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The database is a critical component of many modern software applications. Recent reports indicate that

the vast majority of database use occurs from within an application program. Indeed, database-centric

applications have been implemented to create digital libraries, scientific data repositories, and electronic

commerce applications. However, a database-centric application is very different from a traditional software

system because it interacts with a database that has a complex state and structure. This dissertation

formulates a comprehensive framework to address the challenges that are associated with the efficient and

effective testing of database-centric applications. The database-aware approach to testing includes: (i) a

fault model, (ii) several unified representations of a program’s database interactions, (iii) a family of test

adequacy criteria, (iv) a test coverage monitoring component, and (v) tools for reducing and re-ordering a

test suite during regression testing.

This dissertation analyzes the worst-case time complexity of every important testing algorithm. This

analysis is complemented by experiments that measure the efficiency and effectiveness of the database-

aware testing techniques. Each tool is evaluated by using it to test six database-centric applications. The

experiments show that the database-aware representations can be constructed with moderate time and space

overhead. The adequacy criteria call for test suites to cover 20% more requirements than traditional criteria

and this ensures the accurate assessment of test suite quality. It is possible to enumerate data flow-based

test requirements in less than one minute and coverage tree path requirements are normally identified in

no more than ten seconds. The experimental results also indicate that the coverage monitor can insert

instrumentation probes into all six of the applications in fewer than ten seconds. Although instrumentation

may moderately increase the static space overhead of an application, the coverage monitoring techniques

only increase testing time by 55% on average. A coverage tree often can be stored in less than five seconds

even though the coverage report may consume up to twenty-five megabytes of storage. The regression tester

usually reduces or prioritizes a test suite in under five seconds. The experiments also demonstrate that the

modified test suite is frequently more streamlined than the initial tests.
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1.0 INTRODUCTION

1.1 THE RISE OF THE DATABASE

Modern day academic institutions, corporations, and individuals are producing information at an amazing

rate. Recent studies estimate that approximately five exabytes (1018 bytes) of new information were stored in

print, film, magnetic, and optical storage media during the year 2002 [Lyman and Varian, 2003]. Additional

results from the same study demonstrate that ninety-two percent of new information was stored on magnetic

media such as the traditional hard drive. In an attempt to ensure that it is convenient and efficient to insert,

retrieve, and remove information, data managers frequently place data into a structured collection called a

database. In 1997, Knight Ridder’s DIALOG was the world’s largest database because it used seven terabytes

of storage. In 2002, the Stanford Linear Accelerator Center maintained the world’s largest database that

contained approximately 500 terabytes of valuable experiment data [Lyman and Varian, 2003]. Since the

year 2005, it is common for many academic and industrial organizations to store hundreds of megabytes,

terabytes, and even petabytes of critical data in databases [Becla and Wang, 2005, Hicks, 2003].

A database is only useful for storing information if people can correctly and efficiently (i) query, update,

and remove existing data and (ii) insert new data. To this end, software developers frequently implement a

database-centric application – a program that interacts with the complex state and structure of database(s). 1

Database-centric applications have been implemented to create electronic journals [Marchionini and Maurer,

1995], scientific data repositories [Moore et al., 1998, Stolte et al., 2003], warehouses of aerial, satellite,

and topographic images [Barclay et al., 2000], electronic commerce applications [Halfond and Orso, 2005],

and national science digital libraries [Janee and Frew, 2002, Lagoze et al., 2002]. Since a database-centric

application uses a program to query and modify the database, there is a direct relationship between the

quality of the data in the database and the correctness of the program that interacts with the database.

If the program in a database-centric application contains defects, corruption of the important data within

the database could occur. Software testing is a valuable technique that can be used to establish confidence

in the correctness of, and isolate defects within, database-centric applications. In recent years, traditional

approaches to program and database testing focused on independently testing the program and the databases

that constitute a database-centric application. There is a relative dearth of techniques that address the

testing of a database-centric application by testing the program’s interaction with the databases.

1This dissertation uses the term “database-centric application.” Other terms that have been used in the literature include
“database-driven application,” “database application,” and “database system.”
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Jeppesen GPS navigation database corruption

“About 350 airspace boundaries contained in Jeppesen NavData are incorrect, the FAA has warned. The
error occurred at Jeppesen after a software upgrade when information was pulled from a database containing
20,000 airspace boundaries worldwide for the March NavData update, which takes effect March 20. Only a
dozen are in the United States, including Chicago; Louisville, Kentucky; Fayetteville, North Carolina; Santa
Ana, California; Las Vegas; Honolulu; Des Moines; and Oklahoma City. The error could cause pilot alerts to
be given by GPS units too early or too late. Pilots are advised to use multiple sources of information, such
as carrying paper charts (Jeppesen paper charts are unaffected by the problem), and contacting controlling
agencies by radio to avoid airspace violations” [Neumann, 2003].

Figure 1.1: A Defect in a Real World Database-Centric Application.

Figure 1.1 provides an example of a defect that impacted the proper operation of a real world database-

centric application [Neumann, 2003]. This example clearly demonstrates the importance of, and the need

for, a comprehensive framework that can support the testing of database-centric applications. While the

details associated with the defects in the NavData system are not available, it is illustrative to make some

assumptions about how the airspace boundaries were corrupted by the NavData database-centric application.

For example, suppose that NavData is designed to interact with two databases: Drnd, a remote NavData

database that contains all of the desired updates to the world’s airspace boundaries and Dlnd, the local

NavData database that is installed on a pilot’s aircraft guidance computer. Next, assume that each airplane’s

local installation of NavData is configured to periodically connect to and query Drnd in order to update the

local Dlnd. Using the description in Figure 1.1 and the speculations about the implementation of NavData,

it is clear that the NavData update routine contains a severe defect that violates the integrity of database

Dlnd. We specifically designed the testing framework to guide the isolation and prevention of a class of

database interaction defects that includes this hypothesized defect.

1.2 OVERVIEW OF THE RESEARCH CONTRIBUTIONS

1.2.1 Technical Contributions

Conventional approaches to software testing exclusively focus on the program under test and ignore the

program’s interaction with its execution environment. Section 1.1 shows that the relational database is

a noteworthy software component in the execution environment of a modern program. Yet, traditional

software testing techniques do not consider how a program interacts with the complex state and structure of

a database. This research addresses the challenge of efficiently and effectively incorporating database state

and structure during the testing and analysis of a program’s database interactions. The main contribution of

this research is the description, design, implementation, and evaluation of a collection of testing techniques

called DIATOMS, for Database-centrIc Application Testing tOol ModuleS. This research specifically focuses

on the testing of a program’s interaction with one or more relational databases. We provide tools to fully

support each technique within the comprehensive framework for testing database-centric applications.
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The foundation of each testing technique is a model of the faults that could occur when a program

interacts with a relational database. The framework includes a database-aware test adequacy component

that identifies the test requirements that must be covered in order to adequately test an application. A test

coverage monitoring technique instruments the application under test and records how the program interacts

with the databases during test suite execution. DIATOMS also provides database-aware test suite reduction

and prioritization components that support regression testing. The approach to test suite reduction discovers

and removes the redundant test cases within a test suite. The prioritization scheme re-orders the tests in

an attempt to improve test suite effectiveness. We provide a worst-case analysis of the performance of every

key algorithm within DIATOMS. We also empirically evaluate each of the techniques by testing several real

world case study applications. In summary, the technical contributions of this research include:

1. Fault Model: Conventional fault models only consider how defects in the input and structure of a

program might lead to a failure. We provide a fault model that explains how a program’s interactions

can violate the integrity of a relational database. The model describes four types of program defects that

could compromise data quality.

2. Database-Aware Representations: Traditional program representations focus on control and data

flow within the program and do not show how a program interacts with a database. We develop database-

aware finite state machines, control flow graphs, and call trees in order to statically and dynamically

represent the structure and behavior of a database-centric application.

3. Test Adequacy Criteria: Current program-based adequacy criteria do not evaluate how well a test

suite exercises the database interactions. DIATOMS enumerates test requirements by using data flow

analysis algorithms that operate on a database-aware control flow graph. We also furnish a subsumption

hierarchy that organizes the database-aware adequacy criteria according to their strength.

4. Test Coverage Monitoring: Existing test coverage monitoring schemes do not record how a program

interacts with its databases during test suite execution. The coverage monitor instruments the program

under test with statements that capture the database interactions. The component stores coverage results

in a manner that minimizes storage overhead while preserving all of the necessary coverage information.

5. Test Suite Reduction: The execution of a test for a database-centric application involves costly ma-

nipulations of the state of the database. Therefore, the removal of the redundant tests can significantly

decrease the overall testing time. However, traditional test suite reduction schemes remove a test if it

redundantly covers program-based test requirements. Our approach to test suite reduction deletes a test

case from the test suite if it performs unnecessary database interactions.

6. Test Suite Prioritization: Conventional approaches to test suite prioritization re-order a test suite

according to its ability to cover program-based test requirements. Our database-aware prioritizer cre-

ates test case orderings that cover the database interactions at the fastest rate possible. This type of

prioritization is more likely to reveal database interaction faults earlier in the testing process.
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1.2.2 A New Perspective on Software Testing

A program executes in an environment that might contain components such as an operating system, database,

file system, graphical user interface, wireless sensor network, distributed system middleware, and/or virtual

machine. Since a modern software application often interacts with a diverse execution environment in a

complicated and unpredictable manner, there is a clear need for techniques that test an application, an

application’s execution environment, and the interaction between the software application and its environ-

ment. This research shows how to perform environment-aware testing for a specific environmental factor –

the relational database. However, the concepts, terminology, tool implementations, and experiment designs

provided by this research can serve as the foundation for testing techniques that focus on other software

components in the execution environment.

1.3 OVERVIEW OF THE DATABASE-AWARE TESTING FRAMEWORK

We designed, implemented, and tested each of the database-aware techniques with great attention to detail.

We used hundreds of unit and integration tests to demonstrate the correctness of each testing tool. For

example, the coverage monitoring component contains over one hundred test cases. The four test suites for

this component comprise 2282 non-commented source statements (NCSS) while the eighteen classes in the

tool itself only contain 1326 NCSS. Furthermore, all of the source code contains extensive documentation.

We successfully applied the techniques to the testing and analysis of small and moderate size case study

applications. The following goals guided the implementation of the presented testing techniques:

1. Comprehensive and Customized: DIATOMS establishes a conceptual foundation that supports the

design and implementation of testing techniques for each of the important stages in the software testing life

cycle for database-centric applications. We customized the comprehensive suite of techniques provided

by DIATOMS in order to handle the inherent challenges associated with the testing and analysis of

database-centric applications.

2. Practical and Applicable: DIATOMS is useful for practicing software engineers. Unlike some existing

program testing techniques (e.g., [Addy and Sitaraman, 1999, Doong and Frankl, 1994, Sitaraman et al.,

1993]), DIATOMS does not require knowledge of formal specification or architectural description lan-

guages. DIATOMS does not force testers to write descriptions of the state and/or structure of the

databases and the program, as required in [Willmor and Embury, 2006]. DIATOMS also utilizes soft-

ware testing tools (e.g., [Hightower, 2001, Jeffries, 1999]) that are already accepted by practicing software

developers.

3. Highly Automated: The tools within DIATOMS automate the testing process whenever possible.

Unlike prior approaches to testing (e.g., [Barbey et al., 1996, Chays et al., 2000, MacColl et al., 1998,

Richardson et al., 1992]), DIATOMS does not require the tester to manually specify the test require-

ments. DIATOMS can monitor test coverage and report test results in an automated fashion. The
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presented approach can automatically calculate the adequacy of the test suites. Finally, DIATOMS

provides automated regression test suite reduction and prioritization techniques.

4. Tester Involvement: The automated characteristic of DIATOMS must be balanced by the close in-

volvement of the software tester [Marick, 1998, Pettichord, 1999]. Each of the techniques provided by

DIATOMS enables the tester to offer recommendations and advice. For example, the tester can review

the list of test requirements that was automatically specified by DIATOMS and then augment this listing.

A tester can add tests back to the reduced test suite and/or modify the re-ordering produced by the test

prioritizer.

5. Platform Independent and Portable: Whenever possible, the tools within DIATOMS are imple-

mented in the platform-independent Java programming language. Other tools within DIATOMS are

implemented in common scripting languages that are provided by all workstations that use the Unix and

GNU/Linux operating systems. The testing techniques avoid the modification of common infrastruc-

ture software such as operating systems kernels, substantial programming language libraries, relational

database management systems (RDBMS), and the Java virtual machine (JVM). Furthermore, the test

requirements, test execution results, and output from the testing and analysis of the application under

test are always stored in a platform-independent representation.

6. Relevant to Popular Technologies: DIATOMS focuses on the testing and analysis of database-centric

applications that consist of general purpose programming language constructs and embedded structured

query language (SQL) statements. Specifically, DIATOMS handles applications that are written in the

Java programming language and use Java database connectivity (JDBC) drivers to communicate with a

relational database management system. The DIATOMS prototype focuses on the testing and analysis of

database-centric applications that interact with MySQL, PostgreSQL, or HSQLDB relational databases

[Monjian, 2000, Stinson, 2001, Yarger et al., 1999]. The experimentation with the testing techniques

always configured the case study applications to use the HSQLDB RDBMS because it provides an efficient

and fully functional in-memory database.

7. General Approach: We balanced the relevancy of DIATOMS to currently popular technologies with

the general nature of the framework. Even though DIATOMS initially targets applications that use the

object-oriented Java language, the framework is also relevant for applications written with procedural

programming languages. Despite the fact that DIATOMS focuses on relational database management

systems, many parts of the framework should also be useful for database-centric applications that use

object-oriented [Zand et al., 1995], object-relational [Seshadri, 1998], and eXtensible Markup Language

(XML) databases [Jagadish et al., 2002, Meier, 2003]. DIATOMS can also be extended to test distributed

applications that use external storage systems such as a distributed hash table (DHT) [Rhea et al., 2005]

or a tuple space [Arnold et al., 2002].

8. Efficient and Scalable: DIATOMS uses database-aware testing and analysis algorithms that are both

efficient and scalable. For example, the test adequacy component can efficiently enumerate test require-
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ments and the test coverage monitoring technique records coverage information with low time and space

overheads. Furthermore, the regression testing component was able to efficiently identify a modified

test suite that was more effective than the original tests. The experimental results show that the tech-

niques provided by DIATOMS are applicable to both small and medium-scale programs that interact

with databases. Although additional experimentation is certainly required, the results suggest that the

majority of DIATOMS can also be used to test large-scale database-centric applications.

1.4 ORGANIZATION OF THE DISSERTATION

Chapter 2 presents a model of execution-based software testing and reviews the related work. Chapter 3

provides an overview of the testing framework, discusses the experimental design used in the evaluation of the

testing techniques, and examines each case study application. Chapter 4 introduces a family of database-

aware test adequacy criteria. In this chapter, we explore the subsumption hierarchy that formalizes the

relationship between each criterion in the test adequacy family. The fourth chapter also shows that traditional

data flow-based test adequacy criteria are not sufficient because they only focus on program variables and

they disregard the entities within the relational database. Chapter 5 describes and empirically evaluates

a database-aware test adequacy component that determines how well a test suite exercises the program’s

interactions with the relational databases. Chapter 6 discusses the database-aware test coverage monitoring

(TCM) technique. This chapter explains how we instrument an application in order to support the creation

of coverage reports that contain details about all of the program’s database interactions.

Chapter 7 introduces the database-aware TCM component and shows how we insert the monitoring

instrumentation. In this chapter we empirically evaluate the costs that are associated with program instru-

mentation and the process of test coverage monitoring. Chapter 8 presents a database-aware approach to

test suite reduction that identifies and removes the tests that redundantly cover the program’s database

interactions. This chapter also describes test suite prioritization techniques that use test coverage informa-

tion to re-order the tests in an attempt to maximize the potential for finding defects earlier in the testing

process. Chapter 9 reviews the contributions of this research and identifies promising areas for future work.

