−1, 1}, and d is the number of decimal places
involved in the numeric value (as originally described in
[13]). Pattern moves continue until a move is made that no
longer improves fitness. Finally, compound values are simply
treated as sub-lists of the overall list of values, with the
AVM sequentially performing moves (bar the NULL move)
as for the overall tuple of data values. For Strings, additional
exploratory moves may be performed on the whole String,
involving the addition or removal of characters.

The AVM terminates when either a fitness of zero has
been reached, indicating that the required test data has been
found, or when a complete cycle of exploratory moves has
been made through the list without any improvement in
fitness. If the latter occurs, the AVM is restarted but with
random, rather than default values, for each column. This
process continues until test data is found or there has been
100,000 evaluations of the fitness function.

IV. MUTATION ANALYSIS OF SCHEMAS

In order to assess the effectiveness of test suites generated
by our technique, we devised mutation operators for each
type of integrity constraint. Mutants are produced as follows:

1) Primary Keys: Primary key mutants take three
forms: Add Column, Replace Column, and Remove Column.
Mutants are produced by iterating through a table’s columns.
If the column is a part of the original table’s primary key,
a mutant is produced with that column removed from the
primary key. If the column is not a part of the original table’s
primary key, a mutant is produced with the column added,
along with the creation of further mutants where the column
replaces each existing primary key column in turn. For the
Flights table of Figure 1, an example of a remove column
mutant would be one with the primary key declaration
PRIMARY KEY(FLIGHT_ID) (i.e., with SEGMENT_NUMBER

missing) while an example of an add column mutant
includes PRIMARY KEY(FLIGHT_ID, SEGMENT_NUMBER,

ORIGINAL_AIRPORT). An example of a column
replacement includes PRIMARY KEY(SEGMENT_NUMBER,

ORIGINAL_AIRPORT), where FLIGHT_ID is replaced with
ORIGINAL_AIRPORT. This approach produces a total of 31
primary key mutants for the flight booking example.

2) Unique constraints: Mutant production for
UNIQUE constraints works in a similar fashion to
primary keys, except that, while a table can have several
UNIQUE declarations, it can only have one primary key.
The set of UNIQUE constraints is collated, along with an
additional “empty” constraint with no columns. For each
constraint in the set, the algorithm for adding and removing



columns is followed as for primary keys, taking care to
avoid the production of identical mutants from the mutation
of different unique constraints within the same table. This
results in 13 total mutants for the flight booking example.

3) NOT NULL constraints: The NOT NULL mutation op-
erator iterates through the non-primary key columns of each
table of a schema and reverses its NOT NULL status. That
is, if a column is declared to be NOT NULL, a mutant
is produced with the NOT NULL constraint removed. If a
column if found to not have a NOT NULL constraint, a
mutant is produced with one added. For instance, nine NOT

NULL mutants are produced for the flight booking example.
4) Foreign Keys: The production of mutants for FOREIGN

KEY constraints involves iterating through the foreign keys
and producing a mutant where each foreign key column is
removed from the schema. For the flight booking example,
this results in two foreign key mutants being produced.

5) Check constraints: Finally, the production of
CHECK constraint mutants simply involves iterating through
the CHECK constraints of a schema and generating mutants
by each constraint one at a time. For example, one mutant
would be produced from the Flights table of Figure 1,
with the CHECK constraint on the MEAL column removed.

This gives a total of 56 mutants created for the flights
example. Some mutants generated according to the afore-
mentioned rules are rejected as invalid schema by certain
DBMSs. With the flight booking example of Figure 1,
Postgres will not allow columns to be added or removed
from the primary key in the Flights table. This is because
of the foreign key reference from the FlightAvailable

table, which requires the FLIGHT_ID and SEGMENT_NUMBER

column pair to uniquely index rows in the Flights table.
In Mutation Analysis, “illegal” mutants of this nature are
referred to as still-born [14]. However, the same mutants
may be perfectly acceptable to other DBMSs – for exam-
ple SQLite – and as such not completely without worth.
Therefore, we refer to such mutants as quasi-mutants and
we study their frequency and characteristics in Section V.

