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Abstract. Regression testing techniques execute a test suite whethevaddition of
defect fixes or new functionality changes the program unelgtr tThe repeated exe-
cution of a test suite aims to establish a confidence in theecoress of the software
application and identify defects that were introduced by phogram modifications.
Industry experiences suggest that regression testing oftproves the quality of the
application under test. However, testing teams may notyavpeerform regression
testing because the frequent execution of the tests ofmrgrhigh time and space
overheads. Test suiselectiontechniques try to reduce the cost of testing by running
a subset of the tests, such as those that execute the moditism 0de, in order to
ensure that the updated program still operates correcligriatively,reductionmeth-
ods decrease testing time overheads by discarding thetestedundantly cover the
test requirements. Approaches to test spiieritization reorder the test cases in an
attempt to maximize the rate at which the tests achieve mgegbal such as code
coverage. After describing a wide variety of metrics for emsplly evaluating differ-
ent regression testing methods, this chapter considerffibeency and effectiveness
trade-offs associated with these techniques. The conclwsithis article summarizes
the state-of-the-art in the field of regression testing dreh toffers suggestions for
future work and resources for further study.

1 INTRODUCTION

Regression testing is an important software maintenantétacdhat involves repeatedly run-
ning a test suite whenever the program under test and/orrtgggm’s execution environment
changes. Executing a regression test suite upon the imioduof either a defect fix or a new
feature ensures that the modification of the program doesegstively impact the overall cor-
rectness. Recent industry reports suggest that (i) sadtesagineers often use regression testing
techniques [1] and (ii) employing regression testing meshoften leads to a software applica-
tion with high observed quality [2]. However, regressiostiigg can be prohibitively expensive,
particularly with respect to time [3], and thus accountsdemuch as half the cost of software
maintenance [4, 5]. In Rothermel et al. [5], an industridlatmrator reported that for one of its
products of approximately 20,000 lines of code, the entis¢ $uite required seven weeks to run.
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Since several well-known software failures, such as tham&i5 rocket and the 1990 AT&T out-
age, can be blamed on not testing changes in a software s{&temany techniques have been
developed to support efficient and effective regressiaimtgskor instance, gest suite execution
(TSE) component (e.g., JUnit, CppUnit, or NUnit) runs a ¢atgst suite in an automated and
repeatable manner. As the test suite executeEstaoverage monitdif CM) tracks how the test
cases cover the test requirements that normally corresfutite program’s state or structure
(e.g., methods, statements, or definition-use assoc&tidvhenever coverage information is
available, reduction, prioritization, and selection aitjons can analyze the relative contribution
of each test case in order to improve the regression test suit

Regression test suiteductiontechniques aim to control both the size and the executioa tim

a test suite by discarding the tests that redundantly ctwetest requirements. In an attempt to
improve the effectiveness of testing, approaches to tétst [suoritization reorder the test cases
according to an established priority metric. For instartkce,prioritizer may rearrange the tests
so that they cover the test requirements at a faster ratelieasriginal ordering. Alternatively,

a test prioritization method may addresses the challengenofing a test suite in a constrained
environment where computational resources such as timeremdory are limited. Test suite
selectiontechniques try to reduce the cost of testing by only runriogé test cases that are most
likely to ensure that the modified program still operatesexity (e.g., the tests that exercise the
modified source code of the program).

There are many costs and benefits associated with the riegréssting process. Both practi-
tioners and researchers must conduct experiments in ardegcertain the trade-offs between
the efficiency and the effectiveness of the chosen methéml{s¢gression testing. For instance,
it is important to measure the time overhead associatedexgbuting the tests and monitoring
the coverage of the requirements. Experiments must alssndiete the time and space costs
of using a selection, reduction, or prioritization alglnit and then evaluate these overheads in
the context of the potentially diminished cost and incrdasiectiveness of the modified test
suite. For example, the empirical characterization of actdn technique frequently measures
the decrease in the size and execution time of the test SUi®&,[ preservation of the original
test suites’ coverage [8, 9], or the amount of tests that@rad in common for test suites pro-
duced by different reduction methods [10]. After chardeteg the coverage density of a test
suite [11], experimental studies of test prioritizatiomeimes typically focus on evaluating the
change in metrics such as coverage effectiveness (CEM&iage percentage of blocks covered
(APBC) [12], and average percentage of faults detected DARF, 13].

In summary, the important contributions of this chapteraséollows:

1. An overview of a model for the regression testing proc8sxijon 2.1).

2. A description of the reduction, prioritization, and stlen techniques that are often used
during regression testing (Sections 2.2 through 2.7).

3. The definition of the metrics that evaluate the efficiennd affectiveness of different
approaches to regression testing (Section 3).

4. Areview of the important advances and the current statieecédirt in the field of regression
testing (Sections 4 and 5).
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Figure 1: Overview of the Regression Testing Process.

2 REGRESSION TESTING TECHNIQUES

2.1 REGRESSION TESTING MODEL

Figure 1 provides an overview of a model for the regressistirtg process. In thgeneralre-
gression testing (GRT) framework, we apply selection, céda, and/or prioritization to the test
suite and then use the modified suite during many subseqoemds of test suite execution [5].
This cost-effective approach to testing is motivated by ieicgd studies demonstrating that the
adequacy of a test suite does not markedly change acrosgsidng versions of a program [14].
Alternatively, theversion specificegression testing (VSRT) model suggests that the tes suit
should be re-analyzed after each modification to the prognader test [5]. VSRT requires effi-
cient implementations of the (i) test suite executor, égttcoverage monitor, and (iii) selection,
reduction, and prioritization techniques. If the methoddonstructing the modified test suite is
expensive, then the GRT framework supports the amortizatidhis cost over many executions
of the tests. Yet, VSRT is more likely to improve the effeetiess of regression testing because
it always leverages the most current information about thgram and the tests. Furthermore,
testers should consider the VSRT approach whenever thegonognd/or the test suite undergo
a series of substantial changes. Of course, any regregsiting approach that can efficiently
operate in a version specific fashion should also enable GRT.

Regression testing establishes a confidence in the coesscof and isolates defects within a
program by running a collection of tests known agst suite This chapter defines a test suite
T = (t1,...,ty) as a tuple (i.e., an ordered list) nfindividual test cases. Intuitively, each test
caset; € T invokes one or more of the methods under test and inspecisutpeit(s) in order
to see if the operations worked correctly. We require thaheast inT beindependenso that
we can guarantee that there are no test execution orderjpgndencies [4, 15]. Many real
world test suites exhibit test independence because thepopslar test automation frameworks
(e.g., JUnit, CppUnit, or NUnit) provideetUp andtearDown methods that respectively execute
before and after each test case. Test case independencradiss it more likely that regression
testing schemes (e.g., selection, reduction, and pdatitin) will create a modified test suite
that is both efficient and effective. For instance, testr@helence enables a prioritizer to reorder
tests in any sequence that maximizes the suite’s abilityotercthe test requirements and find
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Figure 2: Overview of the Test Suite Execution Process.

the defects. All of the testing techniques described indhepter may also be applied, albeit in
a potentially diminished capacity, to non-independentasgjon test suites.

22 TEST SUITE EXECUTION

Figure 2 describes the process of executing a test case.epi®psly mentioned in Section 2.1,
a setUp operation runs before the invocation of the method underiniesrder to perform any
required initializations. For example, if the program matets with a file system or a database,
then setUp may populate these components with files or data. Alteralgtivf the program
uses a network, thesetUp could establish a new network connection. Upon completion o
the initialization procedure, the test case calls the odg method with the input that the test
constructs. The test case captures the output of the metttbdravides the return value to the
test oraclethat determines whether the test passed or failed.

While tools may automatically generate oracles in certmgumstances (e.g., when itis possible

to predict the output of new tests based upon the input arulibof existing test cases [16]),
often the tester manually implements the oracles. The @ratlrns a failing verdict when the
expected output does not match the actual output and a gassidict results when the two
outputs are equivalent. FinallyearDown cleans up after the test case and thus ensures that it
is independent. Depending on the configuration of the tét sMecutor, the regression testing
process continues until either all of theéests have executed or an oracle indicates that a test case
failed (this behavior is the default for most versions of kit test automation framework).

In order to make the discussion of test suite execution monerete and to illustrate the chal-
lenges of testing, Figure 3 summarizes the outcomes assoaiath testing a Java class called
Kinetic [4]. As shown in Figure 4, this class containg@nputeVelocity method designed
to calculate the velocity of an object based on its kinetiergm and mass. Since the kinetic
energy of an object, is defined ak = ImV?, it is clear thatcomputeVelocity contains a
defect on line 10. That is, line 10 should have the assignmstémentrelocity_squared

= 2 * (kinetic / mass). Furthermore, Figure 5 gives a test suite that will run in Jbmit
3.8.1 framework for automated test execution (a slightlyified version of this suite will fullfil
the requirements of the more recent 4.8.1 version of JUmitgrestingly, the results in Figure 3
reveal that only one of the four tests, reveals the fault in th&#inetic class.



2.3 TEST ADEQUACY CRITERIA Author: Kapfhammer 5

‘ Test CaseH kinetic ‘ mass ‘ expected ‘ actual ‘ Verdict\

testOne - 1; 5 0 Undefined| Undefined| Pass

testTwo - Iy 0 5 0 0 Pass

testThree - i3 8 1 4 4 Pass
testFour -ty 1000 5 20 24 Fail

Figure 3: Summarizing the Outcomes of Test Suite ExecutordmputeVelocity.