Appendix A summarizes the notation conventions that we use throughout this dissertation. Appendix B

describes each case study application that we employ during experimentation. This appendix contains in-

formation about the size and structure of the programs and their test suites. Finally, Appendix C furnishes

additional tables of data and examples that support our discussion of the experiment results.
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2.0 BACKGROUND

2.1 INTRODUCTION

Since this research describes and evaluates a comprehensive framework for testing database-centric software

applications, this chapter reviews the relevant database and software testing concepts. We also examine the

related research and the shortcomings of existing techniques. In particular, this chapter provides:

1. A description of the relational database model, the relational database management system, and the

structured query language (SQL) (Section 2.2).

2. The intuitive definition of a database-centric software application that supports the formal characteriza-

tion that is developed in Chapter 4 (Section 2.3).

3. The definition of a graph and tree-based representation of a traditional program that can be enhanced

to represent database-centric applications (Section 2.4).

4. A discussion of the relevant software testing concepts and terminology and the description of an execution-

based software testing model (Section 2.5).

5. A review of the research that is related to the testing and analysis of database-centric software applications

(Section 2.6).

2.2 RELATIONAL DATABASES

This research focuses on the testing and analysis of database-centric applications that interact with relational

databases. Our concentration on relational databases is due to the frequent use of relational databases in

database-centric applications [Barclay et al., 2000, Stolte et al., 2003]. Furthermore, there are techniques

that transform semi-structured data into structured data that then can be stored in a relational database

[Laender et al., 2002, Ribeiro-Neto et al., 1999]. Finally, the relational database is also capable of stor-

ing data that uses a non-relational representation [Khan and Rao, 2001, Kleoptissner, 1995], A relational

database management system (RDBMS) is a set of procedures that are used to access, update, and modify a

collection of structured data called a database [Codd, 1970, 1979, Silberschatz et al., 2006]. The fundamental

concept in the relational data model is a relation. A relational database is a set of relations where a relation

of attributes A1, . . . , Az, with domains M1, . . . , Mz, is a subset of M1× . . .×Mz. That is, a relation is simply
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select A1, A2, . . . , Az

from rel1, rel2, . . . , relw
where P

(a)

delete from relj
where P

(b)

insert into relj(A1, A2, . . . , Az)
values(v1, v2, . . . , vz)

(c)

update relj
set Al = F (A′

l)
where P

(d)

P contains sub-predicates Vφ < Vψ

< ∈ {<,≤, >,≥, 6=, in,between, like}

Vφ ∈ {A1, A2, . . . , Az}

Figure 2.1: General Form of the SQL DML Operations.

a set of records. Each record in a relation is an ordered set of attribute values. Finally, a relational database

schema describes the logical design of the relations in the database and a relational database instance is a

populated example of the schema [Chamberlin, 1976, Codd, 1970, 1979, Silberschatz et al., 2006].

This research directly focuses on the SQL data manipulation language (DML) operations of select, up-

date, insert, and delete and also considers SQL statements that combine these commands in an appropriate

fashion. Since Chapter 4’s family of test adequacy criteria uses data flow information, the chosen model

of the structured query language contains the features of the SQL 1999 standard that are most relevant

to the flow of data in a database-centric application (c.f. Section 3.4 for a clarification of this assertion

and a review of the testing framework’s main limitations). This research relies upon the description of the

SQL operations provided by Figure 2.1. Parts (a), (b), and (d) of Figure 2.1 contain a reference to logical

predicate P that includes sub-predicates of the form Vφ < Vψ with < ∈ {<,≤, >,≥, 6=, in,between, like}

and Vφ is any attribute from the set {A1, A2, . . . , Az}. The sub-predicates in P are connected by a logical

operator such as and or or. The variable Vψ is defined in a fashion similar to Vφ; however, Vψ can also be

an arbitrary string, a pattern description, or the result of the execution of a nested select query. Also, the

v1, . . . , vz in Figure 2.1(c) represent the specific attribute values that are inserted into relation relj . Table A1

in Appendix A summarizes the notation conventions that we use to describe relational databases.

2.3 OVERVIEW OF DATABASE-CENTRIC APPLICATIONS

A program is an organized collection of algorithms that manipulates data structures in an attempt to

solve a problem [Wirth, 1976]. Intuitively, a database-centric application consists of a relational database

management system, one or more relational databases, and a program that interacts with the databases

through the management system. Figure 2.2 shows an example of a database-centric application and some
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1D eD

P m

RDBMS

update

insert

delete
select

Figure 2.2: High Level View of a Database-Centric Application.

of the canonical operations that the program can use to interact with the databases D1, . . . , De. In this

example, program P uses method m to submit structured query language statements to the RDBMS that

processes the SQL, performs the requested query and/or database manipulation, and returns any results

back to the program. The program in Figure 2.2 uses the SQL data manipulation language statements in

order to view and modify the state of the database.

This research uses a transaction manager database-centric application to make the discussion in subse-

quent chapters more concrete. The transaction manager is also one of the case study applications that we use

in the empirical studies and describe in more detail in Chapter 3 (for brevity, we will refer to this application as

TM throughout the remainder of this dissertation).1 TM performs an unlimited number of banking transactions

with an account once an appropriate personal identification number (PIN) has been provided. Supported

operations include the capability to deposit or withdraw money, transfer money from one account to an-

other, and check the balance of an existing account. The TM application interacts with a Bank database that

consists of the UserInfo and Account relations. The UserInfo relation contains the card number, pin number,

user name, and acct lock attributes while the Account relation includes the id, acct name, user name, bal-

ance, and card number attributes. Figure 2.3 provides the data definition language (DDL) statements used

to create the UserInfo and Account relations. This discussion assumes that TM is implemented in Java and

it interacts with a Java-based relational database. The Web site http://www.hsqldb.org/ describes the

RDBMS and specifies the subset of SQL that it supports.

1This research adheres to the following typographic conventions: relational database entities are in italics (e.g., UserInfo

and card number), structured query language keywords are in bold (e.g., select and foreign key), and program variables are
in typewriter font (e.g., transfer and id).
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create table UserInfo (card number int not null identity, pin number int
not null, user name varchar(50) not null, acct lock int)

(a)

create table Account (id int not null identity, account name var-
char(50) not null, user name varchar(50) not null, balance int default
’0’, card number int not null, foreign key(card number) references User-
Info(card number));

(b)

Figure 2.3: SQL DDL Statements Used to Create the (a) UserInfo and (b) Account Relations.
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Figure 2.4: An Instance of the Relational Database Schema in the TM Application.

Figure 2.4 shows an example instance of the relational schema for the Bank database. The UserInfo

relation uses the card number attribute as a key that uniquely identifies each of the users while the id

attribute is the key in the Account relation. In Figure 2.3, the SQL identity keyword declares that an

attribute is a key. In Figure 2.4, the “K” above an attribute denotes a key. The UserInfo relation contains

four records and the Account relation contains five records.2 A foreign key constraint requires that every

card number in Account is associated with a card number in the UserInfo relation. Figure 2.3(b) shows that

this constraint is specified in DDL by using the foreign key and references key words. Furthermore, there

is a one-to-many relationship between the card number attribute in UserInfo and the Account relation’s

card number attribute. A single user of TM can access one or more accounts (e.g., user “Brian Zorman”

maintains primary and a secondary checking accounts).

Figure 2.5 provides a specific example of the general SQL DML statements that were described by

Figure 2.1. Intuitively, a select operation allows the program to issue a query that requests certain data

items from the database. The insert operation places new data in the database while the update and

delete operations respectively change and remove existing data. If the program submits incorrect select,

update, insert, and delete operations it will communicate incorrect data to P ’s method m and/or corrupt

the data within one of the databases D1, . . . , De. For example, suppose that an account accumulates interest

at a higher rate if the balance is above $10, 000. The SQL select statement in Figure 2.5(a) incorrectly

identifies all accounts that have a balance greater than $1, 000. If a program submits this defective select

2In the literature, the terms “relation” and “table” are used interchangeably. The words “record” and “tuple” also have the
same intuitive meaning. This research always use the terms relation and record.
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select account name, user name
from Account
where balance > 1000

(a)

delete from Account
where card number = 2

(b)

insert into Account
values(-10, “Primary Checking”,

“Robert S. Roos”, 1800, 1)

(c)

update UserInfo
set acct lock = 1
where card number = 5

(d)

Figure 2.5: Specific Examples of the SQL DML Operations.

to the database, all of the accounts with a balance greater than $1, 000 will accrue interest even though

this violates the banking policy. If the program provides the wrong card number during the execution of

the delete and update statements of Figure 2.5(b) and Figure 2.5(d) this would also corrupt the state of

the database. When a program executes the SQL insert statement in Figure 2.5(c), this would incorrectly

modify the database to include an Account record with an id of -10. Ultimately, faults in the program’s

interaction with the database can lead to the defective behavior of the entire application.

2.4 TRADITIONAL PROGRAM REPRESENTATIONS FOR TESTING

Software testing and analysis tools use a program representation to statically and dynamically model the

structure and behavior of an application. The chosen program representation has an impact upon all software

testing activities. For the purposes of analysis and testing, a specific operation within a program or an

entire program can be represented as a control flow graph (CFG). A control flow graph provides a static

representation of all of the possible ways that a program could execute. Intuitively, a control flow graph for

a single program method is a set of nodes and edges, where a node is an executable program entity (e.g., a

source code statement or a method) and an edge is a transfer of control from one program entity to another.

An intraprocedural CFG is a graph representation for a single program operation while an interprocedural

CFG statically represents the flow of control between the program’s methods [Harrold and Soffa, 1994,

Sinha et al., 2001]. A call tree offers a dynamic view of the program under test since it shows which source

code elements were actually executed during testing and it can store data about input parameters and

program variable state [Ammons et al., 1997]. Yet, the traditional control flow graph and call tree do not

contain nodes or edges that explicitly represent how a program interacts with a relational database.

G = 〈N , E〉 denotes a control flow graph G for program P ’s method m. N represents the set of CFG

nodes and E denotes the set of CFG edges. Each control flow graph G contains the nodes entry, exit ∈ N

that demarcate the entry and exit points of the graph. We define the dynamic call tree (DCT) in a fashion

analogous to the CFG, except for the restrictions that it (i) has a single distinguished node, the root, that

marks the initial testing operation and (ii) does not contain any cycles. The path 〈Nρ, . . . , Nφ〉 represents
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1 import java . lang .Math ;
2 public c lass Kinet ic
3 {
4 public stat ic St r ing computeVelocity ( int k ine t i c , int mass )
5 {
6 int ve l o c i ty squa r ed , v e l o c i t y ;
7 S t r ingBu f f e r f i n a l v e l o c i t y = new St r ingBu f f e r ( ) ;
8 i f ( mass != 0 )
9 {

10 v e l o c i t y s qua r ed = 2 ∗ ( k i n e t i c / mass ) ;
11 v e l o c i t y = ( int )Math . sq r t ( v e l o c i t y s qua r ed ) ;
12 f i n a l v e l o c i t y . append ( v e l o c i t y ) ;
13 }
14 else

15 {
16 f i n a l v e l o c i t y . append ( ”Undefined” ) ;
17 }
18 return f i n a l v e l o c i t y . t oS t r ing ( ) ;
19 }
20 }

Figure 2.6: Code Segment of a Traditional Program.

one way to traverse the CFG from arbitrary node Nρ to node Nφ. Finally, a complete path is a sequence of

nodes in a CFG that starts at the entry node and ends at the exit node. A path in a CFG represents one

way that a method could be executed. A DCT path records a sequence of method calls that were actually

executed during testing. For a CFG edge (Nρ, Nφ), the notation succ(Nρ) denotes the successor(s) of Nρ,

or in this example Nφ. For the same CFG edge, the notation pred(Nφ) is the predecessor(s) of Nφ and for

this example edge it corresponds to Nρ. Table A2 in Appendix A summarizes the notation that describes

these traditional program representations.

There are many different graph-based and tree-based representations for programs. Harrold and Rother-

mel survey a number of static graph-based representations and the algorithms and tool support used to

construct these representations [Harrold and Rothermel, 1995, 1996]. For example, the class control flow

graph (CCFG) represents the static control flow among the methods within a specific class and therefore

provides a limited interprocedural representation of a program [Harrold and Rothermel, 1994, 1996]. Am-

mons et al. describe the calling context tree (CCT) that depicts the execution of a method in the historical

context of the methods that were executed before and after this method [Ammons et al., 1997]. The chosen

representation for the program under test influences the test adequacy criteria that are subsequently used to

measure the quality of existing test suites and support the implementation of new tests. Furthermore, the

program representation also impacts regression testing activities such as test suite reduction and prioritiza-

tion. Program analysis framework such as Aristotle [Harrold and Rothermel, 1995], Soot [Vallée-Rai et al.,

1999], or AspectJ [Elrad et al., 2001, Kiczales et al., 2001a] create conventional graph and tree-based repre-

sentations. This research demonstrates that we can also use these frameworks to produce database-aware

models of an application’s static structure and dynamic behavior.

In order to make the discussion of the traditional graph-based program representations more concrete,

Figure 2.6 provides a Java class called Kinetic that contains a static method called computeVelocity

12
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[Paul, 1996]. Since Kinetic does not interact with a relational database, we classify it as a traditional

program and not as a database-centric application. The computeVelocity operation calculates the velocity of

an object based upon its kinetic energy and its mass. This method uses the knowledge that the kinetic energy

of an object, K, is defined as K = 1
2mv2. Figure 2.7 shows the control flow graph for the computeVelocity

method. The path 〈entrycv, N6, N7, N8, N16, N18, exitcv〉 represents a complete path in this example CFG

and 〈N6, N7, N8〉 is a path from node N6 to node N8. Inspection of the CFG in Figure 2.7 reveals that

succ(N8) = {N10, N16} and pred(N18) = {N12, N16}. A dynamic call tree for computeVelocity includes all

of the nodes that were actually executed during the testing of the method. Even though computeVelocity

does not contain any iteration constructs like a for, while, or do while loop, Figure 2.8 shows that it is

also possible to represent iteration in a CFG. In this while loop node N2 and N3 are executed until the

condition that is tested in node N1 is false and then nodes N4 and N5 are executed. Our testing techniques

use tree and graph-based representations that fully model iteration, recursion, method calls, and database

interactions.

2.5 TRADITIONAL EXECUTION-BASED SOFTWARE TESTING

2.5.1 Preliminaries

Conventional software testing techniques focus on the source code and specification of a program and ignore

the important database component of the database-centric application depicted in Figure 2.2. Even though

most program-based software testing techniques are not directly applicable to the testing of a database-

centric application, these approaches offer a conceptual foundation for this research. Any approach to

testing database-centric applications must address many of the same fundamental testing challenges that

traditional testing techniques already consider. It is important to observe that the testing of traditional

programs is challenging because the domain of program inputs is so large that it is not possible to test with

every input and there are too many possible program execution paths to test [Kaner et al., 1993]. Indeed,

Young and Taylor have noted that every software testing technique must involve some trade-off between

accuracy and computational cost because the presence (or lack thereof) of defects within a program is an

undecidable property [Young and Taylor, 1989]. The theoretical limitations of testing clearly indicate that

it is impossible to propose and implement a software testing framework that is completely accurate and

applicable to arbitrary database-centric applications.

The IEEE standard defines a failure as the external, incorrect behavior of a program [IEEE, 1996].