V. EMPIRICAL STUDY

A. Case Studies

Following Houkjær et al.’s observation that complex
relational schemas often exhibit features like composite
keys and multi-column foreign-key relationships [15], we
selected the 25 schemas in Table II as case studies. While
several of these schemas originate from the Postgres samples
available from the PgFoundry.org site (e.g., BookTown,
DellStore, FrenchTowns, Iso3166, and Usda), others were
used in previous studies of database-aware testing techniques
(e.g., the NIST schemas [8], RiskIt and UnixUsage [3],
and JWhoisServer [16]). Even though we derived several
schemas (e.g., CoffeeOrders, CustomerOrder, Person, and
Products) from examples found in textbooks, laboratory

Table II
CASE STUDY SCHEMAS USED IN THE EMPIRICAL STUDY

Schema Ta
bl

es
C

ol
um

ns
C

he
ck

s
Fo

re
ig

n
ke

ys

N
ot

N
ul

ls
Pr

im
ar

y
ke

ys

U
ni

qu
es

To
ta

l C
on

st
ra

in
ts

BankAccount 2 9 0 1 5 2 0 8
BookTown 23 69 1 0 17 11 0 29
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 0 4 9 5 0 18
CustomerOrder 7 32 1 7 27 7 0 42
DellStore 8 52 0 0 36 0 0 36
Employee 1 7 3 0 0 1 0 4
Examination 2 21 6 1 0 2 0 9
Flights 2 13 1 1 6 2 0 10
FrenchTowns 3 14 0 2 13 0 8 23
Inventory 1 4 0 0 0 1 1 2
Iso3166 1 3 0 0 2 1 0 3
JWhoisServer 6 49 0 0 44 6 0 50
NistDML181 2 7 0 1 0 1 0 2
NistDML182 2 32 0 1 0 1 0 2
NistDML183 2 6 0 1 0 0 1 2
NistWeather 2 9 5 0 2 2 0 9
NistXTS748 1 3 1 0 1 0 1 3
NistXTS749 2 7 1 1 3 2 0 7
Person 1 5 1 0 5 1 0 7
Products 3 9 4 2 5 3 0 14
RiskIt 13 56 0 10 15 11 0 36
StudentResidence 2 6 3 1 2 2 0 8
UnixUsage 8 32 0 7 9 7 0 23
Usda 10 67 0 0 30 0 0 30

Total 111 542 27 40 231 68 11 377

assignments, and online tutorials, it is important to note that
many are complex and, as the results in Section V-D reveal,
difficult for the well-established DBMonster to handle effi-
ciently. Moreover, we balanced the use of example schemas
by incorporating Cloc, JWhoisServer, RiskIt, and UnixUsage
– all schemas from real-world database applications.

We also configured each of the schemas to run on
three representative database management systems: Postgres,
HSQLDB, and SQLite. We picked these DBMSs because,
beyond being widely used in many real-world database
applications, they all support the expression and enforcement
of constraints involving primary and foreign keys, and
UNIQUE, NOT NULL, and arbitrary CHECK constraints. While
these DBMSs share many common features (e.g., support
for the latest SQL standards), they also vary in the auxiliary
commands that they provide and their overall architecture
– Postgres runs in a stand-alone server while SQLite and
HSQLDB are in-memory DBMSs respectively implemented
in the C and Java languages. Finally, we configured the
data generation methods to interact with the DBMSs through
standard Java database connectivity (JDBC) drivers.

B. Technique Configuration

Beyond allowing at most 100,000 fitness evaluations, we
configured the AVM with ns = 2 and nv = 1, thus aiming
to satisfy the database’s schema with two rows per table
and violating each of the schema’s constraints with one
row. Using DBMonster’s standard configuration interface,
we permitted the tool to perform no more than 100,000
data generation attempts. We also required DBMonster to



generate at least 50 rows per table since a preliminary
investigation revealed that fewer rows than this resulted in
the tool not being able to reliably kill any mutants. For
all of the data types represented in the chosen schemas,
we configured DBMonster to use its default data gen-
erators. Since DBMonster is a third-party tool that does
not record the database interactions that occur during data
generation, we used Cobb et al.’s approach [16] to capture
these SQL statements. Due to the fact that DBMonster fre-
quently crashed when generating data for schemas hosted by
SQLite and HSQLDB, we only ran this tool with Postgres. In
contrast, we used the AVM to correctly generate data for all
three of the DBMSs. Since the AVM and DBMonster both
incorporate randomness, we applied each technique to every
schema for 30 trials, thus controlling threats to validity.