For instance,t; cannot isolate the fault iromputeVelocity because it does not execute
line 10 of the program. Tedb is also incapable of detecting the defect since an input of
kinetic = O results invelocity_squared = velocity = final_velocity = 0 and thus
leads to an inadvertently passing test case. fggsasses even after the method incorrectly as-
signsvelocity_squared = 24 and subsequently computésth.sqrt (velocity_squared)

= 4.898979 instead of the correct value Bath.sqrt (velocity_squared) = 4.0. Testts’s
inability to find the defect is due to the fact that line 11colputeVelocity masks the faulty
computation by casting theslocity variable as arint and arriving at the expected result of
velocity = 4. Yet, Figure 3 shows thaj is capable of isolating the defect because it executes
the faulty location, changes the value of thewal_velocity variable, and returns the incorrect
result to the calling test case. In summary, this exampleothstnates that tests often do not have
the same fault detection effectiveness. We also see thatgagm fault only manifests itself in

a test failure when the input(s) (i) cause the execution efd#fective location, (ii) change the
values of the program’s variables, and (iii) force the mdttwreturn an erroneous answer [17].
Itis also evident that an effective regression testing @seenust use a test suite executor that can
(i) repeatedly run the test cases, (ii) capture the outptitemethod under test, and (iii) issue a
final verdict after using an oracle to compare the value okttpected andactual variables.

2.3 TEST ADEQUACY CRITERIA

Ideally, a regression testing technique would utilize klsalge about program faults as it re-
ordered and reduced the test cases. Since it is normallgudiffo collect information about the
existence of faults within the program under test, regoesgsting methods must use a proxy
for this type of complete knowledge. After identifying a &/pf test requirement that “good”
test cases should aim to exercise, testers can calculagelégiacyof a test case as the ratio be-
tween the covered requirements and the total number ofreagents. For example, a criterion
that concentrates on tleentrol flowof the program under test does so with the realization that a
defect cannot be detected unless the test case executasitigédcation in the program’s source
code. Alternatively, alata flowadequacy criterion focuses on the definition and use of bimsa
because a program will only be able to determine if it assighe correct value to a variable
when it subsequently uses the variable. An adequacy cmteould also consider the coverage
of the program’s methods and the context in which the methae invoked during testing.

Current regression testing methods are often motivatedvipjirecal investigations of the effec-
tiveness of test adequacy criteria which indicate that tiieddequacy tests are often unlikely
to reveal program defects [18]. If adequacy informatiornvailable, then a test prioritizer could
execute highly adequate tests before those with lower agquAs a concrete illustration of
the concept of test adequacy, this chapter briefly examingsia that focus on definition-use
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import java.lang.Math;
public class Kinetic

{
public static String computeVelocity {nt kinetic , int mass)
{
int velocity_squared , velocity;
StringBuffer final_velocity =new StringBuffer ();
if( mass != 0 )
{
velocity_squared = 3« (kinetic / mass);
velocity = (int)Math.sqrt(velocity_squared);
final_velocity .append(velocity);
}
else
{
final_velocity .append("Undefined");
}
return final_velocity.toString ();
}
}

Figure 4: Thkinetic Class that Contains a Fault in themputeVelocity Method.

import junit.framework x;
public class TestKinetic extends TestCase
{
public TestKinetic (String name)
{
super (name);
}
public static Test suite ()
{
return new TestSuite(TestKineticclass);
public void testOne ()
{
String expected =new String ("Undefined");
String actual = Kinetic.computeVelocity (5,0);
assertEquals (expected , actual);
public void testTwo ()
{
String expected =new String ("0");
String actual = Kinetic.computeVelocity (0,5);
assertEquals (expected , actual);
public void testThree ()
{
String expected =new String ("4");
String actual = Kinetic.computeVelocity (8,1);
assertEquals (expected , actual);
public void testFour ()
{
String expected =new String ("20");
String actual = Kinetic.computeVelocity (1000,5);
assertEquals (expected , actual);
}
}

Figure 5: A JUnit 3.8.1 Test Suite for the Faultynetic Class.
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Figure 6: Example of a Graph-Based Representation for al8iRmegram Under Test.

associations [19] and call tree paths [7, 8]. Data flow-basiteria are frequently very effective
because they consider both the values stored in the progjraariables and the structure of the
program itself. Since data flow-based adequacy criterianofequire the use of a potentially
expensive algorithm to enumerate the definition-use aagoes, these criteria may not support
the version specific model of regression testing [9, 20]tHarmore, it is difficult to apply data
flow criteria to programs for which testers lack access tosthi@rce code. Alternatively, this
chapter considers call tree paths, a efficient-to-comptiterion that operates without source
code access by focusing on the contextual coverage of theodgetnvoked during testing.

In data flow-based adequacy criteria, the occurrence of iabtaron the left hand side of an
assignment statement is calledefinitionof this variable. Theiseof a variable takes place when
it appears on the right hand side of an assignment stateménttee predicate of a conditional
logic statement or an iteration construct [18]. For examijble assignment statement= x + y
uses the variablesandy and then defines. Figure 6 furnishes an intuitive depiction of a graph-
based representation for a method under test. In this adiggaanode represents a computation
and an edge stands for the transfer of control between twaragpstatements within the program
[4]. The node labeled with a “4” in Figure 6, denoted heréNaswould represent the definition
and uses of program variables for the staterert x + y.

A data flow-based adequacy criterion cal&dDUs requires a test suite to covedafinition-use
association(Ng, Ny, var) where the definition of variablear occurs in graph nodily and a use

of var occurs in nod&\, [18]. For instance, the coverage report in Figure 7 revéaig N;, Ng, X)

is one of the sixteen definition-use associations withingttagh provided by Figure 6. Figure 7
also shows that a test case exercising the Nath> N» — N3 — N4 — Ng will cover seven of the
associations and thus lead to an adequacy sco#3@56. Yet, we see that a test case that also
follows the edgeN, — N, will increase its measure of adequacy$625. Various approaches to
regression testing use data flow information, such as theitiefi-use associations described in
Figure 7, during the reorganization of a test suite. For gxtaa prioritizer may order the suite
so that the first tests to run have the highest data flow adgquac
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Ri= (Ni,No,x) | Ro= (Na,No, x)
Ro = (N1,N2,y) | Rio= (N5,N2,y)
Rs = (N1,N3,x) | Ri1=(N5,N3,y)
Ry = (N1,Ns,y) | Riz= (Ng,N3,x)
Rs = (N1,Ns,x) | Riz= (N, Ne,x)
Rs = (N1,Ns,y) | Ria= (N5,Ng,y)
Re = (N1,Ns5,y) | Ris= (N5,Ns,y)
Path ‘ Covered Associations ‘ Adequacy
Nl — N2 — N3 — N4 — Ne RL Rz7 F{% R4, R5, Ra, R13 I = 4375

Nt - N - N3 = Ny —

9 _
N2 N N3 N N4 N N6 Rla R27 R37 R47 R5a Rﬁa Rga RlZa R13 16 — .5625

Figure 7: Test Requirements for ta#-DUs Adequacy Criterion.

Alternatively, McMaster and Memon present a test adequatsrion that obviates the need for
source code access by measuring method coverage in thextciomtehich the methods were
invoked during testing [7]. A coverage report for this aiib@ corresponds to eitherdynamic
call tree(DCT) or acalling context treéCCT) representing the dynamic behavior of the program
while a test suite runs. Each node in a DCT or CCT stands forthodehat was called during
the execution of a test case. An edge from a parent to a chdld signifies that the parent method
called the child method during testing. Finally, a call tpeh from the root node to a leaf node
forms a test requirement. Regression testing methods neagalistree paths as a test adequacy
criterion because these trees are efficient to collect amd,ghus enabling the modification of a
test suite each time the program under test changes [9, 2though DCTs and CCTs may be
criticized for not incorporating either the source code argmeters of the methods under test or
the state of the program, they have been shown to performelglts other criteria with respect
to common fault detection metrics [22].

Figure 8(a) provides an example of a DCT with thirteen nodestavelve edges. In this tree
a node with the label “A’ corresponds to the invocation of thethod A and the edge A»

B indicates that method A invokes method B. The existenceheftivo DCT edges A— B
reveals that method A repeatedly invokes method B. In thenpl@from Figure 8(a), the DCT
represents the recursive invocation of method G by chaituggther edges of the form & G.

In an attempt to reduce the size of the coverage report, tARei€Eigure 8(b) coalesces the DCT
nodes and yields a 3% reduction in the number of nodes and a7% decrease in the number
of edges. For example, the CCT combines the two B nodes in @Eibto a single node. The
CCT also coalesces nodes and introduces back edges whehadroatis itself recursively (e.g.,
the DCT path G- G — G) or a method is run repeatedly (e.g., the DCT path-H — H).

Using call tree paths as a test requirement enables regmetsiting technigues to determine
which test cases may be redundant [7]. For instance, congpartest that only causes method
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Figure 8: Examples of the (a) DCT and (b) CCT for Use in the Tedke Adequacy Criterion.

A to invoke method B to another test that yields one of thetoadls in Figure 8 suggests that the
first test case is potentially redundant. If testing timedastrained, then a test suite reduction
method may discard a test case that does not cause the progiden test to create unique

sequences of methods invocations. As an alternative, Htja@s may reorder a test suite so that
it covers all of the unique method contexts as quickly as ssiie.