Traditionally, the anomalous behavior of a program is observed when incorrect output is produced or a

runtime failure occurs. Furthermore, the IEEE standard defines a fault (alternatively known as a defect) as

a collection of program source code statements that causes a failure. Finally, an error is a mistake made

by a programmer during the implementation of a software system [IEEE, 1996].3 One purpose of software

3While these definitions are standard in the software engineering and software testing research community, they are different
than those that are normally used in the fault-tolerant computing community. For example, this community defines a fault as
the underlying phenomenon that causes an error. Furthermore, an error is recognized as a deviation in the system state from
the correct state. For more details, please refer to [Jalote, 1998].
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testing is to reveal software faults in order to ensure that they do not manifest themselves as runtime failures.

Another goal of software testing is to establish an overall confidence in the quality of the program under

test. Even though database-centric applications are tested for the same reasons, the terminology used to

describe traditional testing techniques must be revised and extended in order to correctly explain the testing

of this new class of applications. In the context of database-centric applications, faults could exist within

the program, the data within the relational databases, or the interactions between the program and the

databases. Moreover, a fault might only manifest itself as a failure when both the program and the database

are in a certain anomalous state.

This research focuses on execution-based software testing techniques. It is also possible to perform

non-execution-based software testing through the usage of software inspections [Fagan, 1976]. All execution-

based testing techniques are either program-based, specification-based, or combined [Zhu et al., 1997]. This

research uses program-based (alternatively known as structural or white-box) testing approaches that rely

upon the program’s source code in order to create and evaluate a test suite [Zhu et al., 1997]. It is important

for the described testing techniques to have source code access because it is the program’s source code

that reveals how the application interacts with the databases.4 Unlike traditional program-based testing

methodologies, the presented testing approach considers one or more of the following: (i) the source code

of the program, (ii) the relational schema, (iii) the current instance of the relational schema, and (iv) the

manner in which the program interacts with the relational databases. Several of the testing techniques

presented in this research, including test coverage monitoring and test suite reduction and prioritization, can

be configured to operate without source code access.

2.5.2 Model of Execution-Based Software Testing

Figure 2.9 provides a model of execution-based software testing. In the subsequent sections of this chapter,

we describe each of these stages in light of traditional software testing techniques. This model is only one

valid and useful view of software testing. Our model of software testing takes as input a program under test

P , a test suite T , and a test adequacy criterion C. Even though we assume that P is tested with a provided

test suite, Chapter 9 explains that there are no inherent limitations within the framework that would prevent

the inclusion of an automated test generation technique. The formulation of a test adequacy criterion C is a

function of the chosen representation for P and a specific understanding of the “good” qualities that a test

suite should possess. The test adequacy component analyzes P in light of the chosen C and constructs a

listing of the test requirements that must be covered before the entire test suite can be judged as completely

adequate.

Even though manual testing is possible, this research focuses on the automated execution of test suites.

During test suite execution, the test coverage monitoring technique records information about the behavior

4Throughout this research, the definition of the term source code includes any description of a software application that is
fully executable. In the context of database-centric applications written in the Java programming language, Java bytecodes are
an example of a type of source code.

15



(P)
Application Under Test

(C)
Test Adequacy Criterion

1 )adeq(T

Adequacy 
Measurements

adeq(Tn )
R R1R 2

Test Results

n

Regression Testing

Test Suite
Prioritization

TT T2 n 1

Prioritized Test Suite

T2T1

Test Suite
Reduction

Test Case
Requirements

Test Suite

(T)

Test Adequacy

Test Execution

Tn

Reduced Test Suite

Component

Monitoring
Test Coverage

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

Figure 2.9: Execution-Based Software Testing Model for Traditional Programs.

16



4

6

1
def(x)

2
use(x)
use(y)

def(y)

3
use(x)

use(x)
use(y)
def(x)

use(x)
use(y)
def(y)

use(x)
use(y)

exitm

5

use(y)

menter

FT

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

Figure 2.10: Intuitive Example of a Control Flow Graph.

of the test suite and the program under test. The test coverage monitor identifies which test requirements

were covered during testing and then calculates an adequacy measurement for each test case, as depicted in

Figure 2.9. Finally, regression testing is an important software maintenance activity that attempts to ensure

that the addition of new functionality and/or the removal of program faults does not negatively impact the

correctness of P . Approaches to test suite reduction identify a subset of the entire test suite that can still

adequately test the program. Traditional test suite prioritization techniques normally re-order the execution

of the test suite so that the rate of test requirement coverage or the potential for fault detection is maximized.

2.5.3 Test Adequacy Criteria

Test adequacy criteria embody certain characteristics of test case “quality” or “goodness.” Test adequacy

criteria can be viewed in light of a program’s control flow graph, and the program paths and variable values

that must be exercised. Intuitively, if a test adequacy criterion Cα requires the exercising of more path and

variable value combinations than criterion Cβ , it is “stronger” than Cβ . More formally, a test adequacy

criterion Cα subsumes a test adequacy criterion Cβ if every test suite that satisfies Cα also satisfies Cβ

[Clarke et al., 1985, Rapps and Weyuker, 1985]. Two adequacy criteria Cα and Cβ are equivalent if Cα

subsumes Cβ and vice versa. Finally, a test adequacy criterion Cα strictly subsumes criterion Cβ if and only

if Cα subsumes Cβ and Cβ does not subsume Cα [Clarke et al., 1985, Rapps and Weyuker, 1985].

Some software test adequacy criteria are based upon the control flow graph of a program under test.

Control flow-based criteria solely attempt to ensure that a test suite covers certain source code locations

with the rationale that a fault will not manifest itself in a failure unless it is executed [Morell, 1990, Voas,

1992]. While several control flow-based adequacy criterion are relatively easy to satisfy (e.g., all-nodes or

statement coverage), others are so strong that it is generally not possible for a test suite to test P and satisfy
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Figure 2.11: Calculating Test Case Adequacy.

the criterion (i.e., all-paths coverage). For example, the all-nodes criterion requires a test suite to cover all of

the nodes in the control flow graph of the method under test and the all-edges criterion forces the coverage of

the CFG edges. Some control flow-based adequacy criteria focus on the control structure of a program and

the value of the variables that are used in conditional logic predicates. Since this research does not specifically

develop control flow-based test criteria, we omit a discussion of criteria such as condition-decision coverage

(CDC) and multiple-condition decision coverage (MCDC) [Jones and Harrold, 2003].

If the tests cause the definition of a program variable and then never use this variable, it is not possible

for the test suite to reveal the program’s defective variable definitions. Data flow-based test adequacy criteria

require coverage of the control flow graph by forcing the execution of program paths that involve the definition

and subsequent use of program variables. For a standard program, the occurrence of a variable on the left

hand side of an assignment statement is a definition of this variable (e.g., int a = 0; defines the variable

a). The occurrence of a variable on the right hand side of an assignment statement is a computation-use

(or c-use) of this variable (e.g., int a = b++; includes a c-use of the variable b). Finally, when a variable

appears in the predicate of a conditional logic statement or an iteration construct is a predicate-use (or p-use)

of the variable [Frankl and Weyuker, 1988, Rapps and Weyuker, 1982] (e.g., if(flag){...} has a p-use of

the boolean variable flag).

A def-c-use association includes a node that defines a program variable and a node that subsequently

c-uses the same variable. Furthermore, a def-p-use association corresponds to a node that causes the def-

inition of a variable and the later p-use of the variable at another CFG node [Frankl and Weyuker, 1988,

Rapps and Weyuker, 1982]. A def-use association contains the node that defines a program variable and

the node that subsequently defines or uses the same variable (i.e., the def-use association does not distin-

guish between a p-use or a c-use) [Hutchins et al., 1994]. A def-use association for variable var is a triple

〈Ndef , Nuse, var〉 where Ndef defines variable var and Nuse uses this variable. Figure 2.10 provides an

example of a control flow graph that includes a total of sixteen def-use associations such as 〈N1, N4, x〉.
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In [Rapps and Weyuker, 1982], the authors propose a family of test adequacy criteria based upon the

data flow information in a program. Among their test adequacy measures, the all-uses data flow adequacy

criterion requires a test suite to cover all of the def-c-use and def-p-use associations in a program. The all-

uses criterion is commonly used as the basis for data flow testing. Alternatively, the all-DUs test adequacy

criterion requires the coverage of def-use associations [Hutchins et al., 1994]. Due to the fact that data

flow-based test adequacy criteria track the flow of data within a program, they are particularly well-suited

to serve as a foundation for the adequacy criteria that support the testing of database-centric applications

[Kapfhammer and Soffa, 2003] (this assertion is further explored and justified in Chapter 4).

2.5.4 Test Coverage Monitoring

If test suites are provided with the program under test, it is important to measure the adequacy of these tests

in order to decide if the program under test is being tested “thoroughly.” If the all-nodes criterion is selected

to measure the adequacy of a T used to test the computeVelocity method in Figure 2.6, then the test

coverage monitor (TCM) must determine whether the nodes enter cv, n6, n7, n8, n10, n11, n12, n16, n18, exitcv

were executed during testing. Alternatively, if C is the all-uses test adequacy criterion, then the test

coverage monitor would record whether or not the test suite causes the execution of the def-c-use and def-p-

use associations within computeVelocity. Line 11 of computeVelocity contains a definition of the variable

velocity and lines 12 contains a computation-use of velocity. The TCM component would include this

def-use association in the listing of test requirements subject to monitoring. Once the coverage of test

requirements is known, we can calculate the adequacy of a test case as the ratio between the test’s covered

test requirements and the total number of requirements. Figure 2.11 shows a test case Ti that tests two

methods m1 and m2. This test yields an adequacy of 50% for its testing of m1, an adequacy of 67% for m2,

and a cumulative adequacy of 60% for both of the methods. These adequacy scores are calculated under the

assumption that there are a total of ten unique requirements for Ti to cover and the test is able to cover six

of them overall.
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Figure 2.13: A Test Suite that is a Candidate for Reduction.

Test coverage monitoring techniques frequently require instrumentation of the test suite and/or the

program under test in order to report which test requirements are covered during the execution of T . Among

other goals, the instrumentation must efficiently monitor test coverage without changing the semantics of the

program and the test suite. Pavlopoulou and Young have proposed, designed, and implemented a residual

test adequacy evaluator that instruments the program under test and calculates the adequacy of the test suites

used during development [Pavlopoulou and Young, 1999]. Figure 2.12 provides a high level depiction of this

test adequacy evaluation tool for Java programs (many other test coverage monitoring techniques would

adhere to a similar architecture). The residual coverage tool described by these authors can also measure

the coverage of test requirements after a software system is deployed and it is being used in the field. This

test coverage monitoring tool provides the ability to incrementally remove the test coverage probes placed in

the program under test after the associated test requirements have been exercised [Pavlopoulou and Young,

1999]. More recently, Misurda et al. presented the Jazz test coverage monitoring technique that records

information about the execution of edges, nodes, and def-use associations [Misurda et al., 2005]. The Jazz

structural testing tool uses a modified Jikes Research Virtual Machine (RVM) to introduce and remove

instrumentation in a demand-driven fashion.

2.5.5 Test Suite Reduction

A test suite can consist of test cases that overlap in their coverage of test requirements. Figure 2.13 shows

how seven separate test requirements are covered by twelve unique test cases. In this tree, a directed edge

from a requirement Rj to a test case Ti indicates that Rj is covered by Ti (or, that Ti covers Rj). For

example, an edge between a requirement R2 and a test case T8 indicates that R2 is covered by T8 or T8

covers R2. The test coverage monitor establishes the covered by relationship, as described in Section 2.5.4.

Since the test suite in Figure 2.13 contains a significant amount of overlap in test requirement coverage, it
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Test Case Faults

f1 f2 f3 f4 f5

T1 X

T2 X

T3 X X

T4 X X

T5 X

Table 2.1: The Faults Detected by a Test Suite.

is a candidate for reduction. Test suite reduction techniques identify a potentially smaller set of tests that

cover the same requirements as the initial test suite. We can use reduction during regression testing if it is

too expensive to execute the complete test suite. Inspection of Figure 2.13 reveals that we could execute a

reduced test suite consisting of T2, T3, T6, andT9 instead of the original twelve test cases and still cover all of

the seven requirements. Recently developed reduction algorithms attempt to maximize both coverage and

defect detection rates while still decreasing the size of the test suite [Black et al., 2004].

Harrold et al. present a test suite reduction technique that is formulated in terms of a heuristic solution

to the hitting set problem [Harrold et al., 1993]. Their approach creates a mapping from each test case

to the test requirement(s) that it covers and it uses a custom heuristic for finding a reduced test suite.

McMaster and Memon apply the algorithm of [Harrold et al., 1993] to a mapping from test cases to test

requirements that are extracted from an earlier execution of the test suite [McMaster and Memon, 2005].

These authors argue that reduction should be performed whenever test cases produce the same call stacks

during test execution. The standard technique of Harrold et al. is often applied after performing a static

analysis of the program under test in order to locate the test requirements. In contrast, the approach of

McMaster and Memon uses low overhead instrumentation to identify the call stacks that arise during testing

[McMaster and Memon, 2005].

2.5.6 Test Suite Prioritization

Test prioritization schemes typically create a single re-ordering of the test suite that can be executed after

many subsequent changes to the program under test [Do et al., 2004, Rothermel et al., 2001]. Test case

prioritization techniques re-order the execution of a test suite in an attempt to ensure that (i) defects are

revealed earlier in the test execution phase and/or (ii) the tests cover the requirements as rapidly as possible.

If testing must be terminated early, a re-ordered test suite can also be more effective at finding faults than

one that was not prioritized [Rothermel et al., 2001]. Normally, a software tester is not aware of the defect

locations within the program under test. However, to make this discussion more concrete, suppose that

program P is tested with test suite T and a priori knowledge of the faults within P is available. Table 2.1

shows an example of a simple test suite and the faults that each test can reveal. In this example, there
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are five faults that are revealed by certain test cases. In this test suite, some tests isolate more faults than

other test cases. In particular, tests T3 and T4 are able to reveal more of the faults within the program

under test than the other test cases. Intuitively, it would be better if these two test cases were executed

before the other tests within the suite. Over the entire execution of the test suite, the test suite ordering

σ1 = 〈T1, T2, T3, T4, T5〉 yields a smaller weighted average percentage of isolated defects than the ordering

σ2 = 〈T3, T4, T1, T2, T5〉 (i.e., σ2 detects faults faster than σ1).

Since the existence of a priori knowledge about the location of faults within the program under test

is unlikely, regression test suite prioritization algorithms must use a proxy for this complete knowledge.

Current regression test suite prioritization algorithms are motivated by the empirical investigations of the

effectiveness of test adequacy criteria which indicate that tests that are not highly adequate are often less

likely to reveal program defects [Harder et al., 2003, Hutchins et al., 1994]. In light of the correlation between

low adequacy test suites and the decreased potential to reveal a defect [Hutchins et al., 1994], a prioritization

algorithm might chose to execute highly adequate tests before those with lower adequacy. Of course, since

highly adequate tests are not guaranteed to always reveal the most defects, prioritization schemes can still

fail to produce an optimal ordering of the tests [Hutchins et al., 1994, Rummel et al., 2005]. Yet, reports

of industrial experience suggest that prioritization is both a cost-effective and valuable testing technique

[Srivastava and Thiagarajan, 2002]. Recently developed prioritization techniques are time-aware because

they generate test suite orderings that rapidly cover code while always terminating after a specified period

of time [Walcott et al., 2006].

2.5.7 Discussion of the Testing Model

In the execution-based testing model of Figure 2.9, one testing technique produces output that is then used

as the input to another technique. For example, the test suite executor and the test coverage monitor

generate test results and adequacy measurements that are used by the approaches to regression testing.