Both SchemaAnalyst and DBMonster are written in the
Java language and respectively compiled and executed with
version 1.7 of the compiler and Java virtual machine. During
the empirical study, the methods were executed on Ubuntu
12.04 workstations equipped with a quad-core 3.3 GHz CPU
and configured to use the 3.2.0-30 GNU/Linux 64-bit kernel.
Both the data generators and the DBMSs were stored and
executed on a 230 GB local disk.

C. Evaluation Metrics

To evaluate efficiency, we measured the execution time
of the AVM and DBMonster, including all of the fitness
function evaluations and database interactions that take
place during data generation. As one assessment of ef-
fectiveness, we calculated constraint coverage – the ratio
of constraints satisfied and violated to the total number
of schema constraints multiplied by two. Furthermore, we
employ mutation analysis, as described in Section IV, as
an additional effectiveness measure. For a generated set
of database interactions D, if Q denotes the set of quasi-
mutants and K and N respectively stand for the sets of
killed and not-killed mutants, then MD = |K ∪Q|/|K ∪N |
computes the higher-is-better mutation score. That is, we
declare a mutant to be dead when either the generated data
in D kills it or it is “quasi” and thus rejected for not
conforming to DBMS-specific requirements. To calculate
MD, the mutation analysis process iteratively applies each
operator to a schema S, repeatedly producing a mutant S′

against which each operation in D is executed. We say that
a d ∈ D kills S′ when it produces a different output than it
did when executed with relational schema S.

Since the mutation scores of DBMonster varied across
the 30 trials, Figure 6 uses a box-and-whisker plot where
the center circle represents the median and the box itself
shows the distribution of data between the upper and lower
quartiles, thus including 50% of the data. Exclusive of the
outlying values that are depicted with open circles, the upper
and lower whiskers stand for the minimum and maximum
value, respectively. It is important to note that, across the

Table III
CONSTRAINT COVERAGE

Schema AVM (%) DBMonster (%)

BankAccount 100.0 56.3
BookTown 100.0 51.7
Cloc (no constraints defined)
CoffeeOrders 100.0 50.0
CustomerOrder 100.0 9.5
DellStore 100.0 50.0
Employee 100.0 55.0
Examination 100.0 72.2
Flights 100.0 70.0
FrenchTowns 100.0 70.0
Inventory 100.0 75.0
Iso3166 100.0 50.0
JWhoisServer 100.0 50.0
NistDML181 100.0 75.0
NistDML182 100.0 50.0
NistDML183 100.0 100.0
NistXTS748 100.0 72.2
NistXTS749 100.0 21.4
NistWeather 100.0 68.7
Person 100.0 50.0
RiskIt 100.0 4.1
Products 96.4 59.3
StudentResidence 100.0 62.5
UnixUsage 97.8 59.3
Usda 100.0 50.0

30 trials, AVM generated data that reliably killed the same
mutants and thus resulted in an unchanged mutation score.
As such, Figure 6 uses a bar chart to visualize these
values. Similarly, since the number of generated database
interactions, or |D|, did not vary for AVM but was different
across trials for DBMonster, Figure 6 visualizes this data in
the same way as was chosen for the mutation score.

In addition to relying on the data visualizations, we
compute Tukey’s five-number descriptive statistics [17] for a
chosen evaluation metric when comparing DBMonster and
SchemaAnalyst across all of the 25 schemas. Reported in
the format (minimum, lower quartile, median, upper quartile,
and maximum), these values enable us to make observations
about the strengths and weaknesses of the two techniques
when they are applied to many different types of schemas.
D. Results Analysis

1) Quasi Mutants: Figure 5 shows the number of mutants
that are and are not classified as quasi-mutants. This bar
chart reveals that, for some schemas like Cloc, DellStore,
NistDML183, and Usda, the mutation analysis process does
not produce any quasi-mutants for any of the DBMSs.
For other schemas like BookTown, Employee, French-
Towns, Inventory, Iso3166, JWhoisServer, NistWeather, and
NistXTS748 the mutation operators only produce a small
number of quasi-mutants for certain DBMS(s). This figure
highlights the fact that, in contrast to HSQLDB and Postgres,
the most permissive DBMS, SQLite, never produces any
quasi-mutants – further reinforcement of the need for a
multi-DBMS approach. It is also important to note that
quasi-mutants do not dominate the total number of mutants
for any of the schemas. A low number of quasi-mutants
means that Section V-D3’s mutation scores are not artifi-
cially inflated and thus good indicators of effectiveness.
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Figure 5. The Number of Non-Quasi-Mutants and Quasi-Mutants for All of the Schemas.

