
Towards a Method for Reducing the Test Suites of Database Applications

Gregory M. Kapfhammer
Department of Computer Science

Allegheny College
gkapfham@allegheny.edu

Abstract—Database applications are commonly implemented
and used in both industry and academia. These complex and
rapidly evolving applications often have frequent changes in
the source code of the program and the state and structure of
the database. This paper describes and empirically evaluates
a test suite reduction technique that improves the efficiency
of regression testing for database applications by removing re-
dundant tests. The experimental results show that the reduced
test suites are between 30% and 80% smaller than the original
test suite, thus enabling a decrease in testing time ranging from
7% to 78%. These empirical outcomes suggest that test suite
reduction is a viable method for controlling the costs associated
with testing rapidly-evolving database applications.

Keywords-database application; test suite reduction

I. INTRODUCTION

The database is a critical component of many real-world
software applications that are used in industry and academia.
Database applications have been implemented to create
electronic journals [1], scientific data repositories [2], and
electronic-commerce applications [3]. Indeed, Silberschatz
et al. observe that “practically all use of databases occurs
from within application programs” [4, pg. 311]. Moreover,
many database applications rapidly evolve as software de-
velopers change the source code, database administrators
modify the database’s schema, and external application
programs add data to and delete data from the database.

As developers and administrators change a database ap-
plication, they may introduce faults into the program’s
source code or the database’s state or structure. The goal
of regression testing is to ensure that these changes did not
introduce faults into the existing functionality by running a
test suite T = 〈t1, t2, . . . , tn〉 [5]. Yet, as the number of
test cases in the test suite grows and the database’s state
increases in size and complexity, re-executing the test suite
becomes more and more expensive. By removing redundant
tests from the test suite, reduction decreases test execution
time, thereby making regression testing faster [5].

This paper presents a test suite reduction method specifi-
cally tailored for database applications. First, this database-
aware approach collects per-test case requirements that cap-
ture how the program interacts with a relational database
during testing [6]. Next, it uses an overlap-aware greedy
algorithm to identify which test cases are redundant and
removes them from the test suite [7]. Even though it is

normally smaller than the original test suite, the reduced
test suite, denoted T ′, is guaranteed to cover the same
requirements as T . Test suite T ′ often executes faster than
T both because it has fewer tests and because it no longer
runs the costly operations associated with starting up and
shutting down the database for the discarded tests. Until the
database application undergoes major changes, the efficiency
of regression testing can be improved by using T ′.

II. DATABASE-AWARE TECHNIQUE

Similar to [3], this paper focuses on the regression testing
of database applications that are written in the Java pro-
gramming language and interact with a relational database
management system (RDBMS) by using a Java Database
Connectivity (JDBC) driver to submit structured query lan-
guage (SQL) strings. Both the test coverage monitor and the
regression testing technique interoperate with any type of
relational database management system that supports JDBC
[6]. Moreover, the coverage monitor captures database inter-
actions at all of the relevant levels of interaction granularity:
database, relation, attribute, record, and attribute value [6].
Intuitively, a database-aware requirement for test case ti ∈ T
corresponds to the series of method calls leading up to a
database interaction point and the set of relational database
entities that were defined and used during testing. A report
that saves database interactions in a fine-grained manner
(e.g., the record or attribute value level) provides more
context for debugging than one that saves coverage in a
coarse-grained fashion (e.g., the database or relation level).

The test suite reducer employs an overlap-aware greedy
algorithm that is based on the approximation algorithm
for the minimal set cover problem [7]. Greedy reduction
with overlap awareness iteratively selects the most cost-
effective test case for inclusion in the reduced test suite
T ′. During every successive iteration, the overlap-aware
greedy algorithm re-calculates the cost-effectiveness for each
leftover test according to how well it covers the remaining
test requirements. The reduction technique terminates when
T ′ covers all of the test requirements that the initial tests
cover. For instance, if tests ti and tj both interact with the
fifth record of relation r, then the reducer will discard the
one with the greater execution time. However, if test case tk
efficiently covers the first ten records of relation r, then the
greedy algorithm would keep it and discard both ti and tj .

Database Application - |T| Relation Attribute Record Attribute Value Avg. of Granularities
Reminder (RM) - 13 (7, .46) (7, .46) (10, .30) (9, .31) (8.25, .37)

FileFind (FF) - 16 (7, .56) (7, .56) (11, .31) (11, .31) (9, .44)
Pithy (PI) - 15 (6, .60) (6, .60) (8, .70) (7, .53) (6.75, .55)

StudentTracker (ST) - 25 (5, .80) (5, .76) (11, .56) (10, .60) (7.75, .69)
TransactionManager (TM) - 27 (14, .48) (14, .48) (15, .45) (14, .48) (14.25, .47)

GradeBook (GB) - 51 (33, .35) (33, .35) (33, .35) (32, .37) (32.75, .36)

Avg. of Applications - 24.5 (12, .51) (12.17, .50) (14.67, .40) (13.83, .44)

Figure 1. Reduction in Test Suite Size for the Database Applications — (|T |,RFFS(T, T ′)) for All Data Points.