The output of a reduction or prioritization algorithm is a new test suite that can be used during future

executions of the suite. Figure 2.9 also presents a model of execution-based software testing that contains

cycles. Execution-based testing terminates when the adequacy of the test suite exceeds a pre-defined level,

the testers determine that they have established sufficient confidence in the correctness of the program, or

the testing budget has been exhausted [Zhu et al., 1997]. This research provides an execution-based testing

framework where (i) interoperable modules produce input and output that is meaningful to all of the other

components and (ii) testing can be repeated until an established termination condition has been met.

2.6 TESTING DATABASE-CENTRIC APPLICATIONS

While a significant amount of research has focused on the testing and analysis of programs, there is a relative

dearth of work that specifically examines the testing of database-centric applications. We distinguish the

presented research from the following related work because it provides a comprehensive testing framework
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and a suite of automated tools that can be applied to a wide range of database-centric applications. Our

research also represents the most complete evaluation of the efficiency and effectiveness of approaches to

database-aware testing. When we compare our empirical evaluations to those in prior work, it is also clear

that we used the largest number of case study applications during experimentation. This research was

initially motivated by the observation that even simple software applications have complicated and ever-

changing operating environments that increase the number of interfaces and the interface interactions that

must be tested [Whittaker and Voas, 2000]. These authors point out that device drivers, operating systems,

and databases are all aspects of a software system’s environment that are often ignored during testing.

However, they do not propose and evaluate specific techniques that support the software testing process.

Even though Jin and Offutt highlight test adequacy criteria that incorporate a program’s interaction with

its environment [Jin and Offutt, 1998], these authors do not specifically address the challenges associated

with test adequacy criteria for database-centric applications. Dauo et al. use data flow information to support

the regression testing of database-centric applications. However, their exploration of data flow issues does

not include either a representation for a database-centric application or a complete description of a database

interaction association [Daou et al., 2001]. Another coverage criterion measures the adequacy of SQL select

queries in light of a database that has already been populated with data [Suarez-Cabal and Tuya, 2004].

This approach can automatically calculate the coverage of a single query, identify a subset of the database

that will yield the same level of coverage as the initial database, and provide guidance that might increase

database coverage. However, this scheme focuses on the select statement and it does not consider the

program that submits the queries to the relational database. Finally, Halfond and Orso present an adequacy

criterion that is complementary to our family of data flow-based criteria [Halfond and Orso, 2006]. Their

command-form coverage criterion ensures that a test suite causes the program under test to submit as many

of the viable SQL commands as is possible. That is, they use static analysis to identify all of the SQL

commands that the program could submit and then determine how many of these statements are actually

generated during testing.

Chan and Cheung propose a technique that tests database-centric applications that are written in a

general purpose programming languages, such as Java, C, or C++, and include embedded structured query

language statements that are designed to interact with a relational database [Chan and Cheung, 1999a,b].

This approach transforms the embedded SQL statements within a database-centric application into gen-

eral purpose programming language constructs. In [Chan and Cheung, 1999a], the authors provide C code

segments that describe the selection, projection, union, difference, and cartesian product operators that

form the relational algebra and thus heavily influence the structured query language. Once the embedded

SQL statements within the program under test have been transformed into general purpose programming

language constructs, it is possible to apply traditional control flow-based criteria to the problem of testing

programs that interact with one or more relational databases. However, their focus on the control flow of a

program ignores important information about the flow of data between the program and the databases.
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Chays et al. and Chays and Deng describe several challenges associated with testing database-centric

applications and propose the AGENDA tool suite as a solution to some of these challenges [Chays et al.,

2000, Chays and Deng, 2003, Chays et al., 2002]. In [Chays et al., 2000], the authors propose a partially

automatable software testing technique, inspired by the category-partition method [Ostrand and Balcer,

1988], that attempts to determine if a program behaves according to specification. When provided with the

relational schema of the databases used by the application under test and a description of the categories

and choices for the attributes required by the relational tables, the AGENDA tool can generate meaningful

test databases [Chays and Deng, 2003, Chays et al., 2002]. AGENDA also provides a number of database

testing heuristics, such as “determine the impact of using attribute boundary values” or “determine the

impact of null attribute values” that can enable the tester to gain insights into the behavior of a program

when it interacts with a database that contains “interesting” states [Chays et al., 2000, Chays and Deng,

2003, Chays et al., 2002]. Deng et al. have also extended AGENDA to support the testing of database

transaction concurrency by using a data flow analysis to determine database transaction schedules that

may reveal program faults [Deng et al., 2003]. It is important to observe that the current prototype of the

AGENDA framework is designed to support the testing of database-centric applications that contain a single

query [Chays et al., 2004]. This testing scheme is limited since the majority of database-centric applications

contain many database interactions (in fact, Chapter 3 reveals that each of our case study applications has

between 5 and 45 database interactions).

Neufeld et al. and Zhang et al. describe approaches that are similar to [Chays et al., 2000,

Chays and Deng, 2003, Chays et al., 2002] because they generate database states using knowledge of the con-

straints in the relational schema [Neufeld et al., 1993, Zhang et al., 2001]. Yet, neither of these approaches

explicitly provides a framework to support common testing activities like those depicted in Figure 2.9. While

Gray et al. generate test databases that satisfy the constraints in the relational schema, their approach fo-

cuses on the rapid generation of large random data sets that support performance testing [Gray et al., 1994].

Instead of handling the generation of test databases, Slutz addresses the issues associated with automatically

creating the statements that support the querying and manipulation of relational databases [Slutz, 1998].

This approach generates database query and manipulation statements outside of the context of a program

that interacts with a database. Willmor and Embury also describe an automated test data generation scheme

that can produce test data when given a predicate logic condition that describes the desired database state

[Willmor and Embury, 2006].

Haftmann et al. present a regression test prioritization scheme that re-orders a test suite in an attempt

to avoid RDBMS restarts [Haftmann et al., 2005a]. Their approach executes the test suite without database

restarts and observes whether or not each test case passes. A test ordering conflict is recorded in a database

if the exclusion of a restart between the two tests causes the otherwise passing tests to fail [Haftmann et al.,

2005a]. These authors also describe prioritization heuristics that re-order a test suite in an attempt to avoid

the test conflicts that were stored within the conflict database. Haftmann et al. have extended their basic
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technique to support the parallel execution of the test suite on a cluster of testing computers [Haftmann et al.,

2005b]. None of their prioritization approaches use either static or dynamic analysis to observe how the test

cases interact with specific relational database entities. As such, these prioritizers must coarsely identify the

test conflicts through an examination of the test results. Furthermore, Haftmann et al. focus on improving the

efficiency of regression testing and do not propose techniques to create more effective prioritizations. Finally,

Willmor and Embury propose a regression test selection technique that can identify a subset of a test suite

to use during subsequent rounds of testing [Willmor and Embury, 2005]. Their approach is similar to the

presented reduction technique but it could exhibit limited reductions and performance concerns because it

performs a conservative static analysis of the entire database-centric application.

2.7 CONCLUSION

This chapter reviews the data management and software testing concepts underlying our comprehensive

testing framework. This chapter intuitively defines a database-centric application that we subsequently

refine in Chapter 4. This chapter also provides a model for execution-based software testing that Chapter 3

extends to support the testing of a database-centric application. This testing model include components that

measure test adequacy, monitor test coverage, and perform regression testing. Chapters 4 and 5 introduce

a family of data flow-based test adequacy criteria that focuses on a program’s database interactions. We

present database-aware approaches for test coverage monitoring and regression testing in Chapter 6 through

Chapter 8. Finally, this chapter examines the strengths and weaknesses of existing approaches to testing

programs that interact with databases. The review of the related research clearly demonstrates that there

is a need for a comprehensive framework that tests database-centric applications.
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3.0 IMPLEMENTATION AND EVALUATION OF THE TESTING FRAMEWORK

3.1 INTRODUCTION

This chapter provides an overview of our framework for testing database-centric applications. We also

describe the (i) case study applications that were tested with the database-aware framework, (ii) design of

the experiments to evaluate the efficiency and effectiveness of the testing techniques, and (iii) high level

threats to experiment validity. In summary, this chapter includes:

1. An overview of a framework for testing database-centric applications (Sections 3.2, 3.3, and 3.4).

2. A detailed examination of the case study applications that were used during experimentation and an

overview of the design of the experiments used in subsequent chapters (Sections 3.5 and 3.6).

3. An analysis of the threats to the validity of the experiments and a presentation of the steps that were

taken to control these threats (Section 3.7).

3.2 OVERVIEW

This chapter serves as the central location for the (i) survey of the database-aware testing framework, (ii)

detailed characterization of the case study applications that we use during the empirical evaluation of the

testing techniques, and (iii) overview of the experiment design that we employ throughout the entire process

of experimentation. In particular, Section 3.3 explains the inputs and outputs of every testing tool and it

shows the connection points between each of the components. This type of discussion contextualizes the

testing techniques and demonstrates how each component contributes to the complete framework. We also

clarify how database-aware testing is similar to and different from traditional testing schemes.

There are no well-established metrics that we can use to characterize a database-centric application

according to its static and dynamic complexity. Therefore, Section 3.5 reports the value of traditional

complexity metrics such as the (i) number of non-commented source statements (NCSS) and (ii) method

level cyclomatic complexity number (CCN). Calculating NCSS and CCN allows us to compare our case study

applications to those that were used in prior empirical studies. We also complement the discussion of these

traditional complexity metrics with a review of the structure of the each application’s relational database.

Furthermore, we examine the (i) size and structure of each test suite and (ii) testing strategies that each

application uses to verify the correctness of the program’s database interactions. Since many of the following
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chapters contain the results from experiments with the testing components, Sections 3.6 and 3.7 review the

general design that governs all of our experimentation. Structuring the dissertation in this manner avoids

the need to repeatedly explain how we configured the execution environment and controlled the factors that

could compromise the validity of our experimental results.

3.3 HIGHLIGHTS OF THE DATABASE-AWARE TESTING FRAMEWORK

Figure 3.1 describes our model for the execution-based testing of a database-centric application. This

framework differs from the one that was presented in Chapter 2 because it accepts the following additional

inputs: (i) a relational database management system, (ii) the state of one or more databases, and (iii) the

relational schema that describes the organization of the databases. Each of the provided testing techniques

is database-aware because it considers the state and structure of the relational databases. For example, the

test adequacy component produces test case requirements called database interaction associations. These

associations require the test suites to define and use the entities within the databases (e.g., the relations,

records, attributes, and attribute values that are a part of the database’s state and structure). Each test case

populates the database with some initial state, executes one or more of the methods under test, and then

invokes an oracle that compares an expected database state to the actual state that the method produced.

The test executor also manipulates the state of the databases and could restart the RDBMS in order to

ensure that the tests execute correctly.

The test execution phase outputs test results that contain (i) the outcome of executing each test case

and (ii) portions of database state that support the debugging process. The database-aware test coverage

monitor can construct multiple types of test coverage monitoring trees that record how the program and

the test suite define and use the databases. The coverage monitoring trees contain nodes and edges that

represent the program’s interaction with the databases. The test coverage monitor (TCM) efficiently inspects

the state of the relational database in order to create these database-aware trees. We use the TCM trees to

produce adequacy measurements that reflect how well the test suite actually defines and uses the database at

multiple levels of interaction granularity. Finally, the regression test prioritization and reduction techniques

use the database-aware test coverage monitoring tree and the test adequacy measurements to re-order and

reduce the test suite. The test reduction algorithm identifies a potentially smaller test suite that still covers

the same set of database-aware test requirements. The prioritizer can re-order the test suite so that the tests

maximize their potential for finding database interaction defects as early as is possible.

3.4 LIMITATIONS OF THE APPROACH

Figure 3.2 depicts a classification scheme for database-centric applications that extends the classification pro-

posed in [Chan and Cheung, 1999a,b]. Every database-centric application must interact with its databases

using either an “Embedded” or an “Interface” approach. In the “Embedded” approach that is normally asso-
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Figure 3.2: Classification Scheme for Database-Centric Applications.

ciated with the use of languages such as SQLJ, the program component contains embedded SQL statements

that are transformed during a pre-compilation phase [Silberschatz et al., 2006]. Alternatively, a database-

centric application that adheres to the “Interface” approach uses a database connectivity driver that can

submit SQL statements to and return results from the database. Finally, the program component of a

database-centric application can either exist inside or outside of the database management system. If a

database-centric application consists of stored procedures that the RDBMS executes, then this program

exists inside of the database management system. A program is located outside of the RDBMS if it interacts

with the database through a standard interface like JDBC.

In Figure 3.2, a leaf from the “Interaction Approach” subtree can be paired with a leaf from the “Pro-

gram Location” subtree, yielding four different possible configurations of a database-centric application:

Embedded-Inside, Embedded-Outside, Interface-Inside, and Interface-Outside. The framework focuses on

the testing and analysis of database-centric applications that adhere to the Interface-Outside architecture

and it does not contain support for the analysis of applications that use stored procedures or triggers.

Even though this research focuses on the Interface-Outside configuration of a database-centric application,

Chapter 9 explains how we could extend the framework to test other types of applications. These current

restrictions are not inherent limitations of the individual testing components. Instead, we view this as evi-

dence of the need for new program analysis frameworks that support the (i) control and data flow analysis

and (ii) instrumentation of programs written in languages such as SQLJ or PL/SQL. If program analysis

techniques existed for these languages, then it would be possible to enumerate test requirements, monitor

coverage, and perform regression testing.

Since many current relational database management systems restrict or do not support the definition

of virtual relations with create view [Silberschatz et al., 2006], the framework does not analyze database-

centric applications that use the create view statement. The database-aware testing framework does not

support the testing of concurrent applications that use transactions. As such, the test adequacy component

does not consider database transactions during the creation of the representation and the enumeration of

test requirements. We further assume that each application executes a database interaction under an auto-

commit directive that treats each SQL command as an indivisible unit of work. However, each of the

aforementioned limitations does not impact the empirical results that we present because none of the case

study application use these features of SQL. Chapter 9 describes the steps that must be taken to improve

the framework so that it supports these facets of the structured query language.
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Since all of the testing techniques are based on the state and structure of a database-centric application,

they are not properly suited for detecting omission faults (c.f. Sections 4.2 and 4.3 for a justification of

this assertion). The testing framework does not focus on finding the defects within P that incorrectly

manipulate or display a program variable whose value is the result of a correct database interaction. For

example, the testing tools will not highlight a fault where P correctly submits a select statement to retrieve

the value of attribute Al and then incorrectly updates the graphical user interface (GUI) by producing a label

that indicates it is the value of attribute Al′ . The combination of adequacy criteria that consider program

variables, database entities, and GUI elements will support the identification of this type of defect.

3.5 CHARACTERIZING THE CASE STUDY APPLICATIONS

3.5.1 High Level Description

We empirically evaluated each testing technique in Figure 3.1 by using it to test and analyze one or more of

the six case study applications.1 Each command line-based application is organized into a single Java package

with a varying number of classes and methods. All of the database-centric applications include a build system

written with the Apache Ant framework. The test suite for each case study application uses the DBUnit 2.1

extension of the popular JUnit 3.8.1 testing framework. Every application interacts with either a 1.7.3 or

a 1.8.0 HSQLDB in-memory relational database that executes within the same Java virtual machine as the

application itself. Since the case study applications use the standard Java database connectivity (JDBC)

interface, it is possible to configure the programs to use other databases such as MySQL [Yarger et al., 1999]

or PostreSQL [Monjian, 2000]. This section also characterizes each case study application according to the

number of classes, methods, and non-commented source code statements (NCSS) it contains. Tables 3.1 and

3.2 provide a high level description of each case study application by reporting the average number of classes,

methods, and NCSS per program, class, and method. In these two tables the term “method” refers to any

executable code body within the program and thus includes the test cases.