2) Constraint Coverage: Although not the primary focus
of this section, we briefly report on both method’s constraint
coverage because data that does not cover a constraint will
not be able to kill the mutants associated with it. Table III
shows that, across the 30 trials, the AVM achieves 100%
constraint coverage for all schemas, with the exception
of Products and UnixUsage, for which it attains 96.43%
and 97.83% constraint coverage, respectively. In contrast,
DBMonster’s constraint coverage scores are often substan-
tially lower: while this method covers 72% of Examination’s
constraints, it only reaches 50% coverage for schemas like
DellStore and Iso3166, and is only able to cover 4.1% of the
constraints in RiskIt. These results indicate that, on average
across all of the schemas, DBMonster covers significantly
fewer constraints than SchemaAnalyst and is thus less likely
to kill constraint-based mutants than the AVM.

3) Mutation Score: Figure 6 gives the number of database
interactions (|D|) and the mutation score (MD) resulting
from the application of SchemaAnalyst and DBMonster to
the 25 schemas. The upper bar chart shows that AVM
may achieve higher mutation scores when the schemas are
hosted by HSQLDB and SQLite, highlighting the fact that
the DBMSs interpret schema-creating statements differently
and suggesting that a multi-DBMS approach to evaluation
is important in practice. Since DBMonster only worked
correctly with Postgres, the remainder of the analysis focuses
on both method’s scores for this DBMS.

For a simple schema without constraints, like Cloc, the
AVM generates four database interactions that achieve a
mutation score slightly above 0.6. Across all schemas,

DBMonster achieves its highest mutation score for Cloc
by always generating 50 or more database interactions that
yield a median value that is also near 0.6. This result reveals
that, while DBMonster is an acceptable method for testing
relational schemas that contain few, if any, constraints,
it still does so in a way that is less cost-effective than
SchemaAnalyst. In contrast to SchemaAnalyst, DBMonster is
also unable to generate effective data to test complex, real-
world schemas like JWhoisServer: for this schema, the
AVM earns a mutation score greater than 0.7 by generating
62 INSERTs while the random search produces over 300
database interactions that lead to a score near 0.2.

It is also interesting to observe that DBMonster generates
a median number of 13,647.5 database interactions that lead
to a mutation score between 0.4 and 0.6 for the NistDML181
schema. In contrast, SchemaAnalyst achieves a comparable
score of 0.6 with only seven database interactions – a result
that is more cost-effective and in better support of testing
and debugging. Finally, while DBMonster fails to generate
schema-compliant data for the CustomerOrder, Flights, Nist-
DML182, NistXTS748, Person, and RiskIt schemas, the
AVM produces effective data for every schema. Across all of
the schemas, SchemaAnalyst’s descriptive statistics of (0.29,
0.59, 0.65, 0.70, 0.89) suggest that, while sometimes it kills
less than 30% of the mutants, it kills a median of more
than 65% and, for certain schemas like DellStore, it can
kill nearly 90% of the mutants. Factoring in a kill score of
zero for the six schemas for which it crashes, DBMonster’s
statistics of (0.0, 0.11, 0.41, 0.52, 0.68) reveal that, according
to the MD metric, it is less effective than the AVM.
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Figure 6. Number of Database Interactions and Mutation Score for AVM (Upper) and DBMonster (Lower) for All of the Schemas.

4) Efficiency: Even though HSQLDB and SQLite are in-
memory databases, they still access the disk during data
generation and seem to do so in a way that is much less
efficient than Postgres. Yet, we note that generation with
Postgres being faster than with the other DBMSs is less im-
portant than the fact that data generation performance varies
across multiple DBMSs. Since data generation efficiency is
only a concern if a technique incurs a high time overhead,
we briefly highlight the trade-offs between the methods.

With the exception of Products, for which DBMonster is
faster by about five seconds, the AVM and DBMonster re-
quire a similar amount of time to generate data for the
simple schemas (e.g., AVM takes one to two seconds and
DBMonster uses less than five to produce data for Inventory).
For more complex schemas that contain more tables and
constraints, both methods incur a higher overhead. Yet,
while the AVM needs no more than 25 seconds and 3

seconds to respectively generate data for CustomerOrder
and JWhoisServer, DBMonster respectively takes up to 30
seconds and 10 seconds for the same schemas.