24 TEST COVERAGE MONITORING

Given a test suitd, a test coverage monitor identifies a set of covered reqeints ¥ (T) =
{R1,Ry,...,Rn}. Each test; is associated with a non-empty subset of requireméfits) C
Z(T) thatt; is said tocover A coverage monitor also determines tbevered byrelation-
ship that associates a requireméjtwith a set of tests7 (R;) C T such thatR; is covered
by each test in7 (R;). For instance, if test; creates the first path in Figure 7 ag€(T) =
{Ry,...,Rug} is the set of requirements, then we know thatovers the requirement® (t;) =
{R1,R2,Rs,R4,Rs,Rs, R13}. Since each of the requirementsd#(t;) are covered by;, we can
also write that; € .7 (R;) for everyR; € Z(t;). The test coverage monitor tracks what occurs
during the execution of the regression test stite order to populate the sg£(T ) and for eaclt
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Figure 9: Call Tree Construction Probes for Test Coveragaitdong.

andR; construct the respective se#t;) and.7 (R;). Test coverage monitoring techniques place
instrumentatiorprobesinto the program under test in order to report which testirequents are
covered during the execution ©f Among other goals, the instrumentation must efficientigir
coverage without changing the behavior of the program aadett suite [9, 20, 21].

This chapter primarily uses the call tree path coveragerait to support the discussion of the
instrumentation and test coverage monitoring process. hasis in Figure 9, the use of call
tree-based test adequacy requires probes to execute befbadter the execution of both a test
case and a method. Each time a probe executes, it must updatelk tree so that it correctly
reflects the test execution history and eventually resultstree like the ones in Figure 8. Since
these probes do not initially exist in the program under, tdmt coverage monitor must place
them into the methods of the program. Using aspect-orieptedramming (AOP) techniques
and tools such as AspectJ, a call tree constructor insestimimentation probes in either a static
or dynamic fashion [8, 21]. Astatic instrumentor places the probes into the program before
test suite execution wheredgnamicinstrumentation methods insert the probes as the tests run.
While static instrumentation must take place each time thgnam under test changes, dynamic
instrumentors modify the program during testing, thus ionprg the flexibility of the monitor at
the cost of a potential increase in run-time overheads.

As an example, test coverage monitors for Java programsseaeitiner the Java virtual machine
tools interface (JVMTI) or a custom class loader in orderédqgrm dynamic instrumentation at
class load-time [9]. While this approach is simple and easynplement, it may insert probes
that are not necessary and it cannot support the gatheringfasfation for certain types of
adequacy criteria (e.qg., definition-use associationsragnam variables). Alternatively, Misurda
et al. present the Jazz test coverage monitor that recofdsriation about the execution of
control flow-based (e.g., edges and nodes) and data flovetljage, definition-use associations)
test requirements [20]. While more complicated than theafigespectJ to construct call trees,
this instrumentation scheme is unique because it incrattgmemoves the probes after a test
case exercises the associated test requirements. In symnsirumentation methods vary in
their ability to capture various aspects of program behaaia they are commonly tailored to
track the coverage of requirements for one or more specgiatdequacy criteria.
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|ti — R; means that tes{ coversrequiremeng |

Figure 10: An Example of Overlap in the Coverage of the Tesfutements.

25 REDUCING AND PRIORITIZING TEST SUITES

Figure 10 visualizes a coverage report that a coverage aratonstructed after running a test
suite T consisting of teststs, ...,t12) and requirements?(T) = {Ry,...,Ry}. Using the nota-
tion established in Section 2.4, this example illustra@gecage relationships such &&t;) =
{R1,Rs} and.7 (Ry) = {t1,t2}. Since the test suite in Figure 10 contains a significant arnaiu
overlap in test requirement coverage, it is a candidateeiduction. In fact, inspection of Fig-
ure 10 reveals that executing a reduced test suite congiaitirts, ts,tg) instead of the original
twelve tests will still cover all of the seven test requirgrtse(other reductions are also possi-
ble for this test suite). Even though test suite reductiomntams complete coverage of the
requirements, it does not guarantee the same fault detezdjpabilities as the original test suite
[7, 22, 23]. If a tester is concerned that test suite rednatibght compromise the fault detec-
tion effectiveness of the suite, then it may be reasonabkedoder the tests. For instance, a
test suite prioritizer could construct a test sequencertiveg the high coverage test cases (i.e.,
2 (t10) = {R4,Re,R7}) before the tests that cover few requirements (#&t;2) = {Rs}).

Reduction methods attempt to produce a new test suite thatafler than the input test suife
While reducers ignore the redundant tests, a prioritizpeagedly inputs the surplus tests into
the reduction algorithm until all of the tests have been dddea completely reordered suite.
As shown in Figure 11, it is possible to prioritize a testainy repeatedly invoking a reduction
algorithm on successively smaller subsets of the tests@8len a test suit§ and test cover-
age setZ(T) as input, thePrioritizationViaRe peated Reductialgorithm initializesT, to the
empty set and assigng(T) as the set of live requirement®,(T). While there are still tests
remaining inT, the algorithm repeatedly uses a reduction technique, asitheGreedyReduc-
tionWithOverlapalgorithm described in Section 2.5.1, to find a reduced Syit&ach iteration
of the loop starting on line 2 of Figure 11 uses the order pwisg union operator, denoted,

to add the tests from the resultifigto T, and then recalculates the live requireme#igT ).

Figure 12 furnishes an example of this process for the sestlsuite that is provided to the right
of the diagram. The checkmarks in this coverage report tekiatit; covers four requirements
(i.e., Ry, Rz, R3, andRy) while test caséy covers only two requirements (i.€%; andRy). When
given the original test suit& = (t1,t,t3,t4) the reduction algorithm produces the first output
Tr1 = (t1,14) and two residual tests andts. In this situation, the reduction algorithm incremen-
tally picks the test case that covers the most currently varen requirements. After the first
iteration, the residual tests are then once again passéne teeduction technique, yielding the
second output;, = (t2,t3). Using thew operator to concatenale, andT,, creates the prioritized
test suiteT, = (ty,t4,t3,t2) thatPrioritizationViaRepeatedReductiartimately returns.
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Algorithm PrioritizationViaRepeatedReductifh % (T))
Input: Test SuiteT = (tg,...,t);
Test Coverage Se#(T)
Output: Prioritized Test Suitdp
To 0, Z(T) <« 2(T)
2. whileT #£0
3 do T; + ReductionTechniqu&, %,(T))
4. Tp < TpWT;
5. %g(T) 0
6
7
8

L

fortieT
dOL@g(T) (—%Z(T) U%(ti)
return Tp

Figure 11: ThePrioritizationViaRepeatedReductigkigorithm.

Figure 13's classification scheme for reduction and praaiton methods reveals that this chap-
ter considers approaches involving greedy choices, thefuseuristic search, or the reversal or
random shuffling of a test suite. As shown in this diagrans tiapter describes averlap-
awaregreedy technique that is based on the approximation atgorior the minimal set cover
problem [24]. Greedy reduction with overlap awarenessiitegly selects the most cost-effective
test case for inclusion in the reduced test suite. Duringyeseccessive iteration, the overlap-
aware greedy algorithm re-calculates the cost-effeaissrfor each leftover test according to
how well it covers the remaining test requirements. Thisicddn technique terminates when
the reduced test suite covers all of the test requiremeatstik initial tests cover.

Prioritization that is not overlap-aware re-orders théstéy sorting them according to a cost-
effectiveness metric [5, 19]. When provided with a targeedor the reduced test suite, the
reducer that ignores overlap will sort the tests by costetifeness and then pick test cases
until the new test suite reaches the size limit. The ovealapre reduction and prioritization
techniques have the potential to identify a new test suéeihimore effective than the suite that
was created by methods that ignore the overlap in requirecoserage. However, a method that
considers overlap may require more execution time thantatedisregards this information.

There are also a wide variety ofistomgreedy algorithms for test suite reduction and prioritiza-
tion. For instance, 2-OPT is an all-pairs greedy approaahdbmpares each pair of tests to all
other pairs and picks the best according to a cost-effews® metric [12]. The Harrold, Gupta,
Soffa (HGS) algorithm constructs a reduced test suite bgréming thecovered byinformation
available in the set’ (R;) for each requiremerR; [25]. The delayed greedy (DGR) method
consults bott¥Z(t;) and.7 (R;) in order to identify the (i) tests that will not improve thedteed
suite and (ii) requirements that the best tests alreadyrd@®. While both HGS and DGR
were initially designed to support reduction, it is easyregrate both of these methods into the
PrioritizationViaRepeatedReducti@lgorithm shown in Figure 11 [8].

Given a suitable objective function that evaluates tesésyuality, it is often possible to employ
heuristic searchtechniques (e.g., hill climbing, genetic algorithms, tamarch, and simulated
annealing) to reorder or reduce the tests [12, 27]. Figural48 indicates that a regression
testing method may prioritize the test suite by simmyersingthe initial test sequence [15].
This scheme may be useful if a tester always adds new, aniblyossore effective, tests to
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Figure 12: An Example of Test Suite Prioritization by RepdaReduction.

the end of the test suite. Test reduction via reversal setests from the reversed test suite
until reaching the provided target size. During the evabmaof different testing strategies, both
researchers and practitioners may also emphoyglomreduction and prioritization as a form of
experimental control [5, 15, 28]. Recent empirical studiemonstrate that these approaches to
reduction and prioritization often improve the testingqass. For instance, in the context of
JUnit tests for Java programs, like those in Section 2.2, . elraw the following conclusion:
“the worst thing that JUnit users can do is not practice soonm fof prioritization” [28].