For each method mk with Gk = 〈Nk, Ek〉 we also calculated its cyclomatic complexity number (CCN)

v(Gk) = |Ek| − |Nk|+ |Bk| [McCabe and Butler, 1989]. We use Bk ⊂ Nk to denote the set of non-executable

nodes within a method’s CFG. Since the nodes entryk, exitk ∈ Nk (i.e., the nodes that demarcate a CFG’s

entry and exit points) are the only non-executable nodes in our CFG, we always have |Bk| = 2 in the equation

for v(Gk). The CCN is the maximum number of linearly independent paths through the CFG of a method

mk [McCabe and Butler, 1989]. Figure 3.3 shows that v(Gk) = 1 for a method mk that contains a single

straight-line code segment. Figure 3.4 reveals that v(Gk) = 2 when Gk contains a single conditional logic

statement. Adding the edge (N4, N1) to the CFG of Figure 3.4 increases the CCN by one, as demonstrated in

Figure 3.5. Finally, Figure 3.6 shows the calculation of v(Gk) for a CFG that uses iteration and conditional

logic constructs to form a Gk with five linearly independent paths. Table A3 in Appendix A summarizes

this chapter’s use of notation.

1Unless specified otherwise, Gregory M. Kapfhammer implemented each case study application. The author also implemented
the test suite for each case study application.
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Name Classes Methods NCSS Per

Reminder (RM) 9 55.0 548.0 Program

6.11 60.89 Class

9.96 Method

FindFile (FF) 5 49.0 558.0 Program

9.8 111.6 Class

11.39 Method

Pithy (PI) 11 73.0 579.0 Program

6.64 52.64 Class

7.93 Method

Table 3.1: High Level Description of the RM, FF, and PI Case Study Applications.

Name Classes Methods NCSS Per

StudentTracker (ST) 9 72.0 620.0 Program

8.0 68.89 Class

8.61 Method

TransactionManager (TM) 6 87.0 748.0 Program

14.5 124.67 Class

8.6 Method

GradeBook (GB) 10 147.0 1455.0 Program

14.7 145.5 Class

9.9 Method

Table 3.2: High Level Description of the TM, ST, and GB Case Study Applications.
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Higher values for v(Gk) reveal that there are more paths that must be tested and this could suggest that

the method mk is more “complex” than a method mk′ with a lower v(Gk′ ) [Shepperd, 1988]. Table 3.3 reports

the average cyclomatic complexity across all methods within P . It is crucial to observe that calculating the

CCN for a traditional CFG does not take into account the method’s interaction with a relational database.

Therefore, the reported CCN values represent a lower bound on the “complexity” of the methods within

the program under test and they should only be used as a rough characterization of application complexity.

Chapter 9 identifies the development of a complexity metric for database-centric applications as an area for

future research.

Table 3.1 shows that Reminder (RM) is the smallest case study application with a total of 548 NCSS.

This application provides methods such as addEvent and getCurrentCriticalEvents that store events

including birthdays and appointments and then generate reminders for these events. The methods in RM have

an average CCN of 2.09 and Table B1 in Appendix B provides additional details about the RM application.

Table 3.1 indicates that FindFile (FF) is the second smallest case study application with 558 NCSS. FF is

an enhanced version of the file system searching application called FindFile that is available for download

at http://www.hsqldb.org/. FF contains methods such as listFiles, removeFiles, and fillFileNames

that have an average CCN of 2.02. Table B2 in Appendix B offers additional information about the FF

application. The cyclomatic complexity numbers for RM and FF suggest that these programs have “simple”

methods if their database interactions are not taken into account.

The Pithy (PI) case study application contains 579 NCSS, as noted in Table 3.1. Pithy is an extended

implementation of an example program available from http://uk.builder.com/. This application stores

and generates quotations with methods such as addQuote and getQuote. Similar to RM and FF, the PI case

study application has an average CCN of 2.05. Table B3 in Appendix B includes additional details about the
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Application Average Method CCN

RM 2.09

FF 2.02

PI 2.05

ST 1.65

TM 2.21

GB 2.60

Table 3.3: Average Method Cyclomatic Complexity Measurements.

classes and methods in PI. Table 3.2 reveals that the StudentTracker (ST) case study application contains

620 NCSS and is the third largest application. This application uses methods such as insertStudent and

getAllStudents to track administrative information about college students. The average method CCN for

ST is 1.65 even though the application contains more executable source statements than RM, FF, or PI. This is

due to the fact that several methods within ST consist of straight-line code segments that reduce the average

method CCN. Table B4 in Appendix B provides more information about the StudentTracker application.

As described in Chapter 2, the TransactionManager (TM) application interacts with the Bank database.

At 748 NCSS, TransactionManager is the second largest case study application. It furnishes methods

such as removeAccount, removeUser, transfer, withdraw, and deposit. The average method cyclomatic

complexity number of TM is 2.21 and thus it is slightly more complex than the smaller applications. Table B5

in Appendix B offers additional information about TM. Table 3.2 shows that GradeBook (GB) is the largest

case study application with 1455 NCSS. This application provides 147 methods that include getExams,

addLab, and getFinalProjectScore. GB exhibits the largest average method CCN with a value of 2.60.

Even though GB’s average CCN is not significantly larger than the average CCNs of the other case study

applications, it does have many methods with cyclomatic complexities of 5 through 14. In contrast, the

CCNs for the other applications normally range from 1 to 5. Table B6 in Appendix B provides more details

concerning GB.

The data in Table 3.1, Table 3.2, and Table B1 through Table B6 in Appendix B indicate that all of the

applications have relatively small method code bodies that range in average size from 7.93 to 11.39 NCSS.

The largest applications, GB and TM, also have the most methods per class (14.5 and 14.7 methods per class,

respectively). In contrast, the smaller applications such as RM and PI only have an average of 6.11 and

6.64 methods per class. While descriptive statistics do not reveal anything about the quality of the source

code documentation, the tables in Appendix B demonstrate that most of the methods contain JavaDoc

comments. The “Classes” column in the tables from Appendix B denotes the number of inner classes that

are declared within the specified class. The chosen case study applications do not use inner classes and thus

this column always contains zeros. However, the presented framework supports the testing and analysis of

database-centric applications that use any of the major features of Java (e.g., static methods and variables,

inner classes, iteration, and recursion).
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Figure 3.7: Relational Schema for Reminder.

3.5.2 Relational Schemas

The test coverage monitoring component described in Chapter 6 includes a technique that records the

SQL data definition language statements that construct the relations within an application’s database.

The component also contains a tool that can automatically visualize each relational schema. This section

provides a graphical depiction of the relational schema that is used by each case study application. Figure 3.7

describes the relational schema for the Reminder case study application. The Reminder relation contains

seven attributes that are either of type Integer, int, or Varchar. Integer and int correspond to the

same variable type and the Java language-based HSQLDB uses the java.lang.Integer data type to store

these attributes. Attributes of type Varchar store variable length character data and HSQLDB internally

represents them as java.lang.String variables. Figure 3.8 shows the relational schema for FindFile’s

database. The Files relation contains two Varchar attributes called Path and Name. Even though this

database has a simple schema, FF was incorporated into the experiments because it provides functionality

that scans a file system to extract and store path and file name information. Therefore, FindFile can

automatically create very large databases that support the evaluation of a testing technique’s scalability.

Figure 3.9 provides the relational schema for Pithy’s database. The id attribute is a unique identifica-

tion number for each quotation and the pith attribute stores a Varchar-based textual representation of a

quotation. The category attribute is also of type Varchar and it classifies the quotation into one or more user-

defined categories. The experiments include the Pithy application because it comes with a large pre-defined

database of quotations. Figure 3.10 reveals that StudentTracker also interacts with a simple database that

contains the Student relation with the Id and Name attributes of type Varchar. The TransactionManager

application uses two tables called Account and UserInfo, as depicted in Figure 3.11 and previously described

in Chapter 2. The experiments use the ST and TM applications because they contain methods that have

sequences of database interactions. For example, the transfer method within TM follows the execution of

a select statement with two update statements. Therefore, the correct operation of the updates depends

upon the correctness of the select.
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Figure 3.8: Relational Schema for FindFile.
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Figure 3.9: Relational Schema for Pithy.
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Figure 3.10: Relational Schema for StudentTracker.
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Figure 3.11: Relational Schema for TransactionManager.
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Application Test NCSS / Total NCSS

RM 227/548 = 50.5%

FF 330/558 = 59.1%

PI 203/579 = 35.1%

ST 365/620 = 58.9%

TM 355/748 = 47.5%

GB 769/1455 = 52.8%

Table 3.4: Characterization of the Test Suites.

Figure 3.12 explains the structure of the nine relations that are subject to interaction by the GradeBook

application. We used GB to empirically evaluate the testing techniques because it interacts with a moderate

size database that contains thirty-three attributes of varying type. The Master table uses the Integer and

Decimal attribute types to describe how different class scores contribute to the final grade in a college-level

science course. The HSQLDB database stores a Decimal attribute with the Java type java.math.BigDecimal

that provides immutable and arbitrary-precision signed decimal numbers. For example, if GradeBook stores

.2 within the FinalProject attribute this indicates that 20% of the course grade is associated with the grade

on the final project. The source code of GradeBook also contains checks to ensure that the values of Master’s

attributes sum to 1.0.

The Student relation uses Integer and Varchar attributes to store identification and contact information

about each student in the class. Finally, the ExamMaster relation stores the description of each examination

that was given during the course and the ExamScores relation persists the examination scores for each

student. The GradeBook application does not create a foreign key constraint from the ExamId attribute

in the ExamScores relation to ExamMaster’s ExamId. Instead, GradeBook uses Java methods to enforce

the constraint that each score in ExamScores corresponds with a unique examination in ExamMaster. The

remaining tables such as LabMaster and LabScores are defined analogously to ExamMaster and ExamScores.

These characteristics of GradeBook’s implementation demonstrate the importance of testing the interactions

between the program and the relational database. As noted in Chapter 9, we intend to investigate the reverse

engineering of program-enforced integrity constraints as part of future research.

3.5.3 Detailed Characterization

3.5.3.1 Test Suites The test suite for each application is organized into one or more Java classes. The

test executor recognizes the methods with names beginning with the word “test” as individual test cases.

A single test class (e.g., TestReminder for RM) also contains many methods that support the testing process.

Support methods such as getDataSet, getConnection, setUp, and tearDown are required by the JUnit and

DBUnit testing frameworks. Table 3.4 shows that the test code (e.g., both the support and “test” methods)

is often a significant portion of the application’s entire code base. Across all of the case study applications,

the test suite code comprises 50.65% of the total NCSS. Table 3.5 characterizes the size of each test suite

according to the number of test cases and oracle execution locations. These results indicate that the largest
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Figure 3.12: Relational Schema for GradeBook.
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Application Num of Test Cases Num of Oracle Exec Avg Oracle Exec Per Test

RM 13 25 1.9

FF 16 80 5.0

PI 15 34 2.3

ST 25 59 2.4

TM 27 91 3.4

GB 51 91 1.8

Table 3.5: Number of Test Cases and Oracle Executions.

Application Num of executeUpdate Calls Num of executeQuery Calls Total

RM 3 4 7

FF 3 4 7

PI 3 2 5

ST 4 3 7

TM 36 9 45

GB 11 23 34

Table 3.6: Database Interactions in the Case Study Applications.

number of test cases is 91 (TM and GB) and the smallest number of tests is 25 (RM). Across all case study

applications, the average size of a test suite is approximately 63 tests.

Table 3.5 also reveals that the average number of oracles per test case ranges between 1.8 (GB) and 5 (FF).

The test suite for FindFile exhibits a high number of oracle executions per test because the tests often check

the correctness of the file names that are stored within the database on a per file name basis. GradeBook

shows the smallest number of oracle executions per test because it has the most test cases. Moreover, each

GB test case contains only one or two oracle executions that compare the expected and actual states of

entire database relations. Table B7 through Table B12 in Appendix B provide the name of each test case

and the Java class in which it is located. These tables show that many test suites contain test cases such

as testDatabaseServerIsRunning and testMakeDatabaseConnection. This is due to the fact that the

correctness of the methods that start and connect to the RDBMS is crucial to the proper operation of the

entire application.

Some case study applications have a dedicated Java class that is responsible for creating the relations in

the database (e.g., the GradeBookCreator class in the GB application creates all of the tables described in

Section 3.5.2) and this class is often tested with its own test cases. Analysis of the case study applications also

reveals that many of their test suites contain tests that perform a single operation repeatedly. For example,

the testDoesNotStartServerAgain method in TestFindFile starts the database server and then checks

to ensure that the server does not start again after multiple invocations of the RDBMS startup methods.

Furthermore, the testInsertAndRemoveStudentIterativeSmall test case for ST uses program methods

to iteratively insert information about a student and then delete all records of information pertaining to

the same student. This test determines if the ST application always assigns unique identification numbers
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Figure 3.13: Using the Java Database Connectivity Interface to Perform a Database Interaction.

to all of the students. Further examination indicates that some tests use program methods to add data

to the database and then execute a database-aware oracle (e.g., testAddOnePithyRemark in PI). Other

tests use program methods to insert data, delete data records, and then finally execute an oracle (e.g.,

testInsertAndRemoveStudent in ST). Finally, some test cases directly modify the state of the database

using DBUnit primitives, execute methods within the program under test, and then execute an oracle to

inspect the database state (e.g., testGetAccountBalance in TM). When considered cumulatively, the tests

for the case study applications represent a wide range of different testing strategies.

3.5.3.2 Database Interactions As depicted in Figure 3.13, the case study applications interact with

their relational database through the use of the executeUpdate and executeQuery methods that are pro-

vided by HSQLDB’s implementation of the java.sql.Statement interface. The executeUpdate method

submits SQL data manipulation statements such as update, insert, and delete. The same method can

also submit SQL data definition statements such as create table and drop table. For example, FF uses

executeUpdate to submit the statement drop table files. The executeQuery method always submits a

SQL select command. The java.sql.Statement interface also provides other interaction methods, such as

execute, that can send an arbitrary SQL command to the database. However, the selected case study appli-

cations do not use these alternative database interaction methods. Table 3.6 categorizes all of the database

interactions within the applications. This table shows that the smaller case study applications have the least

interactions while the largest applications, TM and GB, also have the most interactions. It is critical to note

that the case study applications express their database interactions as java.lang.Strings that can only

be partially characterized through static analysis (e.g., the database interaction might be dependent upon

user input or data values stored in external files). When examined as a whole, the case study applications

contain a wide range of database interactions that vary according to their static structure and use of the

Java database connectivity interface.

3.6 DESIGN OF THE EXPERIMENTS

The overarching goal of the experiments is to measure the efficiency and effectiveness of the testing techniques

presented by this research. Chapter 4 through Chapter 8 describe the specific experiment design that
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supports the evaluation of each phase of the software testing life cycle. We implemented the entire testing

framework in the Java, Mathematica, and tcsh programming languages. The implementation also includes

a substantial test suite for each of the approaches to testing. Chapter 4 describes the initial experiments

that were conducted on a GNU/Linux workstation with kernel 2.4.18-14smp, LinuxThreads 0.10, dual 1

GHz Pentium III Xeon processors, 512 MB of main memory, and a SCSI disk subsystem. The subsequent

experiments described in Chapter 6 through Chapter 8 were performed on a GNU/Linux workstation with

kernel 2.6.11-1.1369, Native POSIX Thread Library (NPTL) version 2.3.5, a dual core 3.0 GHz Pentium

IV processor, 2 GB of main memory, and 1 MB of L1 processor cache. This workstation used a Serial

ATA connection to the hard drive and we enabled CPU hyper-threading in order to support thread-level

parallelism on the processor. All of the experiments use a JVM version 1.5.0 that was configured to operate

in Java HotSpotTMclient mode. The maximum size of the JVM heap varied depending upon the memory

demands of the experiment. Subsequent chapters explain the remaining details about the experiment design

and the evaluation metrics.