When it comes to efficiency, it is also important
to note that DBMonster exhibits more variability than
SchemaAnalyst – it takes between 15 and 30 seconds to
generate data for Flights while AVM never needs more
than 2 seconds for this schema. Unlike SchemaAnalyst,
DBMonster takes a median time of 634 seconds while
attempting to generate data for the NistDML182 schema that
contains a compound foreign key composed of 15 columns.
In contrast, AVM creates data that satisfies and negates
NistDML182’s constraints in less than two seconds. With
descriptive statistics of (0.41, 1.09, 1.90, 5.07, 36.52) and
(1.50, 3.01, 5.21, 16.79, 639.93) for SchemaAnalyst and
DBMonster, respectively, it is clear that the AVM exhibits
time overheads that are competitive with the random method.



E. Threats to Validity

Although the results show that SchemaAnalyst is as effi-
cient as DBMonster and more capable of automatically gen-
erating small data sets that cover constraints and kill mutants
in a cost-effective manner, there are threats to the validity
of this paper’s empirical evaluation. In order to mitigate
the threat associated with the generalization of the results,
we picked 25 representative schemas that exhibited different
data types and integrity constraints, as previously discussed
in Section V-A. The fact that a stochastic search algorithm
may produce a different result for each of its runs means that
this paper’s empirical results may not be representative of
the chosen methods’ general behavior. Since both the AVM
and DBMonster perform random actions, we ran them for
30 trials, as mentioned in Section V-B.

If DBMonster is not representative of the database gen-
erators commonly used in practice, then this could also
be a threat to validity. Even though DBMonster em-
ploys a random search and is not specifically designed
for testing and debugging purposes, it is comparable to
SchemaAnalyst since both tools are supposed to handle
the most common types of integrity constraints. Real-world
database designers and testers use DBMonster because,
unlike potentially expensive commercial tools [18], it is
free and open source and documented by several online
tutorials. Moreover, since “check constraints are hardly ever
considered” by commercial database generation tools [18],
DBMonster is not likely to be worse than these more costly
options. Even though the results in Section V-D show that
SchemaAnalyst is superior to DBMonster, we judge that the
comparison of these tools is appropriate. Finally, we con-
trolled threats arising from defects in the tools themselves
by carefully testing SchemaAnalyst and manually checking
the results on a wide variety of simple schemas.

VI. RELATED WORK

Due to space constraints and the fact that
SchemaAnalyst is unique in its focus on data generation
for testing relational schema integrity constraints, we
briefly survey the related work. Like SchemaAnalyst,
many methods (e.g., [1], [2], [3], [4], [9], [15]) attempt
to generate data, with Chays et al. and Houkjær et
al. presenting partially-automated methods [4], [15] and the
other papers describing automatic data generators [1], [2],
[3], [9]. Our schema testing technique is complementary
to these approaches. Like this paper, other work has
considered database-aware mutation analysis (e.g., [8],
[19]). Yet, Tuya et al. exclusively focus on the SQL
SELECT statement [8] and Chan et al. neither describe an
implementation nor furnish an empirical evaluation [19].

VII. CONCLUSIONS AND FUTURE WORK

The correctness of a relational database’s schema and
the integrity constraints that it expresses are a critical

aspect of overall database application correctness. This
paper presents and empirically evaluates SchemaAnalyst, a
search-based method for efficiently and effectively testing
relational integrity constraints. In support of the testing of
real-world schemas, SchemaAnalyst can model and han-
dle the data types and constraints associated with three
representative DBMSs: Postgres, HSQLDB, and SQLite.
Beyond presenting an AVM for generating a test suite that
systematically satisfies and negate the schema’s constraints,
this paper describes an approach to schema mutation.

An empirical study with 25 database schemas reveals
that SchemaAnalyst can efficiently generate data where
DBMonster either crashes or incurs an unacceptably high
time overhead. Since SchemaAnalyst attains higher con-
straint coverage and mutation scores than DBMonster, we
will, as part of future work, enhance it by employing both
search-based methods and constraint solvers and by applying
it to extra schemas using additional configurations.
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