251 GREEDY METHODS

Figure 14 provides th&reedyReductionWithOverlafisRO) algorithm that produces the re-
duced test suitd, after repeatedly analyzing how each remaining test colersequirements
in Z(T). As evidence by line 13 of Figure 14, this algorithm also usethe order preserving
union operator, to build up the final suite. GRO initializies teduced test suite, denofgdto the
empty set and iteratively adds to it the most cost-effedidgt. Equation (1) defines the greedy
cost-effectiveness ratjg for test case;.* This equation uses thame((t;)) function to calculate
the execution time of the singleton test tug¢. More generally, we requireéme((ty,...,t,)) to
return the time overhead associated with executing all@ftiests in the input tuple. According
to Equation (1)p; is the average cost at which test casmvers thdZ (ti) \ Z (T, )| requirements
that are not yet covered By [24]. Therefore, each iteration of GRO’s outehile loop finds the
test case with the lowest cost-effectiveness value ané@lantoT, .2

time( (ti))

A= N2 )

Iwithout loss of generality, this chapter focuses on usimgcibst to coverage ratio during test case evaluation. It
is also possible to reduce and prioritize the test suite lojusively focusing on either the cost or the coverage infor-
mation. However, we chose this definition mfbecause recent empirical studies suggest that the cestieffness
ratio may lead to better orderings and reductions of thectests [8].

2While many different implementations are acceptable, thiapter assumes that all of the greedy regression
testing methods use a random choice to resolve a tie in theass effectiveness scores.
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Reduction or Prioritization Techniqug
Heuristic Search
Overlap-Aware Not Overlap-Aware

Figure 13: Classifying Several Approaches to Test SuiteuRioh and Prioritization.

GRO initializes the temporary test suifeto contain all ofT’s tests and then selects test cases
fromT. Line 2 of Figure 14 shows that GRO terminates wh&(T, ) = %(T). Lines 5 through 12
are responsible for (i) identifyinty, the next test that GRO will opt to keepTh, and (ii) remov-

ing any non-viable tedt that does not cover at least one of the un-covered requirtsniies,t;

is non-viablewhenZ(ti) \ Z(T;) = 0). Lines 13 and 14 respectively platgeinto T, and then
remove this test frori so that it is not considered during later executions of GR@terwhile
loop. Finally, line 15 augment#(T;) so that this set containg (tx), the set of requirements that
tx covers. Since we want GRO to support prioritization via sgst/e invocations of the reducer,
line 16 update§ so that it no longer contains any of the testdlin We know thatGreedyRe-
ductionWithOverlaps O(m x n) because the algorithm containgoa loop nested within ahile

loop and it analyzea tests that cover a total of requirements [5, 24].

Figure 15 gives thé&reedyPrioritizationWithOverlagGPO) algorithm that uses the GRO al-
gorithm to re-order test suit€ according to its coverage of the requirementsz(T). GPO
initializes the prioritized test suit&, to the empty set and use#(T) to store the live test re-
quirements. We say that a requiremertive as long as it is covered by a test case that remains
in T after one or more calls tGreedyReductionWithOverlagEach invocation of GRO vyields
both (i) a new reduced; that we place intdl, and (ii) a smaller number of residual tests in
the originalT. After each round of reduction, lines 5 through 7 reiniialiZ,(T) to the empty
set and insert all of the live requirements into this set. GREs the newly populated,(T)
during the next call to GRO. Line 2 shows that the priorii@atprocess continues uniil = 0.
The worst-case time complexity @reedyPrioritizationWithOverlags O(n x (mx n) 4 n?) or
O(r? x (14+m)). Thenx (mx n) term in the time complexity stands for GPO’s repeated in-
vocation ofGreedyReductionWithOverlagnd then? term corresponds to the cost of iteratively
populatingZ,(T) during each execution of the outehile loop. Since overlap-aware greedy
prioritization must re-order the entire test sulite, it isrmexpensive than GRO in the worst case.

Figure 16 describes tl@reedyReductionWithoutOverl#@R) algorithm that reduces a test suite
T to the target size* € {0,...,n—1}. GR uses thg; metric, as defined in Equation (1), when
it sorts the tests il in ascending order. Figure 16 shows that GR stores the oot8dr{(T, p)

in T and then create$ so that it containd s first n* tests (i.e., we use the notatid1, n*|

to denote the sub-tuplg,...,ty)). Finally, Figure 18 demonstrates thateedyPrioritization-
WithoutOverlap(GP) returns the test suite that results from sorfln@ccording top. If we
assume that the enumeratimdl, n*] takes linear time, then GR B(n x log,n+ n*) and GP is
O(nx log, n). These time complexities both includear log, nterm because they use a variant
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Algorithm GreedyReductionWithOverl&p, 2 (T))
Input: Test SuiteT = (tg,...,t);
Test Coverage Se#(T)
Output: Reduced Test Suifg
1. 1«0, ZT)«0T«T

2. whileZ(T,) #2(T)

3 dop +

4, tk < null

5. fortieT

6 doif Z(t)\Z(T;) £ 0
time((j

/ then pi ¢ ey

8. if oi<p

9. then ty < t;

10. P+ pi

11. else

12. T T\ )

14. T—T\ ()

16. T« T\T,

17. return T,

Figure 14: TheGreedyReductionWithOverlgBRO) Algorithm.

Algorithm GreedyPrioritizationWithOverlafT, Z(T))
Input: Test SuiteT = (t3,...,tn);
Test Coverage Se#(T)
Output: Prioritized Test Suitd,
To 0, Z(T) <« 2Z(T)
2. whileT #£0
3 do T; + GreedyReductionWithOverlap, #;(T))
4. Tp < TpWT;
5. %[(T) +~0
6
7
8

=

fortieT
do Zy(T) + Z(T)UZ(t)
return Tp
Figure 15: TheGreedyPrioritizationWithOverlagGPO) Algorithm.

Algorithm GreedyReductionWithoutOverl@pn*, p)
Input: Test SuiteT = (t3,...,tn);

Test Suite Target Size";

Test Cost-Effectiveness Metrjz
Output: Reduced Test Suifg
1. T+« Sor(T,p)
2. T« T[1,nY
3. returnT;

Figure 16: TheGreedyReductionWithoutOverlg3R) Algorithm.
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Test Case|| Test Cost| Test Coverage Costto Coverage Ratip
tg 1 5 1/5=.2
to 2 5 2/5=.4
t3 2 6 2/6=.33

Initial Test Suite T = (t1,to,t3)
Prioritized Test Suite Tp = (t1,13,t2)

Figure 17: Using GP to Prioritize a Test Suite According t® @ost-Effectiveness Ratio.

of Bentley et al.'s method to sort the input test sditand respectively crealle and T, [29]. The
n* term in GR’s time complexity corresponds to running line Figure 16.

Using GR to perform reduction requires the selection of Hrget size parameter’. When
provided with a testing time limit and the average time oeexhof a test case, a tester could
pick n* so that test execution roughly fits into the time budget. Intast to GRO and GPO,
the GR technique may require the tuningndfin order to ensure that the modified test suite is
both efficient and effective. Furthermore, GR and GP ignbesaverlap in coverage and thus
they may be less effective if a test suite contains testscthadr some of the same requirements.
Yet, since most modern programming languages have builtaictions for efficient sorting, both
GR and GP are easy to implement and they tend to be efficietdarfpe test suites [9]. Finally,
Figure 17 demonstrates how the GP algorithm would pri@iéizimple test suite. This example
shows that prioritization by the cost to coverage ratio ta®the test suité, = (t1,ts, to).

Figures 19 and 20 furnish tHeeverseReductiofRVR) andReversePrioritization(RVP) algo-
rithms. RVR and RVP differ from GR and GP in that they Ueversanstead ofSort Since
reversal of the test tupl€[1,n*] is O(n*), we know that RVR i€(2n*) and RVP isO(n). Fig-
ures 21 and 22 give tHeandomReductio(RAR) andRandomPrioritizatio(RAP) algorithms.
These algorithms are different than reduction and priaiion by reversal because they invoke
Shuffleinstead ofReverse However, RAR and RAP also have respective worst-case tase t
complexities ofO(2n*) andO(n) wheren stands for the number of tests. This result is due to the
fact thatReverseand Shuffleare both linear time algorithms. Interestingly, recentezkpental
studies reveal that both the random and reverse orderingsest suite are often more effective
than the initial arrangement. Smith and Kapfhammer [8] andeDal. [28] attribute this result
to the fact that developers often add new tests after theédastase. These new tests are more
likely to reveal faults than the existing tests because ftegyuently combine the capabilities of
previous tests and/or invoke recently added features.

Since several recent experiments with regression testetgads use the Harrold, Gupta, Soffa
(HGS) algorithm (e.qg., [7, 22]), this chapter focuses orsita example of a custom approach
to reduction and prioritization. Since the goal of most gun methods is to ensure th§t
covers every requirement, HGS starts to constifudty identifying each requiremerR; such
that|.7 (R;)| = 1 [25]. After adding every tes? (R;j) = {ti} to the reduced test suife, HGS
considers each remaining uncovered requirenfignivhen |.7 (R;)| = 2 and it uses a greedy
choice metric (GCM), such as the coverage of the t#$t,) [25], or the cost-effectiveness value
o from Equation (1) [8], to choose between the covering testsaThe HGS reducer continues
by iteratively examining the7 (R;) of increasing cardinality until all of the requirements are
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Algorithm GreedyPrioritizationWithoutOverldp, p)
Input: Test SuiteT = (tg,...,t);
Test Cost-Effectiveness Metrjiz
Output: Prioritized Test Suitdp
1. Tp+« Sor(T,p)
2. returnTp

Figure 18: TheGreedyPrioritizationWithoutOverlagGP) Algorithm.