3.7 THREATS TO VALIDITY

The experiments described in this research are subject to validity threats. Internal threats to validity are those

factors that have the potential to impact the measured variables defined in Chapter 4 through Chapter 8.

One internal validity threat is associated with defects in the prototype of the database-aware testing tools.

Defects within any of the testing techniques would impact the experiment results. This threat is controlled

by the implementation and frequent execution of a regression test suite for the entire testing framework.

Furthermore, we applied the prototype to smaller known examples, and we manually checked the correct-

ness of these results. We also controlled this threat by incorporating tools and Java class libraries that

are frequently used by software testing researchers and practitioners (e.g., JUnit [Do et al., 2004], DBUnit

[Dallaway, 2002], and Soot [Vallée-Rai et al., 2000]). Since we have repeatedly used these tools without

experiencing errors or anomalous results, we have a confidence in their correctness and we judge that they

did not negatively impact the validity of our empirical studies. The efficiency of each testing technique was

measured by Java programming language instrumentation that inserted profiling statements into the source

code of the testing techniques. To ensure that the profilers yielded accurate timings, we measured the wall

clock time for the execution of a testing tool and compared this to the time that was calculated by the

profiler. In order to prevent inappropriate variations in the time overhead, we used the same workstation

for all experiments within a chapter and we prevented external user logins to this workstation during the

empirical analysis.

External threats to validity are factors that limit the ability to generalize the experimental results.

Since the empirical studies described by this research use a limited number of case study applications, we

cannot claim that these results are guaranteed to generalize to other database-centric applications. However,

Section 3.5 shows that the experiments use six small to moderate size applications that vary in terms of their
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NCSS, cyclomatic complexity, test suite structure, and type of database interaction. We also configured each

case study application to interact with the real world HSQLDB RDBMS that is used in current applications

such as OpenOffice and Mathematica. Another threat to external validity is related to the size of the selected

case study applications and their test suites. If we compare our case study applications to those that were

used in other studies by [Tonella, 2004] (mean size of 607.5), [McMinn and Holcombe, 2005] (mean size of

119.2), [Harrold et al., 1993] (mean size of 33.6), and the Siemens application suite [Rothermel et al., 2001]

(mean size 354.4), the average size of our programs and test suites (mean size 571) is comparable to the

size of the other applications. Since both Tonella, McMinn and Holcombe, and Harrold et al. report a lines

of code (LOC) size metric instead of an NCSS metric, it is possible that our case study applications have

a larger static size than those programs used in prior experimentation. Finally, the case study applications

in these previous studies do not interact with a relational database. The last threat to external validity is

that the author of this dissertation implemented and tested each case study application. We implemented

our own applications because the software testing research community has not established a repository of

database-centric applications.

3.8 CONCLUSION

This chapter offers a brief overview of our comprehensive framework for testing database-centric applications.

Subsequent chapters will provide more details about the test adequacy component and our approaches to

test coverage monitoring, and test suite reduction and prioritization. This chapter examines the case study

applications that we used to empirically evaluate the testing techniques described in Chapter 4 through

Chapter 8. We report the number of classes, methods, and non-commented source statements in each of

the case study applications. This chapter includes a definition of cyclomatic complexity and a summary of

the average cyclomatic complexity across all of the methods within an application. We also examine the

test suite and the relational schema for each database-centric application. For each test suite we report the

number of tests and we characterize the tests according to their static structure and dynamic behavior. We

graphically depict each relational schema and explain how the programs use the JDBC interface to submit

SQL statements to the database. This chapter concludes with a high level review of the experiment design

and a discussion of the steps we took to address the threats to the validity of our experiments.
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4.0 FAMILY OF TEST ADEQUACY CRITERIA

4.1 INTRODUCTION

This chapter describes a fault model for database-centric applications and a family of database-aware test

adequacy criteria. The fault model describes how a program can violate the integrity of a relational database.

We also explain why our data flow-based adequacy criteria support the isolation of faults that violate database

integrity. Finally, we compare our database-aware criteria to traditional adequacy criteria that solely focus

on program variables. In particular, this chapter offers:

1. A fault model that describes the interaction patterns that frequently lead to the violation of relational

database integrity (Section 4.2).

2. The definition of a family of test adequacy criteria for database-centric applications that extends the

traditional data flow-based all-DUs criterion (Sections 4.3.1 and 4.3.2).

3. The presentation of a subsumption hierarchy that characterizes the relative strength of each database-

aware test adequacy criterion (Section 4.3.3).

4. The discussion of the suitability of the test adequacy criteria and a comparison to traditional structural

adequacy metrics (Section 4.3.4 and 4.3.5).

4.2 DATABASE INTERACTION FAULT MODEL

We define a database-centric application A = 〈P, 〈D1, . . . , De〉, 〈S1, . . . , Se〉〉 to consist of a program P and

databases D1, . . . , De that are specified by relational schemas S1, . . . , Se. Our testing framework ensures

that the tests for A can isolate the type of interaction faults that are commonly found in a database-centric

application. Accuracy, relevancy, completeness, and consistency are commonly associated with the quality of

the data that is stored in a database [Motro, 1989, Strong et al., 1997, Wand and Wang, 1996]. The testing

framework’s fault model uses the conception of database integrity initially proposed in [Motro, 1989]. This

research views the integrity of A’s databases as a function of the validity and completeness of the data that is

stored in each database. We specify the correct behavior of method mk’s interaction with database Df from

the perspective of the expected database state, denoted Dx. The fault model assumes that the relational

database is in a valid state before the execution of method mk. If Df = Dx after executing mk, then we

know that method mk performed as anticipated. If the expected and actual database states are not equal,

then this demonstrates that there is a defect within mk that violates the integrity of the database.
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Type (1-v): Method mk submits
a SQL update or insert state-
ment that incorrectly modifies the
attribute values in Df so that Df 6=
Dx.

(a)

Type (1-c): Method mk submits
a SQL delete statement that incor-
rectly removes attribute values from
Df so that Df ⊂ Dx.

(b)

Type (2-v): Method mk does not
submit a SQL delete statement to
remove attribute values from Df so
that Df ⊃ Dx.

(c)

Type (2-c): Method mk does not
submit a SQL update or insert
statement and fails to place at-
tribute values into Df so that Df 6=
Dx.

(d)

Figure 4.1: Summary of the Program Defects that Violate Database Integrity.

Figure 4.1 summarizes the four types of database interaction defects that could exist in a database-centric

application. Figure 4.1(a) and (c) describe violations of database validity and Figure 4.1(b) and (d) explain

completeness violations. Method mk contains a type (1-v) integrity violation if it executes either a SQL

update or an insert statement that produces Df 6= Dx. If Df ⊂ Dx after the execution of method mk,

then this indicates that mk contains a type (1-c) defect that submits a delete that removes more records

than anticipated. A method mk contains a type (2-v) violation of database integrity if it fails to submit a

delete statement and Df ⊃ Dx. If method mk contains a type (2-c) integrity violation that does not submit

either an update or an insert statement, then this will also yield Df 6= Dx.

We further classify the faults within a database-centric application as either faults of commission or omis-

sion [Basili and Perricone, 1984]. A fault of commission corresponds to an incorrect executable statement

within the program under test. Faults of omission are those faults that are the result of the programmer

forgetting to include executable code within the program under test. Type (1-c) and (1-v) violations of

database integrity are faults of commission because they involve the incorrect use of the SQL update, in-

sert, and delete statements. We also classify type (2-c) and (2-v) integrity violations as either commission

faults or omission faults. A type (2-c) or (2-v) commission fault exists within mk when the control flow

of the method prevents the execution of the correct SQL statement. We categorize a type (2-c) or (2-v)

integrity violation as an omission fault when mk does not contain the appropriate SQL update, insert, or

delete command. The testing framework supports the identification of all type (1-c) and (1-v) defects and

type (2-c) and (2-v) commission faults.

4.2.1 Type (1-c) and (2-v) Defects

This chapter uses the TM application to provide specific examples of the four ways that a program can violate

the integrity of a relational database.1 The type (1-c) and (2-v) defects both involve the incorrect use of

the SQL delete statement. Among other functionality, the TM application provides the ability to remove a

1For simplicity, this research assumes that the methods within the TM application will not concurrently access the relational
database. Thus, the source code of the TM does not use transactions to avoid concurrency control problems.

45



The removeAccount(int id) operation should completely remove the
user account that is specified by the provided id. If the removal of
the account from the Account relation results in an TM user that no
longer maintains any accounts in the TM application, any additional
user information should also be removed from the UserInfo relation.

(a)

The transfer(int source id, int dest id, double balance) op-
eration should withdraw balance dollars from the account specified
by source id, deposit this amount into the account specified by
dest id, and return true to signal success. If the account associ-
ated with the source id has a balance that is less than the specified
balance, then the transfer must not occur and the operation should
return false.

(b)

Figure 4.2: The Natural Language Specifications for the (a) removeAccount and (b) transfer Methods.

specified account. Since it uses a SQL delete statement, the removeAccount method could contain either

a (1-c) or a (2-v) defect. The natural language specification for the removeAccount method is provided in

Figure 4.2(a). Figure 4.3 shows a defective implementation of the removeAccount operation in the Java

programming language.2 In this method, line 4 constructs a structured query language statement that is

supposed to remove the specified account from the Account relation. Since this line erroneously builds a

where clause that compares the card number attribute to the provided id parameter instead of using the

id attribute, the database interaction on line 6 is faulty. If we call removeAccount(2) with the input state

shown in Figure 2.4, then the method from Figure 4.3 incorrectly removes both of the accounts that are

owned by user “Brian Zorman” instead of deleting the account with an id of 2. This operation contains a

type (1-c) defect that violates the completeness of the relational database.

Figure 4.4 provides another implementation of removeAccount that resolves the defect that exists in

the operation from Figure 4.3. However, this method still does not correctly implement Figure 4.2(a)’s

specification for the removeAccount method. Lines 4 and 6 of this method correctly build the String

removeAcct and interact with the database. However, the method lacks an additional interaction to delete

the information from the UserInfo relation when the user removes his or her last account from the Account

relation (for the purposes of discussion, we assume that the RDBMS either could not be or was not config-

ured to automatically handle the referential integrity constraint between the two relations). Therefore, the

removeAccount method in Figure 4.4 contains a type (2-v) defect that violates the validity of TM’s database.

We classify this defect as a fault of omission because the program source code does not contain a database

interaction to remove attribute values from the UserInfo relation.

2In the method listing in Figure 4.3 and all subsequent source code listing, the variable connect corresponds to the already
initialized connection to the Bank database.
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1 public boolean removeAccount( int id ) throws SQLException
2 {
3 boolean completed = f a l se ;
4 S t r ing removeAcct = ‘‘ de l e t e from Account where card number = ’’ + id ;
5 Statement removeStmt = connect . c reateStatement ( ) ;
6 int removeAccountResult = removeStmt . executeUpdate ( removeAcct ) ;
7 i f ( removeAccountResult == 1 )
8 {
9 completed = true ;

10 }
11 return completed ;
12 }

Figure 4.3: A Type (1-c) Defect in the removeAccount Method.

1 public boolean removeAccount( int id ) throws SQLException
2 {
3 boolean completed = f a l se ;
4 S t r ing removeAcct = ‘‘ de l e t e from Account where id = ’’ + id ;
5 Statement removeStmt = connect . c reateStatement ( ) ;
6 int removeAccountResult = removeStmt . executeUpdate ( removeAcct ) ;
7 i f ( removeAccountResult == 1 )
8 {
9 completed = true ;

10 }
11 return completed ;
12 }

Figure 4.4: A Type (2-v) Defect in the removeAccount Method.

1 public boolean t r a n s f e r ( int source u id , int dest u id ,
2 double amount ) throws SQLException
3 {
4 boolean completed = f a l se ;
5 S t r ing qs = ‘‘ s e l e c t id , ba lance from Account ; ’’ ;
6 Statement stmt = connect . c reateStatement ( ) ;
7 Resu l tSet r s = stmt . executeQuery ( qs ) ;
8 while ( r s . next ( ) )
9 {

10 int id = r s . g e t In t ( ‘‘ id ’’ ) ;
11 double balance = r s . getDouble ( ‘‘ba lance’’ ) ;
12 i f ( id == source u id && amount <= balance )
13 {
14 St r ing qu withdraw = ‘‘update Account s e t ba lance = balance−’’ +
15 amount + ‘‘ where id = ‘‘ + source u id + ‘‘ ; ’’ ;
16 Statement update withdraw = connect . c reateStatement ( ) ;
17 int r e su l t w i thdraw = update withdraw . executeUpdate ( qu withdraw ) ;
18
19 St r ing qu depo s i t = ‘‘update Account s e t ba lance = balance+’’ +
20 amount + ‘‘ where id = ‘‘ + de s t u id + ‘‘ ; ’’ ;
21 Statement update depos i t = connect . c reateStatement ( ) ;
22 int r e s u l t d ep o s i t = update depos i t . executeUpdate ( qu depo s i t ) ;
23
24 i f ( r e su l t w i thdraw == 1 && r e s u l t d ep o s i t == 1 )
25 completed = true ;
26 }
27 }
28 return completed ;
29 }

Figure 4.5: A Correct Implementation of the transfer Method.
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4.2.2 Type (1-v) and (2-c) Defects

The type (1-v) and (2-c) defects both involve the incorrect use of either the SQL update or insert statements.

We use the transfer method to provide an example of the improper modification or deletion of data

that already exists in a relational database. Figure 4.5 shows a correct implementation of the transfer

method that is specified by the natural language description provided in Figure 4.2(b). Suppose that the

SQL update statement constructed on lines 14 and 15 made reference to dest id instead of source id.

Furthermore, suppose that the SQL update statement created on lines 19 and 20 referenced source id

instead of dest id. If this hypothesized defect exists within the transfer method, the transfer operation

will withdraw money from the account associated with dest id and deposit amount dollars into the account

associated with source id. This hypothesized modification to transfer creates a type (1-v) violation of

database validity because it places incorrect balances into TM’s Bank database.

Suppose we replace the second condition of the if statement on line 12 in Figure 4.5 with the condition

amount >= balance. If the transfer operation contained this hypothesized defect, the transfer will not

occur even if account source id contained sufficient funds. In this circumstance, the balance attribute values

for the two accounts will not be properly modified. This potential modification to transfer introduces a

type (2-c) violation of database completeness. This is due to the fact that transfer fails to place appropriate

values for balance inside of the Account relation. This type (2-c) violation is also a fault of commission because

incorrect conditional logic prevents the method under test from executing a correct database interaction.

4.3 DATABASE-AWARE TEST ADEQUACY CRITERIA

4.3.1 Traditional Definition-Use Associations

Throughout the discussion of our family of data flow-based test adequacy criteria for database-centric ap-

plications, we adhere to the notation initially proposed in [Rapps and Weyuker, 1985]. We focus on the

definition of intraprocedural definition-use associations for CFG Gk = 〈Nk, Ek〉. A definition clear path

πvar = 〈Nρ, . . . , Nφ〉 for variable var is a path in Gk such that (i) Nρ contains a definition of var, (ii) Nφ

contains a use of var, and (iii) none of the nodes Nρ+1, . . . , Nφ contain a subsequent definition of var. We

say that node Nρ contains a reaching definition for the use of var at Nφ if there exists a definition clear

path πvar = 〈Nρ, . . . , Nφ〉. We define RD(Gk, Nφ, var) as the set of nodes that contain reaching definitions

for the use of the variable var at Nφ. We define the def-use association as a triple 〈Ndef , Nuse, var〉 such

that Ndef ∈ RD(Gk, Nuse, var). As initially defined in Chapter 2, a complete path is a sequence of nodes

in a method’s control flow graph that starts at the CFG’s entry node and ends at its exit node. A test

case Ti covers a def-use association if it executes a complete path πvar that has a definition clear sub-path

from node Ndef to Nuse. For more details about traditional data flow-based test adequacy criteria, refer to

[Rapps and Weyuker, 1985, Zhu et al., 1997]. Table A5 in Appendix A reviews the notation that we use to

define the def-use association.