III. EMPIRICAL STUDY

The empirical study used six database applications that
range in size from 548 to 1455 non-commented source state-
ments (NCSS) [6]. These case study applications employ a
wide variety of strategies to test the program’s interaction
with a relational database that contains up to nine relations.
The test suite for each case study application uses the
DBUnit 2.1 extension of JUnit 3.8.1. Every application
interacts with an HSQLDB in-memory relational database;
since the applications use JDBC, it is possible to configure
them to use other databases such as PostgreSQL or MySQL.
Figure 1 shows that each application’s test suite ranges in
size from 13 to 51 test cases. Even though these suites are
small and normally execute in seconds, they serve as a useful
step towards empirically evaluating database-aware test suite
reduction. Also, these small test suites can consume a
considerable amount of execution time if they are configured
to inspect a lot of the database’s state and/or create test
isolation by regularly restarting the database server.

To evaluate the effectiveness of the reduced test suites,
we calculate two “higher is better” metrics: the reduction
factor for size, or RFFS(T, T ′) = (|T | − |T ′|) ÷ |T | and
the reduction factor for time, or RFFT(T, T ′) = (time(T)−
time(T ′))÷ time(T). To study the efficiency of reduction we
measured execution time. Since a reducer never took more
than one second for any database application or interaction
level, this paper does not further consider efficiency.

Figure 1 gives the value of RFFS(T, T ′) for the six
case study applications (due to space constraints, we later
comment on the values for RFFS(T, T ′) instead of providing
the full table). We observe that ST exhibits the best reduction
factor (.69 on average) and GB has the worst (.36 on
average) — a result that we ascribe to the fact that ST has
great overlap in the requirements and GB has very little.
Across all of the applications, the average value of RFFS was
.51 at the relation level and .44 at the attribute value level,
suggesting that noticeable reductions are often possible.

Since the chosen database applications only interact with
a few relations, the results in Figure 1 reveal that the value
of RFFS is normally the highest at the relation level and the
lowest at the record level. If regression testing occurs at the
relation level, then there is a substantial amount of overlap
in requirement coverage, thus leading to high RFFS values.

The results show that it may be advisable to reduce at the
attribute level instead of the relation level because the (i)
reduction algorithm is efficient at both of these levels, (ii)
value of RFFS is comparable at these two levels, and (iii)
attribute-level coverage report is often better at more fully
capturing the behavior of the test cases [6].

Further analysis of the data in Figure 1 reveals an average
decrease in RFFS at the transition from the attribute to the
record level. Across all of the applications, we see that RFFS
drops from .50 to .40 when the reducer analyzes at the
record level instead of the attribute level, suggesting that
the potential for reduction is limited if the tests often place
different records into the database. Yet, Figure 1 shows that
the average value of RFFS climbs to .44 from .40 when using
requirements based on attribute values rather than records.
When run at the attribute-value level, the reducer can better
identify the overlap in requirement coverage because the
tests often insert records that only differ by a few attribute
values. Since the reducer is efficient at both the record and
attribute-value levels and more effective at the finer level of
granularity, it is sensible to reduce with requirements based
on attribute values instead of records. Overall, these high
RFFS values lead to RFFT scores that range between .07
and .78, thus highlighting the value in further developing and
investigating database-aware test suite reduction. As such,
future work will investigate the fault-detection effectiveness
of T and T ′ and extend the empirical study to consider new
and different types of database applications.

REFERENCES

[1] G. Marchionini and H. Maurer, “The roles of digital libraries
in teaching and learning,” CACM, 1995.

[2] R. Moore, T. A. Prince, and M. Ellisman, “Data-intensive
computing and digital libraries,” CACM, 1998.

[3] W. G. J. Halfond and A. Orso, “Combining static analysis and
runtime monitoring to counter SQL-injection attacks,” in Proc
of the 3rd WODA, 2005.

[4] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database
System Concepts, 5th ed., 2006.

[5] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for
controlling the size of a test suite,” TOSEM, 1993.

[6] G. M. Kapfhammer and M. L. Soffa, “Database-aware test
coverage monitoring,” in Proc of the 1st ISEC, 2008.

[7] A. Smith, J. Geiger, G. M. Kapfhammer, and M. L. Soffa, “Test
suite reduction and prioritization with call trees,” in Proc. of
22nd ASE, 2007.