Algorithm ReverseReducti¢f, n*)
Input: Test SuiteT = (t3,...,tn);

Test Suite Target Size*
Output: Reduced Test Suifg
1. T« Tn
2. T, < Revers¢l)

3. returnT,;

Figure 19: TheReverseReductiofRVR) Algorithm.

Algorithm ReversePrioritizatioir)
Input: Test SuiteT = (t3,...,tn)
Output: Prioritized Test Suitdp

1. Tp <« Reversér)

2. returnTp

Figure 20: TheReversePrioritizatiofRVP) Algorithm.

Algorithm RandomReductid, n*)
Input: Test SuiteT = (tg,...,tn);

Test Suite Target Size*
Output: Reduced Test Suifg
1. T« Tn
2. T, < Shuffl¢T)

3. returnT,;

Figure 21: TheRandomReductiofRAR) Algorithm.

Algorithm RandomPrioritizatioT)
Input: Test SuiteT = (t3,...,tn)
Output: Prioritized Test Suitd

1. Tp« Shuffl¢T)

2. returnTp

Figure 22: TheRandomPrioritization(RAP) Algorithm.
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Algorithm SearchPrioritizeWithHillClimbe(T, % (T))
Input: Test SuiteT = (tg,...,t);
Test Coverage Se#(T)
Output: Prioritized Test Suitdp
T « ShuffléT)
T+ 0
while T £ T
doT/ « T
for T € NeighborhoodT)
doif ScordT,%(T)) > ScordT,%(T))
thenT T
T+ T
return Tp
Figure 23: TheSearchPrioritizeWithHillClimbe(PHC) Algorithm.

CoNokrwD R

Algorithm SwapFirstNeighborhod@)
Input: Test SuiteT = (ty,...,tn)
Output: Test Neighborhood Set(T)

1. A/ (T)«0

2. fortieT[2,n]

3. do T’ + SwagT, g, 1)

4, N(T) = N (T)U{T"}
5. return A#(T)

Figure 24: TheéswapFirstNeighborhoo@SRN) Algorithm.

covered. When the choice metric does not enable HGS to digaatk between the tests in
7 (R)) for |7 (Rj)| = £, the algorithm “looks ahead” in order to determine how tietstéare in
covering requirements witl’ + 1 covering tests. If HGS performs the chosen maximum number
of allowed look aheads without identifying the best tesec#sen the algorithm arbitrarily selects
from those tests that remain [25]. Prior experiments retrestiwhile HGS is able to efficiently
and effectively reduce test suites, the use of HGS inRHeritizationViaRepeatedReduction
algorithm may not always yield effective test orderings [8]

252 SEARCH-BASED TECHNIQUES

Search-based prioritizers use traditional heuristicctetgchniques (e.g., hill climbing, genetic
algorithms, tabu search, and simulated annealing) to fiedtatdering that maximizes an objec-
tive function denote@coré T, (T )).2 As further discussed in Section 3, this chapter focuses on
Scorefunctions that assign high values to test orderings thatliapover the test requirements.
Yet, search-based prioritizers can leverage other typ&sofefunctions as long as they clearly
disambiguate between good and bad test orderings. For éxaBgorecould focus on the fault
detection effectiveness of a test suite as defined by the ARREDIc that is also explained in
Section 3. In light of its simplicity, ease of implementatj@and efficiency [12, 27], this chapter
describes a hill climbing local search algorithm that iteedy explores the neighborhood of the
test ordering that currently has the b8sbre In particular, we describe a method that uses hill
climbing and one of three possible neighborhood generamitsprioritizes a test suite.

3This section only consider prioritization since there igkative dearth of search-based reduction methods.
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Algorithm SwapLastNeighborhogd)
Input: Test SuiteT = (t3,...,tn)
Output: Test Neighborhood Set(T)

1. A/ (T)«0

2. fortieT[l,n-1]

3. do T’ + SwagT, tn, 1)

4. N(T) = A (T)U{T'}
5. return A#(T)

Figure 25: TheswapLastNeighborhooELN) Algorithm.

Algorithm SwapFullNeighborhodd)
Input: Test SuiteT = (ty,...,tn)
Output: Test Neighborhood Set(T)
1. A/ (T)«0
2. fortieT[l,n—-1]
3 dofor tx € T[i+1,n]
4. do T’ + SwagT,t,t)
5 N(T) = A (T)U{T'}
6. return 4 (T)
Figure 26: TheswapFullNeighborhoo@SFN) Algorithm.

Figure 23 gives th&earchPrioritizeWithHillClimber(PHC) algorithm that tries to use the re-
quirement information inZ(T) to find a prioritized test suitd, that is better than the initial
ordering inT. As shown on line 1 of Figure 23, PHC starts the hill climbirrggess by stor-
ing a random ordering of in test suiteT. Next, PHC uses thsleighborhoodT) function to
enumerate all of the test orderings that are “near” the otiest suitel . As the search-based
prioritizer examines each Neighborh_ood'f), lines 6 and 7 show that PHC performs the as-
signmentl < T whenever the neighbdF earns a higher score than the current best orddting
The SearchPrioritizeWithHillClimberlgorithm terminates wheh = T’ signals that the current
iteration did not make progress towards the goal of findingtseb ordering.

As formally described in Figures 24 through 26 and visudlizeFigures 27 and 28, PHC gen-
erates a set of neighbors, denotgd(T), by performing a series of swaps. For instance, the
SwapFirstNeighborhoofSRN) algorithm in Figure 24 generatesfa(T) set withn— 1 items by
swapping the first te¢t with eacht; € T[2,n]. Figure 27(a) shows that when SRN starts with the
initial test suite(ts, to, ts, 14, ts) it yields an.4"(T) containing test orderings such@sty, ts, ts,ts).
Alternatively, theSwapLastNeighborhooBLN) method in Figure 25 construct$’(T) so that

it includes then — 1 test suites that result from swappigwith eacht; € T[1,n—1]. Finally,
Figures 26 and 28 illustrate ttf®wallFullNeighborhoodSFN) algorithm that populates”(T)
with the (nx (n—1))/2 test orderings that result from swapping all possiblespaiitest cases.
Interestingly, Figures 27 and 28 demonstrate that the SRN, 8hd SFN neighborhood gener-
ators can create an’(T) that contains the same test ordering (e(@,12,t3,t4,t1) is @ member

of the neighborhood created by all three of the algorithnYg), it is important to observe that
the SFN generator constructs neighborhoods that contderiogs, such adj,t,,t4,t3,t5) and
(t1,t3,t2,14,t5), that SRN and SLN do not produce.

There are many variations to teeepest ascehill climber described in Figures 23 through 26.
For instance, PHC could perforfirst ascenthill climbing by immediately starting to explore
a new neighborhood whenever it encountef that is better than the curremt Therandom
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(b)
Figure 27: Small Neighborhood Generation Using (a) SRN ah&[N.

restarthill climber repeatedly executes the PHC algorithm fromtipld starting points and re-
turns the best overall test ordering Bs In situations when it is difficult for the hill climber to
find a highly effectiveT, (i.e., there are many local maxima in the search space dr&ste,
Z(T), andScorg, then search-based prioritization with simulated aringatabu search, or ge-
netic algorithms may produce superior results. Theseratise approaches to heuristic search
employ additional methods (e.g., cooling factors, tabis,liand crossover and mutation opera-
tors) that may increase computational cost while atterggravoid returning a poor ordering.
For more details about using genetic algorithms to prizitest suites, please refer to [12, 27].

In comparison to the greedy methods described in Sectioh,Z8&arch-based techniques tend to
incur higher prioritization time overheads. Yet, reordgra test suite with either a hill climber
(HC) or a genetic algorithm (GA) has three potential advgesgaover the use of greedy tech-
niques [27]. First, previous theoretical and empiricatista have shown that genetic algorithms
are often amenable to parallelization [30, 31]. Given tise in multi-core central processing
units (CPUs) and the increasing use of graphics processiitg (GPUs) for general computa-
tion [32], parallelization has the potential to effectiveéduce the cost of search-based methods,
thereby making their performance comparable to or bettan that of the greedy techniques
[15]. HC and GA methods can also be interrupted during the&cetion, thus enabling the
identification of the test ordering that is currently thetkmsd the use of a "human in the loop"
prioritization model where an intelligent human effecljvguides the search algorithm [33].

A third advantage of the search-based methods concernggineadto which they can construct
diverse test orderings that achieve equivalent coverdgetieness scores [34]. If the test cov-
erage report and the execution time of the tests does nogeh#ren multiple prioritizations of
a given test suite produced by a greedy algorithm will alwagddentical. In contrast, a hill
climber or a genetic algorithm is likely to yield differergst orderings, assuming the use of a
different initial test suite order. It is more desirable seulifferent orderings of tests to cover the
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Figure 28: Large Neighborhood Generation Using SFN.

same requirements than it is to repeatedly use an unchaegeortiering. This activity ensures
that latent properties of the tests that are not reflectetiénréquirements will be brought to
bear on the application, possibly increasing the test'suitgability to find faults not connected
to the chosen adequacy criterion [34]. Search-based t#ns are ideally suited for this task
because they can produce different test orderings thatdiaiar effectiveness scores.