48



select account name, user name
from Account
where balance > 1000

Type: using

(a)

delete from Account
where card number = 2

Type: defining-using

(b)

insert into Account
values(10, “Primary Checking”,

“Robert S. Roos”, 1800, 1)

Type: defining

(c)

update UserInfo
set acct lock = 1
where card number = 5

Type: defining-using

(d)

Figure 4.6: Database Interaction Types for the SQL DML Operations.

4.3.2 Test Adequacy for Database-Centric Applications

A database interaction point (DIP) is a source code location in a method mk that submits a SQL statement to

a relational database. For example, the removeAccountmethod in Figure 4.3 contains a database interaction

point on line 6. A DIP in method mk is of type defining, using, or defining-using. Method mk performs

a using interaction when it submits a SQL select to a database. For example, Figure 4.6(a) describes a

select statement that uses the attributes in the Account relation. We classify mk’s submission of a SQL

insert command as a defining interaction since it adds a record to a relation. Figure 4.6(c) shows an insert

statement that defines the attributes of Account. The SQL update and delete commands are both of type

defining-using. Figure 4.6(b) includes a delete statement that defines all of the attributes in Account while

also using the card number in the same relation. The update command in Figure 4.6(d) defines the acct lock

attribute and uses the card number in UserInfo.

Database-centric application A interacts with the relational databases D1, . . . , De at different levels of

granularity. P ’s interaction with a relational database management system can be viewed at the level of

databases, relations, records, attributes, or attribute values [Daou et al., 2001]. In the example depicted in

Figure 4.7, program P ’s interaction with relational database Df can also be viewed as an interaction with

the relations rel1 and rel2 that are contained within the database. Figure 4.7 shows that mk interacts with

a single record inside of Df ’s relation rel1. Method mk also interacts with attribute G inside of relation

rel2. Furthermore, P ’s method mk interacts with a specific value of the attribute E. Figure 4.7 illustrates

how the granularity of a database interaction varies. Viewing a program’s interaction with a database at

the record level is finer than the relation level. Considering P ’s database interactions at the attribute level

is coarser than at the attribute value level.

While traditional def-use associations are related to the variables in the program under test, this research

presents the intraprocedural database interaction association (DIA) that defines and uses an entity in a

relational database. We represent the method mk as a database interaction control flow graph (DI-CFG)
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Figure 4.7: Database Interactions at Multiple Levels of Granularity.

GDI(k) = 〈NDI(k), EDI(k)〉. We define NDI(k) as a set of nodes that contains definitions and uses of both

database entities and program variables. The set EDI(k) contains the set of edges that transfer control

between the nodes in NDI(k). Chapter 5 explains the structure of GDI(k) and the steps that the adequacy

component takes to automatically generate a method’s DI-CFG. We define D(GDI(k)) as the set of database

names that are subject to interaction in the method mk. We respectively define R(GDI(k)), A(GDI(k)),

Rc(GDI(k)), and Av(GDI(k)) as the sets of relation, attribute, record, and attribute value names. Chapter 5

discusses the techniques that we use to analyze A and enumerate these sets of relational database entities.

A database interaction association is a triple 〈Ndef , Nuse, varDB〉 where the definition of relational database

entity varDB happens in node Ndef and a use occurs in node Nuse. However, each database interaction

association is defined for a relational database entity varDB that is a member of one of the sets D(GDI(k)),

R(GDI(k)), A(GDI(k)), Rc(GDI(k)), Av(GDI(k)). The data flow analyzer described in Chapter 5 performs

reaching definitions analysis in order to identify the DIAs within the DI-CFG GDI(k).

While the database interaction association is similar to a traditional def-use association, it does have addi-

tional semantics that are different from a def-use association for a program variable. When Ndef corresponds

to the execution of a SQL delete statement, the semantics of a DIA differ from the traditional understand-

ing of a def-use association. For example, the database interaction association 〈Ndef , Nuse, varDB〉 with

varDB ∈ Rc(GDI(k)) requires the definition and use of a record that is stored within a specific relation

of a database. If Ndef corresponds to the execution of the SQL delete statement, then mk removes the

record varDB from the database and it is no longer available for use. Therefore, the all-record-DUs and

all-attribute-value-DUs test adequacy criteria allow the use of varDB on node Nuse to correspond to the

use of a phantom record, or a record that once existed in a previous state of the database but was removed

during testing. The existence of phantom records (and analogously, phantom attribute values) forces the test

coverage monitoring component to observe the program’s manipulation of the relational database and retain

information about the deleted records. However, the use of phantom records requires a test suite to execute

operations that remove records from a database and then verify that the records are no longer available.
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As discussed in Section 2.5.3, we can measure the adequacy, or “goodness,” of a test suite in many

different fashions. The standard all-DUs test adequacy criterion that drives def-use testing [Hutchins et al.,

1994] is not sufficient for the testing of database-centric applications because it does not capture a program’s

interaction with a relational database. The test adequacy component uses the DI-CFG to produce DIAs

instead of (or, in addition to) the def-use associations for the variables in the program. This research presents

a family of test adequacy criteria that includes the all-database-DUs, all-relation-DUs, all-attribute-DUs, all-

record-DUs, and all-attribute-value-DUs. Definition 1 defines the all-database-DUs test adequacy criterion

which requires a test suite T to cover all of the DIAs in the method under test. We define the all-relation-

DUs, all-attribute-DUs, all-record-DUs, and all-attribute-value-DUs test adequacy criteria in an analogous

manner by substituting one of the sets R(GDI(k)), A(GDI(k)), Rc(GDI(k)), or Av(GDI(k)) for the D(GDI(k))

in Definition 1.

Definition 1. A test suite T for method mk’s DI-CFG GDI(k) = 〈NDI(k), EDI(k)〉 satisfies the all-database-

DUs test adequacy criterion if and only if there exists a test Ti to cover each association 〈Ndef , Nuse, varDB〉

where varDB ∈ D(GDI(k)) and Ndef , Nuse ∈ NDI(k).

4.3.3 Subsumption of the Test Adequacy Criteria

This research presents a subsumption hierarchy for database-centric applications that assumes a test suite

T is independent and thus each test case begins execution with the same database state. In adherence to

Section 4.2’s definition of a database-centric application A, the subsumption hierarchy holds when program

P interacts with at least one database and a maximum of e total databases. The subsumption hierarchy

also requires that each database Df contains at least one relation and it allows a database to contain a

maximum of w relations. We also assume that schema Sf specifies that relj has attributes A1, . . . , AZj
.

The hierarchy makes no restrictions on the maximum number of records that a relation contains. For the

purpose of discussing the subsumption hierarchy, we suppose that relation relj = {t1, . . . , tu} is in database

Df . Figure 4.8 summarizes the subsumption relationships between the database-aware test adequacy criteria.

A test adequacy criterion Cα subsumes a test adequacy criterion Cβ if every test suite that satisfies Cα

also satisfies Cβ [Rapps and Weyuker, 1985]. In Figure 4.8, the nodes Cα and Cβ represent adequacy criteria

and a directed edge Cα → Cβ indicates that Cα subsumes Cβ . For example, a test suite that covers all of

the DIAs for the u records within relj will also cover the DIAs for the relation itself and thus all-record-DUs

subsumes all-relation-DUs. The other subsumption edges Cα → Cβ hold under similar reasoning. If there is

a path in the subsumption hierarchy from Cα to Cβ , then we know that Cα subsumes Cβ by transitivity. For

example, Figure 4.8 reveals that all-attribute-value-DUs subsumes all-relation-DUs. There is no subsumption

relationship between all-record-DUs and all-attribute-DUs. This is due to the fact that T could cover all of

the attribute-based DIAs by only exercising one of the u records within the relation relj . Moreover, a test

suite T could satisfy all-record-DUs by interacting with a single attribute AZj
in each record of relj . The

hierarchy in Figure 4.8 also reveals that all-attribute-value-DUs is the “strongest” test adequacy criteria and

all-database-DUs is the “weakest” metric.
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Figure 4.8: The Subsumption Hierarchy for the Database-Aware Test Criteria.

4.3.4 Suitability of the Test Adequacy Criteria

A test is more likely to reveal database interaction points that cause type (1-c) and (1-v) violations if it

first executes a program operation that incorrectly modifies the database and then it subsequently uses

the database. For example, a test case for the defective removeAccount operation listed in Figure 4.3

would expose the program defect on line 4 if it first executed removeAccount(2). Next, the test could call a

listAccounts operation to verify that the account with id = 2 was not in the database and all other accounts

(in particular, the one where id = 3 and card number = 2) were still inside of the Account relation. The test

could also use an oracle to directly access the state of the database and reveal the defect in removeAccount.

By requiring the coverage of database interaction associations, the presented family of test adequacy criteria

can determine whether or not the provided tests are well suited to revealing type (1-c) and (1-v) defects.

The test adequacy criteria also evaluate the capability of a test suite to isolate type (2-c) and (2-v)

commission faults. This is due to the fact that the component assigns low adequacy scores to the test cases

that do not execute the program’s database interactions. Methods that are only tested by low adequacy tests

are more likely to contain latent type (2-c) and (2-v) commission defects. We do not focus on the creation of

adequacy criteria to support the isolation of type (2-c) and (2-v) omission defects that fail to update, insert,

and delete data values. This is due to the fact that structural adequacy criteria, like the family proposed

by this research, are not well suited to revealing omission faults [Marick, 1999, 2000]. The data flow-based

test adequacy criteria will not yield any test requirements for methods that contain type (2-c) and (2-v)

omission faults because the database interactions do not exist within the source code. Chapter 9 observes that

database-aware versions of existing approaches to (i) code inspection (e.g., [Shull et al., 2001]), (ii) black-box

testing (e.g., [Ostrand and Balcer, 1988]), and/or (iii) automatic defect isolation (e.g, [Hovemeyer and Pugh,

2004]) could be more appropriate for identifying omission faults [Marick, 2000].

52



1 public boolean removeAccount( int id ) throws SQLException
2 {
3 boolean completed = f a l se ;
4 S t r ing removeAcct = ‘‘ de l e t e from Account where id = ’’ + id ;
5 Statement removeStmt = connect . c reateStatement ( ) ;
6 int removeAccountResult = removeStmt . executeUpdate ( removeAcct ) ;
7 S t r ing s e l e c tAcc t = ‘‘ s e l e c t ∗ from Account where ’’ +
8 ‘‘ba lance =’’ + id ;
9 Statement s e l e c tS tmt = connect . c reateStatement ( ) ;

10 Resu l tSet se lectAccountResu l t = se l e c tS tmt .
11 executeQuery ( s e l e c tAcc t ) ;
12 i f ( removeAccountResult == 1 && ! se lectAccountResu l t . next ( ) )
13 {
14 completed = true ;
15 }
16 return completed ;
17 }

Figure 4.9: A removeAccount Method with Incorrect Error Checking.

4.3.5 Comparison to Traditional Adequacy Criteria

Figure 4.9 contains a faulty implementation of the removeAccount method that incorrectly determines if the

desired rows were removed from the Account relation (i.e., lines 7 and 8 should contain ‘‘select * from

Account where id = ’’ + id; instead of ‘‘select * from Account where balance = ’’ + id;). Yet,

test adequacy criteria based upon control flow and data flow information, such as all-nodes, all-edges, and

all-DUs, will indicate that a test for this method is highly adequate and they will not focus a tester’s attention

on this incorrect implementation of removeAccount. This is due to the fact that these criteria exclusively

focus on the control flow within the program’s source code and the data flow between program variables.

For example, the all-nodes (or, statement coverage) criterion requires a test case to execute all of the source

code statements within the removeAccount method in Figure 4.9. Furthermore, the all-edges (or, branch

coverage) criterion stipulates that a test execute all of the transfers of control between removeAccount’s

statements [Zhu et al., 1997]. The all-DUs adequacy criterion requires the tests to cover the definition-use

associations for all of the program variables in removeAccount.

If a test case calls removeAccount(2), then it will cover all of the nodes in the method. Table 4.1

shows that the same test case will also cover 87.5% of the edges within the method under test. This table

represents an edge in the method under test as (Nρ, Nφ) when there is a transfer of control from node Nρ to

Nφ (for source code statements that span lines ρ and φ we represent this as node Nρ:φ). Table 4.1 reveals

that the test does not cover the edge (N12, N16) because removeAccount(2) executes the if statement’s

body. However, the execution of an additional test that calls removeAccount(-4) will cover the edge

(N12, N16) and yield 100% coverage for the test suite. Finally, Table 4.2 demonstrates that a test’s invocation

of removeAccount(2) will afford 100% coverage of the def-use associations within this method. Thus,

traditional adequacy criteria will classify a test suite for this method as highly adequate even though it does

not reveal the defect.

When a test invokes removeAccount(2) this will cause the execution of line 6 and line 11 without

guaranteeing that the delete on line 6 removes the record with id = 2 and the select on line 11 contains
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Edge Covered?

(N3, N4) X

(N4, N5) X

(N6, N7:8) X

(N7:8, N9) X

(N9, N10:11) X

(N10:11, N12) X

(N12, N14) X

(N12, N16) ×

Ti calls removeAccount(2) for 87.5% all-edges coverage.

Table 4.1: The Edges Covered by a Test Case.

the appropriate where clause. Even though both all-nodes and all-edges require a test case to execute the

database interactions on line 6 and line 11, these criteria do not ensure that removeAccount interacts with

the correct entities in the relational database. The definition of the String variable selectAcct on line 9

and the use on line 11 forms a definition-use association for the variable selectAcct. The all-DUs criterion

judges a test as adequate if it creates paths from the entrance to the exit of removeAccount that cover all

of the def-use associations for all of the program variables like selectAcct. Since all-DUs ignores the state

of the database, most tests for removeAccount will be highly adequate with respect to all-DUs and exhibit

low adequacy when evaluated by the database-aware test adequacy criteria.

Suppose that we use the database-aware test adequacy criteria to measure the quality of TM’s test suite

with the all-record-DUs adequacy criterion. The component will evaluate removeAccount’s tests with respect

to their ability to define and then subsequently use the records in the Account relation. Since lines 4 and 8

of Figure 4.9 use the method parameter id to define removeAcct and selectAcct, a static analysis will not

reveal the records that the method uses. Therefore, the all-record-DUs test adequacy criterion conservatively

requires the definition and use of all of the records in the Account relation. A test that causes removeAccount

to define the record where id = 2 will not be able to use this record. This is because the select statement

executed on line 11 incorrectly references the balance attribute instead of id.3 A select statement that is

executed with the clause where balance = 2 will not use any records of the Account relation depicted in

Figure 2.4 because all accounts currently have balances greater than $125.00. The inability to define and

use the records in the Account relation will yield low adequacy scores for removeAccount’s tests. These low

scores will focus attention on this method during testing and increase the potential for revealing the defective

database interaction on line 11.

3Since the database interaction on line 6 of removeAccount does remove the record from the Account relation where id = 2,
the all-record-DUs criterion actually requires the use of a phantom record, as discussed in Section 4.3.2.
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Def-Use Association Covered?