Much like greedy methods, search-based prioritizers oftdribit many interesting trade-offs
in efficiency and effectiveness. For example, the SRN and Béilyhborhood generators lead
to lower prioritization time overheads since they createnalker .4 (T) than SFN. Yet, it is
possible that the costly SFN may vyield a large neighborhamttagning test ordering(s) that
are more effective than the test suites that are part of tighbberhoods generated by SRN and
SLN. Similarly, at the cost of an increase in execution tipgritization with random restart
hill climbing may also lead to better orderings than thosat @ire produced by a traditional
hill climber. Using the terminology established in Sectid, the computationally expensive
search-based prioritizers (e.g., random restart hilllgiitg with SFN) are best suited for general
regression testing environments where testers run thetsstr@rdering over many modifications
to the program under test. Alternatively, efficient sedvelsed prioritizers, such as hill climbing
with SRN or SLN, can better support the version specific aggirdo regression testing.

2.6 PERFORMING TEST SUITE SELECTION

As the program under test changes, test suite selectionodsge#im to reduce the cost of re-
gression testing by only re-running those test cases thvat the potential to reveal defects. A
selection method is calleshfeif it can always construct test suites that are capable afatieg

the same faults as the original tuple of tests [3, 35, 36].elfalbpers adhere to tlwntrolled
regression testing assumpti@amd only make modifications to the source code of the program,
then a test case selector can guarantee defect isolati@ebijfying and running those tests that
exercise the changed modules in the program [35]. Selestethods often use coverage moni-
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Figure 29: Test Suite Selection in the Presence of Changmgtdin Modules.

toring information to determine how the modules of the pangiare exercised by the tests. After
recording a coverage report and determining which moduége wecently changed, the selector
executes a potentially smaller test suite that only focusethese updated modules. Selection
methods normally concentrate on program modificationshwg the change, deletion, or ad-
dition of a source code location. In practice, test suitectan techniques also need to track the
changes that the developers make to external resourcescfjguration files and databases).

Figure 29 depicts a test suite for a modified program comtgiai total of nine unique modules
that may be Java methods or classes. As an example, thisudiagres the notatian — M3 to
indicate that the test casgexercisesnoduleMs. For each of the modules in Figure 29, a box
with rounded corners highlights a module that recently nwdat modification (e.gMs) while

a standard box means that developers did not change the en@dgl,Mg). Furthermore, this
example use§; and S, to respectively denote external resources that have arel iavbeen
changed by developers. A regression test selection mesthaamalyzes coverage and change
reports like the one in Figure 29 in order to determine whegtd do not need to run because
they did not exercise any modified modules (ite,14,15,t7, andtyy). After finding the tests
that (i) interact with methods using modified resources. (€&¢sg,tg, andtig) and (ii) directly
exercise the changed modules (itg.ty,ts,tg,tg, andty;), a selection method can create and run
a smaller test suite such &s,ts,tg). In this instance, the selection mechanism must choose a
test liketg in order to ensure the testing of modile’s interaction with the modified resource
Si. Furthermore, the technique picks tests such, @hdtg in order to ensure the isolation of
defects that may arise from changes in modilesMs, andMs.

Results from analytical studies, empirical evaluatiomsl, practical experience suggest that there
are interesting trade-offs in the efficiency and effectaanof test suite selection techniques. For
instance, experiments conducted by Rothermel and Hamadliddte that test suite design can
have a substantial impact of the effectiveness of selectiethods [36]. That is, selection may
not be cost-effective when the tests execute rapidly, thiesigite is small, or there are certain
modules that are exercised by many test cases [36]. Howevsituations like the one depicted
in Figure 29, selection can often reduce testing time beraash test focuses on a small number
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f fp f3 f4, fs5 feo f; fg Faults Cost (Mins) Avg. Faults/Mir
tv | v v v v v v t 7 9 0.778
to || v to 1 1 1.0
t3 || v v t3 2 3 0.667
ta v v v ta 3 4 0.75
ts v v v ts 3 4 0.75
ts v v v ts 3 4 0.75
(a)
Time Limit: 12 minutes
Fault TiAme Avg. Faults/Min. Intglligen
(Mo (Tp) (Tp) (Tp)
ty t2 t2 ts
t3 th iy
ty t3
t5
Total Faults 7 8 7 8
Total Time 9 12 10 11

(b)
Figure 30: An Example of Time-Aware Test Suite Prioritipati

of modules (e.g.t12 only interacts with four modules while many tests, suchsandts, use
just one or two). Furthermore, the use of the Testar testtsahetool at Google reveals that
“the smaller your changes are (or the more frequently youTestar), and the more tests you
have, the bigger are the relative savings” [37]. While caiireg that test suite selection may
not be capable of decreasing testing time for some appitstiGraves et al. observe that a safe
selection method found all of the faults for which fault+idiéying tests existed and discarded
60% of the tests on the median [3]. Finally, selection meshody still identify small and useful
test suites in circumstances when the controlled regnessgiing assumption does not hold.

2.7 RESOURCE-AWARE REGRESSION TESTING

Several new regression testing methods aim to handle tHkerges associated with running
tests in constrained environments where computationalress such as time, memory, or power
are limited [15]. This chapter considers the concrete eXamijtime-aware test suite prioritiza-
tion since time is a concern for organizations that rely upigitly builds or perform regression
testing each time source code changes are committed toiarvemtrol repository. As an ex-
ample of time constrained testing, suppose that a testetswameorderT = (t;,tp,t3,14, 5, ts),

as shown in Figure 30. For the purposes of illustration, éREmple assumes a priori knowledge
of the faults detected by in the progranP. As given in Figure 30(a), test cagecan find seven
faults, { f1, f2, fa, f5, fg, f7, fg}, in nine minutest, finds one fault{ f1}, in one minute, ands
isolates two faults{ f1, fs}, in three minutes. Test casests, andts each find three faults in four
minutes:{ fo, f3, 7}, {4, fs, fg}, and{ fo, f4, fs}, respectively.
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Suppose that the time budget for regression testing is ewvalautes. Because we want to find as
many faults as possible early on, we order the test caseslpgamsidering the number of faults
that they can detect. Without a time budget, the test Suite(ts, ts,ts,ts,t3,t2) would execute.
Out of this, only the test suit&, = (t;) can run under a twelve minute time constraint, and it
would find a total of seven faults, as noted in Figure 30(bhic8itime is a principal concern,
it may also seem logical to order the test cases with regatioeio execution time. In the time
constrained environment, a time-based prioritizaifpn: (tz,13,14,t5) could be executed and find
eight defects, as shown in Figure 30(b). Another option wdng to consider the time budget
and fault information together. To do this, we could ordertifst cases according to the average
percent of faults that they can detect per minute. Underithe ¢onstraint, the execution of the
orderingT, = (to,t1) finds a total of seven faults.

If the time budget and the fault information are both con®dentelligently, that is, in a way
that accounts for overlapping fault detection, the tesesa®uld be better prioritized and thus
increase the overall number of faults found in the desined fperiod. In this example, the test
cases are intelligently reordered so that the s'fy'te (ts,t4,t3) is executed, revealing eight errors
in less time tharT,. Itis also clear thal, can reveal more defects th@ipandT,, in the specified
testing time. Finally, it is important to note that the firsfottest cases o'fp, t, andts, find a
total of two faults in four minutes whereas the first test dalsﬁp, ts, detects three defects in
the same time period. The time-aware prioritizatidp, is favored ovefl, because it is able to
detect more faults earlier in test execution.

There are several different approaches to implementingna-éware test prioritizer [15, 38,
39]. For example, Walcott et al. present a genetic algoritiased method that reorganizes test
suites so that the new order will (i) always run within a tinmit and (ii) have the highest
possible potential for defect detection based upon thenmdtion in the coverage report [15].
Alternatively, Alspaugh et al. describe an approach to ieffictime-aware prioritization that
uses uses solvers for the 0/1 knapsack problem to reordeghsuite [38]. In comparison to the
genetic algorithm, the knapsack solvers do not considentbdap in test coverage, thus quickly
producing a test suite that is often less effective than tieeconstructed by the GA. Zhang et al.
introduce a time-aware prioritizer that uses an integedirprogramming (ILP) method to solve
the time and coverage constraints introducing by a resgitésting time budget [39].

Recent experimental results indicate that higher levelsowtrage and fault detection are ob-
tained when time-aware prioritizers explicitly considiené constraints [15, 39]. Even when a
severe time restriction forces testers to reduce the titotted to testing by 75%, Walcott et
al. report that their search-based technique preservegevage 94% of the original test suite’s
code coverage [15]. Zhang et al. also find that certain iawit regression testing methods,
such as those described in Section 2.5, may create reaga@fdiltive test orderings when the
testing time budget is not too constrained. In these sdnafiit may make sense to use the tra-
ditional greedy prioritizers since the non-time-awaréntegues are normally cheaper than those
that explicitly consider the testing time constraints. dfly) the experiments of Zhang et al. re-
veal that the ILP-based solvers are often the most efficiethieffective approach to time-aware
prioritization, suggesting that this method may also béulse quickly handling other resource
constraints such as those related to memory and batteryiogrion [39].
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3 EVALUATION OF REGRESSION TESTING TECHNIQUES

During the use of regression testing in either an industna&ronment or an experimental study,
it is important to gauge the efficiency and effectivenessheftechniques that are described in
Section 2. Since it is always desirable for a testing teamitp run with low time and space
overheads, this section focuses on methods for measuringftctiveness of approaches to
selection, reduction, and prioritization. Equation (2)ines RFF$T,T;) € [0,1), thereduction
factor for sizegiven a test suit@ and it’'s reduced forrii, [7]. Since the RFFS reflects the percent
of original tests that remain after selection or reductmmRFFS of 0 means that the algorithm
removed none of the tests while an RFFS near 1 means thatihesrediscarded many tests (an
RFFS of 1 is not possible because testers often mandat@; thmaist contain at least one test to
cover at least some of the requirements). As stated by Eosa8) and (4), RFHIT, T;) € [0,1)
is thereduction factor for timdor test suitesT andT, [9]. An RFFT of 0 signifies thaf and
T, execute for the same length of time (i.eme(T) — time(T; ) = 0) while an RFFT of 1 is the
impossible case wheR executes instantaneously (i.emeT) —time(T,) = time(T)).

T =Tl

REFST ) = @) RFFT(T7Tr)=time(Er)n_e(t_:_r)”e(Tr) .

timeg(T) = Zrtime(ti) 4)
tie

The majority of prior empirical research calculates therease in fault detection effectiveness
for a reduced test suite after seeding faults into the prograder test (e.g., [7]). Yet, it is also
important to use effectiveness metrics that do not reqaivét fnformation since fault seeding
may be time consuming and error-prone. To this end, Equé@fipdefines theeduction factor
for test requirementas RFFRT,T;) € [0,1]. Unlike the RFFS and RFFT metrics, we prefer
low values for RFFRT, T;) because this indicates that a reduced test uitevers the majority
of the requirements that the initial tests cover. To avoidfgsion during the comparison of
different reduction techniques, Equation (6) definegtfeservation factor for test requirements
If a reduced test suite has a high value for PEFR;) € [0, 1], then we also know that it covers
most of the requirements that the original tests cover. sline overlap-aware and custom greedy
reduction algorithms defined in Section 2, such as GRO, HB&DEER, always create that
covers all of the test requirements we know that PAER. ) = 1 for these methods. The other
reduction techniques (e.g., GR, RVR, and RAR) may not coost test suite that covers all
Rj € Z(T) and thus these methods may yield test suites with PFFR viidaeare less than one.

_|2(M)] = 2(T)|
RFFRT,T;) = %)) (5)
PFFRT,T,) = 1—RFFRT,T;) (6)

In order to facilitate the comparison between differentrapphes to reduction, we use the tu-
ple E; = (RFFSRFFT,PFFR to organize the evaluation metrics for test sdit¢ Figure 31

4without loss of generality, this chapter concentrates anguBFFS, RFFT, and PFFR during the comparison of
reduction techniques. However, it is possible to apply #raesapproach iE contains scores from different metrics.
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E E Comparison
(4,5,.8) | (4,5,.9) E>E
(4,51) | (4,551) E > E
(.6,.5,1) (.4,.5,1) E>E
(4,5,1) | (55,.75,.9) E ~E

Figure 31: Evaluation Tuples Used to Compare Reduced Té&sSu

summarizes the four different examples of evaluation wptet this chapter uses to explain
the process of comparing different reduction algorithmgy@®se that two reduction techniques
createT, andT, that are respectively characterized by the evaluatioresil = (.4,.5,.8) and

E = (.4,.5,.9), found in the first row of the table in Figure 31. As a furthet @ comparing re-
duction methods, we use the notatioa E, and€'e E; to clarify the tuple membership of scores
e andé(i.e.,ﬁ:?S refers to the reduction factor for size scor&ih In this example, a tester
would preferE, because it (i) has the same values for RFFS and RFFT (i.eeduetion factors
for the number of tests and the overall testing time) and(i@serves the coverage of more test
requirements SiNCBFFR> PFFR. IfE, = (.4,.5,1) andE; = (.4,.55,1), then we would favor
the reduced suite witR, because it fully preserves requirement coverage whileliyigla larger
value for RFFS (i.e.,55 > .5). Next, suppose thd, = (.6,.5,1) andE; = (.4,.5,1). In this
situation, we would favoE;’s reduction algorithm since it yields the smallest testesii.e.,
RFFS> ﬁ:FS). This choice is sensible because it will control testime if there is an increase
in the costs of starting up and shutting down an individust ¢tase.

During the evaluation of reduction algorithms, it may netays be clear which technique is the
most appropriate for a given program and its test suite. kamele, assume th& = (.4,.5,1)
andE, = (.55,.75,.9), as provided by Figure 31. In this cad§, shows thaff, is (i) better

at reducing testing time and (ii) worse at preserving remnégnt coverage when we compare
it to T;. In this circumstance, a tester must choose the reductcmigue that best fits the
current regression testing process. For instance, it mayriogent to selecE, when the test
suite is executed in a time and/or memory constrained emviemt (e.g., [15, 40]) or the tests
are repeatedly run during continuous testing (e.g., [4ifhe correctness of the application is
the highest priority, then it is advisable to use the reductechnique that leads # andE;.

For the reduced test suitds and T, and their respective evaluation tuplésand E,, we write
E, > E; when the logical predicate in Equation (7) holds (i.e.,puefer T to T;). If E; > E;,
then we know that, is as good ad, for all three evaluation metrics and better th&rfor at
least one metrié. For instance, the first row of Figure 31 shows tRats> E, becausé; yields
() RFFS and RFFT values that are equal to the score§ fand (i) a PFFR value that is greater
than that ofT;. If Equation (7) does not hold for test suit§sandT, that were produced by two
different reduction techniques (i.&; » E, andE, % E;), then we writeg, ~ Er (e, T; andTr
aresimilar). Since Equation (7) does not dictate a preference betfieand T; whenE; ~ E;,
as shown in the final row of Figure 31, a tester must use thetredmis inherent in the testing

SEquation (7)'s definition of the> operator is based on the conceptpateto efficiencyhat is employed in the
fields of economics and multi-objective optimization (geaefer to [42] for more details about these areas).
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CoverZ(ty) Cover -1 (t)
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time(T)
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Figure 32: The Coverage Effectiveness of a Test Suite.

process to inform the choice of the best reduction technifoeinstance, a tester may pick the
fastest reducer whel ~ E; and the developers wants to perform version specific testing

VecE,8cE :(e>é A JecE,écE :(e>9) 7

Any metric for evaluating test suite prioritizers must béeaio assess how well a test ordering
uses the full time allotted to testing. For instance, testdéten prefer an ordering that rapidly
covers the test requirements since this could reduce the rimuired to find the first fault in
the program. When provided with cost and coverage infommatas given in Figure 33, it is
possible to calculate theoverage effectiveness test suiteT, denoted CET). If test cost infor-
mation is not available, then testers can assume that estatoregsumes a single unit of time and
subsequently compute GE ), theunit coverage effectivenes$ T. Suppose that a regression
testing tool creates test suit€s and'fIO after applying two different prioritization techniques to
the original test suitd . If CE(T,) > CE(T), then we know thaT}, is more coverage effective
than'fIO and thus a tester would prefer the first approach to priatitn instead of the second.
In situations where CH}) = CE(T}), the tester may pick the most efficient test suite prioritize

The coverage effectiveness metric evaluates a prioritegicsuite by determining the cumulative
coverage of the tests over time [8]. As defined in Equationa(8) depicted in Figure 32, the
cumulative coverage functid®(T,|) takes the input of a test suifeand a timd and returns the
total number of requirements coveredbwfter running fort time units. Following the definition
of timeg(T) given in Equation (4), the formulation €(T,|) uses thdime function to compute
the execution time of the testsin(e.g.,time((t1)) returns the running time of the first test and
time({ty,...,t,—1)) determines the time required to rdis first n— 1 tests). We defin€(T,I)

as an(n+ 1)-part piecewise function wheh = (ty,...,t,). Equation (8) reveals th&(T,l) =0
until the completion of test casge(i.e.,| < time({t1))). In the time period after the execution of
t; and during the running db (i.e.,| € [time((t1)),time((t1,t2)))), the value ofC shows thail
has covered a total dfZ(t;1)| requirements. The functio@ maintains the maximum height of
|2 (T)| for all time pointsl > time(T), as graphically depicted in Figure 32.

0 | < time({t1))
% (t)| | € [time((t2)), time((ta,12)))
c(T,h={": : (8)

UL22()] | < time({ty....t_1)).time(T))
%M 1> timeT)
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To formulate CET) € (0,1), the integral ofC(T,!) is divided by the integral of the ideal cu-
mulative coverage functio€(T,l) that Equation (9) defines to immediately cover all of the
requirements. Equation (10) shows that CE considers tgstresnent coverage throughout the
execution time ofT by taking the integrals within the closed interval from Qtitae(T). Since
any prioritization of a test suite should always cover thesaequirements as the original order-
ing (i.e.,2(T) = #%(Tp)), our statement of coverage effectiveness forbids theafag&T,) = 0
that would lead to CET') = 0. Since it is impossible fof, to instantaneously cover all of the test
requirements, Equation (10)’s expression of coverage®fess also precludes CE = 1.
Finally, CE,(T) is defined in a similar manner to Equations (8) through (1ept for the fact
that we assume all tests have unit cost and timg(tj) = 1 for allt; € T.

timeT)
(Tl = |(T)) © fem
e CB(T) =~ fmem —
/O c(T, 1)

Since many test coverage monitoring tools do not record ¢iré n time when a test case cov-
ers a requirement [20, 21], CE conservatively credits atéhtthe coverage of its requirements
when it finishes execution. While CE does furnish a time s¢masmeasurement of effective-
ness, it may be unfair to high coverage tests with extendadimg times. One approach to
handling this issue is tiinearly interpolatebetween the points in the piece-wise coverage func-
tion. For instance, the linear interpolant between the tivhen testing begins and the first test
case finishes execution is the straight line between thegpdy0D) and(time((t1)),|Z(t1)|). Be-
tween the time when an arbitraty ends and the following tesf,; completes, Equation (11)
defineC5(T, 1), the coverage function that performs linear interpolatietween all of the points
(time((ta,....t})), | U, Z(t)]) and (time((ta,. .., tj+1)), \u”l Z()|). TheC(T,I) function is
similar toC5(T, ), except for the fact thak exhibits abrupt “jumps” in height at the completion
of each test case where@g uses a straight line to approximate the increase in coveaage
test runs. Finally, Equation (12) calculates £E) in an analogous fashion to the one used for
CE(T), with the exception of the fact that the numerator Bgistead ofC.

(10)

& <t.éf&l<;>>) | < time( (1))
|2 (t)| +
(I - time(t)) + <t.#;‘é€25‘{f§‘”t.mé‘z”> ) | € [timef(t:)). time{ (t1.t))
Cs(T,l) =
Ut 2 ()] +
(I —time((tr, . . tn_1))) X (t,m;fg)t,muéé‘f(f;n)ﬂ)> | € [ime((ta, .. ta_1)), time(T))
|2 (T)| | > time(T)
(11)
timeT)
/ Cs(T.1)
CE5(T) = =2 (12)

timeT) _
[ e
0
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Figure 33: The Cost and Coverage Characteristics of a Tést Su

As an example of calculating coverage effectiveness, sefiwat test suité = (t1,tp,t3) cov-
ers a total of five requirements while testing progrBmFigure 33 characterizes test sufte
according to execution time and requirement coverage, fegit, takes ten seconds to execute
while t; andts respectively consume five and four seconds). Figure 34 Nigsathe coverage
curves and gives the CE and ¢falues for the 3= 3 x 2 x 1 = 6 different orderings of test
suiteT. These graphs demonstrate that the inclusion of test caseition costs does impact the
measurement of effectiveness. For instance, €ftiivalently ranks the orderindg = (t1,t2,t3)
and'I:p = (t,t3,t2) while CE classifies the latter as more effective. This reisultue to the fact
that'fp’s first two tests cover four requirements in nine seconddenthe corresponding tests in
T, take fifteen seconds to cover four requirements.

For a given test order, CE may be higher than,GEvice-versa. For instancép, t;,t3) results in

a low value for CE and a high GEcore because CE incorporates the substantial cost ohiginni
t, and CE, assumes thap’s running time is equivalent to the other tests. Figure 3hifihes
the graphs for the linearly interpolating coverage funt@g and the corresponding GEalues.

A comparison of Figure 34(a) and Figure 35 reveals thay'S€hse of interpolation uniformly
increases the coverage effectiveness score. Finall\e tighteen graphs illustrate that different
test orderings are more or less effective at using the anafuimhe devoted to testing.

In contrast to CE, other evaluation metrics such asaberage percentage of faults detected
(APFD) [5] do not factor time into the evaluation of a testtsuprioritizer. Unlike existing
evaluation metrics that incorporate time (e.g., ARB]), CE obviates the need to use fault in-
formation when calculating effectiveness. However, ittt fault information, like that in Fig-
ure 36, is available from testing records or seeded falilgs) testers may pursue the calculation
of APFD. For a set of known fauls, Equation (13) defines the APED,F) € 57,1~ 577]
whenreveal f,T) denotes the position withiii of the first test that reveals fauft € F [44].
Using this formulation of APFD, the minimum value 9% corresponds to the circumstance in
which the last test case in the ordering is the first to expthsd the faults. Moreover, the maxi-

mum value of - 2+|T| is evident when the first test can find all of the faults. If we tise test
orderingsT, = (t1,t2,t3,14,t5) and'l°p = (ts,14,11,t2,t5) @and the fault information in Figure 36 as
an example, then we have APFI3,F) =1— .4+ .1=.7 and APFOT,,F) =1—-.2+.1= .82.
This result suggests that, according to the APFD metgas a better prioritization thafy,.

Sicrrevealf,T) 1
LRGN

APFD(T,F) =1 (13)
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Figure 35: The CE(T) Scores foiT = (ty,t2,t3).

Several recent empirical studies have shown that certpiestpf test suites are relatively easy
to prioritize [8, 9, 11]. If a regression test suifecontains many tests that cover a substantial
number of the requirements, then a random reordering ofay often have a CE value that is
greater than the CE score for the initial ordering [8, 9]. i&inly, a random prioritization may
improve the APFD of a test suite containing many tests thigoti@ large number of faults [11].
Equation (14) defines O0,%) € (0,1}, thecoverage densitpf test suiteT for requirement set
Z. Alow value for (T, %) suggests that many test cases cover a small number of neuits,
while D(T,#) = 1 indicates that each test case covers all of the requireminte assume that
each of the requirements #(T ) must be covered by one of the tests witflinthen every test
suite will have a density value greater than zero. A randaoripzer may be sufficient for test
suites that have a high value for D, whereas a low D value &tegcthe need for the greedy and
search-based approaches. For example, the test suitelire Hif yields the relatively low value
of D(T,#) = .2619. Finally, Figure 37 furnishes an empirical cumulath&ribution function
(ECDF) that visualizes the range 6% (t;)| values for the test suite in Figure 10. An ECDF gives
the cumulative percentage of the data set whose valuesefalvba specific value [45]. As a
confirmation of the test suite’s low density value, this EQB¥eals that 80% of the test cases in
Figure 10 have a®(t;) set containing two or fewer requirements.

_ Shet |2(1)]
D(T,%) = T (14)
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Figure 36: The Faults Detected by a Test Suite.

4 CONCLUSIONS AND FUTURE WORK

This chapter examines an important software maintenartogta&nown as regression testing.
Methods for regression testing focus on running a test sthitnever the addition of defect fixes
or new functionality causes the program under test to chakgen though the use of regres-
sion testing techniques often leads to software applicatigith high observed quality [2], the
repeated execution of test cases can be so costly that ti@iscor half the cost of maintaining a
software system [3]. This chapter focuses on reduction oastthat decrease the cost of testing
by discarding those tests that redundantly cover the tgsirements. Additionally, the chapter
describes approaches to test suite prioritization thatiexa test suite in an attempt to improve
the rate at which tests achieve certain testing goals suchgasrement coverage. Finally, we
report on test selection techniques that reduce the cosstig by only running those tests that
exercise the recently modified modules of the program. Thetbods for enhancing regression
test suites have different trade-offs in efficiency andaifeness, thus making them more or
less useful in the general and version specific models oéssgrn testing.

After furnishing a detailed description of greedy and skdrased techniques for prioritization
and reduction, this chapter highlights safe test selectiethods. We also note that the reduc-
tion factors for size and time and the preservation factotdst requirements are three metrics
that facilitate the comparison between different appreado reduction. As long as a method
incurs minimal time and space overheads while preserviggimement coverage, a tester would
normally pick a test reducer that substantially decredsesize and running time of a test suite.
In the context of test suite prioritization, evaluation nest such as coverage effectiveness and
the average percentage of faults detected must determmevit) a regression test suite uses
the given time to cover requirements or detect faults.

In light of the wide range of advances in this field, techngltgnsfer represents an important
step for further work in regression testing. To date, mangdrtant methods for running and
analyzing test suites have not transitioned into practieetd the lack of properly documented
and supported tools. The existence of freely available get gource testing tools that integrate
with existing frameworks such as JUnit and CppUnit will bedifécial to both testing researchers
and practitioners. However, as noted by Frederick P. Brdakshe greatest hope that the soft-
ware engineering community has for solving the crisis of pality software is exceptional
engineers and testers [46]. As such, the proper educatidrraiming of testing students and
professionals is an important area for further investigatiin summary, future progress in re-
gression testing research, the development of new tesiolg, tand the education of testers all
stand to substantially benefit a modern society that is &singly reliant upon software.
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Figure 37: An ECDF of the Covered Requirement Sets for theSJeite in Figure 10.

5 FURTHER INFORMATION

The ACM/IEEE International Conference on Software Engimgg the ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, the ACMSDET International Symposium
on Software Testing and Analysis, and the ACM SIGAPP Symymosin Applied Computing’s
Software Engineering Track are all important forums for megearch in the area of regression
testing. Other important conferences include: IEEE/ACMdkoated Software Engineering,
IEEE International Conference on Software Maintenanc&HBHnternational Symposium on
Software Reliability Engineering, IEEE/ACM Internatidriymposium on Empirical Software
Engineering and Measurement, IEEE/NASA Software Engingeiorkshop, and IEEE Com-
puter Software and Applications Conference. TBEE Transactions on Software Engineering
and theACM Transactions on Software Engineering and Methodolrgytwo noteworthy jour-
nals that publish regression testing papers. Other josiinalude:Software Testing, Verification,
and Reliability Software: Practice and Experienc8oftware Quality JournalAutomated Soft-
ware Engineering: An International Journdtmpirical Software Engineering: An International
Journal andinformation and Software Technolagylagazines that publish software testing arti-
cles includeCommunications of the ACNEEE SoftwarelEEE ComputerandBetter Software
(formerly known asSoftware Testing and Quality EngineenngdCM SIGSOFT also sponsors
the bi-monthly newsletter calleBoftware Engineering Notes

Acknowledgments. The biblical verse “Test everything. Hold on to the goodirfr Thessalo-
nians 5:21 (New International Version) has served as a anhsburce of motivation during the
completion of this chapter. The constructive feedback ahgiable assistance from Adam Smith,
Alexander Conrad, Zachary Williams, and Arpan Agrawal hbeter enabled me to produce a
chapter that will hopefully “pass the test” and ultimateby‘theld on to” by readers.
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