〈N3, N16, completed〉 X

〈N3, N14, completed〉 X

〈N4, N6, removeAcct〉 X

〈N5, N6, removeStmt〉 X

〈N6, N16, removeAccountResult〉 X

〈N7:8, N10:11, selectAccount〉 X

〈N9, N10:11, selectStmt〉 X

〈N10:11, N12, selectStmt〉 X

Ti calls removeAccount(2) for 100% all-DUs coverage.

Table 4.2: The Def-Use Associations Covered by a Test Case.

4.4 CONCLUSION

This chapter defines a database-centric application A that consists of a program P , relational databases

D1, . . . , De, and relational schemas S1, . . . , Se. We discuss a database interaction fault model and the type

(1-c), (1-v), (2-c), (2-v) defects that could violate the completeness and validity of A’s databases. We also

classify database interaction faults as faults of commission or omission. This chapter presents a family of

database-aware test adequacy criteria that are uniquely suited for the isolation of all type (1-c) and (1-v)

defects and type (2-c) and (2-v) commission faults. We furnish a subsumption hierarchy that organizes the

test adequacy criteria according to their strength. This hierarchy reveals that all-attribute-value-DUs is the

strongest adequacy criterion and all-database-DUs is the weakest. This chapter concludes by comparing our

database-aware test adequacy criteria to traditional structural test adequacy metrics. For example, we use

a defective removeAccount method to demonstrate that the traditional all-nodes, all-edges, and all-DUs will

assign a high adequacy score to a simple test suite. We also show that a database-aware criterion such as

all-record-DUs increases the potential for revealing faulty database interactions by assigning low adequacy

values to the same tests. Chapter 5 shows how the test adequacy component automatically creates the

DI-CFGs and performs the data flow analysis to identify the DIAs. Finally, Chapters 6 through 8 explain

an alternative type of test requirement that focuses on the behavior of the program during testing.
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5.0 TEST ADEQUACY COMPONENT

5.1 INTRODUCTION

This chapter describes a test adequacy component that analyzes a database-centric application and generates

a set of database interaction associations (DIAs). As discussed in Chapter 4, these DIAs are the requirements

that state how an application must be tested in order to achieve a confidence in the correctness of the database

interactions. The testing techniques in Chapters 6 through 8 can use these requirements to guide the effective

testing of a database-centric application. In summary, this chapter provides:

1. A high level overview of the techniques within the test adequacy component (Section 5.2).

2. An interprocedural program representation that supports the identification of test requirements (Sec-

tion 5.3).

3. A model for a database interaction and the algorithms that enumerate database entities (Section 5.4).

4. A representation for a database-centric application that describes a program’s interaction with relational

database entities at multiple levels of granularity (Section 5.5).

5. An empirical examination of the time and space overhead incurred during the generation of intraprocedu-

ral database interaction associations for two case study applications (Section 5.7 through Section 5.10).

6. A review of the test adequacy component’s implementation and a concluding discussion (Section 5.6 and

Section 5.11).

5.2 OVERVIEW OF THE TEST ADEQUACY COMPONENT

Figure 5.1 depicts the high level architecture of the test adequacy component. This component analyzes

program P in light of database-aware test adequacy criterion C and produces a set of database interaction

associations. The test adequacy criterion C is one of the database-aware criterion that we presented in

Chapter 4. The first stage produces an interprocedural control flow graph (ICFG) for program P . Next,

the database interaction analyzer uses the ICFG in order to identify the database interaction points (DIPs)

within the program under test. These DIPs send a SQL select, update, insert, or delete statement to the

database. However, the SQL command might not be fully specified in the source code of the method under

test. Many database-centric applications contain database interactions that send a SQL command whose

elements are specified during program execution. Furthermore, a method often contains one or more control

flow paths that lead to a single database interaction point.
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Figure 5.1: High Level Architecture of the Test Adequacy Component.

The adequacy component includes a database interaction analyzer that models each DIP as a database

interaction finite state machine (DI-FSM). The DI-FSM models all of the possible SQL statements that

program P could submit to a database at a particular DIP. The database interaction analyzer correctly

handles (i) SQL commands that are not statically specified and (ii) interaction points that exist on multiple

paths of the ICFG. We consult a DI-FSM during the enumeration of the set of database entities that are

subject to interaction at a DIP. Next, we use the set of database entities and the ICFG to construct a

database interaction interprocedural control flow graph (DI-ICFG). The DI-ICFG includes nodes and edges

that represent a program’s interaction with a relational database. The data flow analyzer uses the DI-ICFG

to generate the database interaction associations. The test adequacy component can leverage traditional

data flow analysis algorithms that were designed for program variables (e.g., [Duesterwald et al., 1996]) since

we designed the DI-ICFG to fully model the program’s definition and use of the database.

5.3 REPRESENTING THE PROGRAM UNDER TEST

In order to support the enumeration of test requirements, the test adequacy component represents a database-

centric application A = 〈P, 〈D1, . . . , De〉, 〈S1, . . . , Se〉〉 as an interprocedural control flow graph. The follow-

ing Definition 2 defines the interprocedural control flow graph GP that traditionally represents program

P . Figure 5.1 shows that the component initially constructs an ICFG for P with the goal of subsequently

creating a DI-ICFG that fully describes the interactions between P and the D1, . . . , De within A. The tra-

ditional ICFG contains all of the CFGs for each of P ’s methods and the edges that connect these graphs.

Each CFG Gj can have call mk and return mk nodes that respectively demarcate the call to and the return

from another method mk. Figure 5.2 demonstrates how the CFGs for methods mj and mk are connected

when the CFG for mj contains an invocation of the method mk. In an attempt to preserve the simplicity

of the CFGs, Figures 5.2 and 5.3 use nodes with the label “. . .” to represent other nodes within Gj and Gk.

Definition 2 and Figure 5.2 reveal that GP provides an edge that connects the call node in Gj to the enter

node in Gk. The ICFG also includes an edge from the exit node in Gk to the return node in Gj . Table A6

in Appendix A more fully describes the notation for the ICFG representation of program P .
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Figure 5.2: Connecting the Intraprocedural CFGs.

Definition 2. An program interprocedural control flow graph GP = 〈ΓP , EP 〉 consists of the set of intrapro-

cedural control flow graphs ΓP and the set of edges EP . For each method mk in P , there exists a Gk ∈ ΓP .

For any method mj that invokes method mk there exists (i) CFGs Gj , Gk ∈ ΓP with call mk, return mk ∈ Nj

and enter mk, exit mk ∈ Nk and (ii) edges (call mk, enter mk), (exit mk, return mk) ∈ EP .

Figure 5.3 provides part of the ICFG for the TM case study application and the getAccountBalance

method in Figure 5.9. We simplified this ICFG by including nodes of the form call mk to represent method

invocations that were not expanded. For example, we did not add the full CFG for the inputPin method

after the node call inputPin. However, Figure 5.3 does contain the CFG for the getAccountBalancemethod.

We use the line numbers in getAccountBalance’s source code listing to number the nodes within this CFG.

For example, the node N6 corresponds to line 6 of Figure 5.9 where getAccountBalance submits a SQL

select statement to the Bank database. It is important to observe that the traditional ICFG in Figure 5.3

does not contain nodes that capture the program’s interaction with the database entities.

5.4 ANALYZING A DATABASE INTERACTION

5.4.1 Overview of the Analysis

Figure 5.4 offers a high level overview of the database interaction analysis that we perform and Section 5.4.2

reviews the common terms and notation that we use throughout our discussion of the process depicted

in this figure. First, the test adequacy component models a database interaction using the interprocedural

control flow graph and any statically available information from the database interaction point. The database

interaction modeling component creates a database interaction finite state machine, as further discussed in

Section 5.4.3. Figure 5.4 reveals that the generation functions described in Section 5.4.4 use this DI-FSM

to enumerate the sets of database entities. Section 5.5 explains how we use these sets of database entities
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Figure 5.4: The Process of Database Interaction Analysis.

to (i) automatically generate a database-aware control flow graph and (ii) perform a data flow analysis that

enumerates the test requirements. Tables A7 and A8 in Appendix A summarize the notation that we develop

in the remainder of this chapter.

5.4.2 Representing a Database’s State and Structure

Method mk’s control flow graph Gk = 〈Nk, Ek〉 can contain one or more database interaction points, each

of which corresponds to a database interaction node Nr ∈ Nk. The source code in Figure 5.9 has a DIP

on line 6 (i.e., “ResultSet rs = stmt.executeQuery(qs)”) and the method listing in Figure 5.11 contains

a DIP on line 7 (i.e., “int result lock = update lock.executeUpdate(qu lck)”). The test adequacy

component analyzes the state and structure of the relational databases in order to enumerate unique names

for the database entities that are subject to interaction at node Nr. Suppose that program P interacts with

database Df at node Nr. We view database Df as a set of relations so that Df = {rel1, . . . , relw} and we

define a relation relj = {t1, . . . , tu} as a set of records. Each record is an ordered set of attribute values

such that tk = 〈tk [1], . . . , tk[q]〉. We use the notation tk[l] to denote the value of the lth attribute of the

kth record in a specified relation. In order to differentiate between the name of a database entity and its

contents, we use the functions name(Df ), name(C, relj), and name(C, tk) to respectively return the unique

names of the database Df , the relation relj in database Df , and relj ’s record tk. For example, relj is a set

of records while name(C, relj) is the unique name of the relation. The name function uses a context stack

C to record the complete context for a database entity.

A relational database Df can contain duplicate values in different database records. The adequacy

component uses the context stack C to ensure that name returns a unique identifier for duplicate attribute

values. At the attribute value level, two cases of entity value duplication are relevant: (i) the same attribute

contains the same value in one or more records or (ii) two different attributes contain the same value in

one or more records. Figure 5.5 shows a relation relj where certain attributes have the same value as

the attribute value tk[l] (the same attribute values are represented by cells that have a darkened border).

In circumstance (i), the record tk′ has the same value for attribute Al as record tk (i.e., tk[l] = tk′ [l]).

However, Figures 5.6(a) and 5.6(b) show that tk[l] and tk′ [l] have different context stacks and thus name

can return unique identifiers for each attribute value (i.e., name(C, tk[l]) 6= name(C, tk′ [l]) even though

tk[l] = tk′ [l]). In case (ii), the attribute Al′ contains the same value as the attribute Al in the record tk̃ (i.e.,

tk[l] = tk̃[l
′]). Since Figures 5.6(a) and 5.6(c) reveal that tk[l] and tk̃[l

′] have different context stacks, name
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Figure 5.5: Value Duplication in a Relational Database.

can return unique identifiers for these duplicate attribute values (i.e., name(C, tk[l]) 6= name(C, tk̃[l
′]) even

though tk[l] = tk̃[l
′]). The test adequacy component also uses the context stack C and the name function to

accommodate value duplication at the relation, attribute, and record levels.

5.4.3 Representing a Database Interaction

The adequacy component produces a database interaction finite state machine to model the interaction at

a single CFG node Nr. According to the following Definition 3, Fr contains the set of internal states Q

and the set of final states Qf ⊆ Q. The DI-FSM begins the processing of input string s at the initial state

q0 ∈ Q. The transition function δ : Q×Σ→ Q allows Fr to move from state q ∈ Q to state q′ ∈ Q whenever

γ is the current symbol in s and δ(q, γ) = q′ is a transition. We know that CFG node Nr can submit a SQL

string s to the database if and only if Fr terminates in a final state q ∈ Qf when it processes input s.

Definition 3. A database interaction node Nr is represented by a database interaction finite state machine

Fr = 〈Q, Qf , q0, δ, Σ〉 where Q is a non-empty set of internal states, Qf ⊆ Q is the set of final states, q0 ∈ Q

is the start state, δ : Q× Σ→ Q is the transition function, and Σ is the input alphabet.

Fr’s input alphabet Σ consists of all the terminals in the SQL grammar (e.g., select, where, attribute

Az , relation relj , etc.) and additional symbols µ, R, A, and O. The symbol µ denotes an unknown input and

a transition uses µ to indicate that this aspect of the database interaction is not statically detectable. Fr uses

the additional symbols R, A, and O to respectively denote the relation, attribute, and operation inputs and

to provide semantic meaning to the other transitions. The transitions δ(q, q′) = relj and δ(q, q′) = R show

that relj is a recognized relation in the databases. The transitions δ(q, q′) = Al and δ(q, q′) = A indicate

that Al is a valid database attribute. If op ∈ {select,update, insert,delete} and Fr has the transitions

δ(q, q′) = op and δ(q, q′) = O, then this reveals that op is a correct SQL operation. For brevity, we call the

transition δ(q, q′) = R an R−transition and define the µ, A and O-transitions analogously. The component

adds the R, A, O−transitions to Fr using a context-free language (CFL) reachability algorithm that “parses”
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Figure 5.6: Context Stacks for Duplicate Attribute Values.

the finite state machine with a parser for the SQL grammar [Melski and Reps, 1997, Reps et al., 1995]. In

this chapter, all figures that depict DI-FSMs use a bold node to indicate a final state and a dashed edge to

represent the R, A, O−transitions that the CFL reachability algorithm adds.

The following Definition 4 classifies Fr’s database interaction as static, partially dynamic, or dynamic.

If P ’s source code fully specifies the interaction, then Nr performs a static interaction and the compo-

nent creates an Fr that does not contain any µ−transitions. If P does not statically specify a portion of

the database interaction, then the component produces a partially dynamic Fr that contains at least one

µ−transition. The component generates a dynamic DI-FSM if the database interaction at Nr is specified at

run-time. Definition 4 classifies Fr as dynamic when it only contains two states qo, q
′ ∈ Q, q′ ∈ Qf , and the

single transition δ(q0, µ) = q′. Since the dynamic DI-FSM in Figure 5.7 accepts any SQL string, the test

adequacy component must conservatively assume that Nr interacts with all of the attribute values in all of

the databases.

Definition 4. A database interaction represented by Fr = 〈Q, Qf , q0, δ, Σ〉 is (i) static if (∀q, q′ ∈

Q) (δ(q, µ) 6= q′), (ii) partially dynamic if (∀q, q′ ∈ Q) (∃δ(q, µ) = q′), or (iii) dynamic if |Q| = 2, |Qf | = 1,

q0, q
′ ∈ Q, q′ ∈ Qf , and δ(q0, µ) = q′.

Figure 5.8 provides the DI-FSM for line 4 of the getAccountBalancemethod in Figure 5.9. This DI-FSM

consists of five states with q0 ∈ Q as the initial state and q5 ∈ Q as the final state. The O-transition in this

DI-FSM identifies select as a valid SQL operation. The DI-FSM uses two A-transitions to reveal that id and

balance are attributes. Figure 5.8 also contains an R-transition to show that Account is a correct relation.

Since the declaration of String qs completely defines the database interaction on line 6 of Figure 5.9,

the static Fr in Figure 5.8 does not have any µ-transitions. The test adequacy component can precisely

enumerate the database entities used by getAccountBalance because the DI-FSM is static.

The partially dynamic DI-FSM in Figure 5.10 models the database interaction on lines 5 and 6 of

Figure 5.11. The O−transition in the DI-FSM indicates that update is a correct SQL operation. The

A−transitions reveal that acct lock and card number are attributes in the Bank database. The R−transition
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Figure 5.8: The DI-FSM for the getAccountBalance Method.

1 public double getAccountBalance( int uid ) throws SQLException
2 {
3 double balance = −1.0;
4 S t r ing qs = ‘‘ s e l e c t id , ba lance from Account ; ’’ ;
5 Statement stmt = connect . c reateStatement ( ) ;
6 Resu l tSet r s = stmt . executeQuery ( qs ) ;
7 while ( r s . next ( ) )
9 {

10 i f ( r s . g e t In t ( ‘‘ id ’’) == uid )
11 {
12 ba lance = r s . getDouble ( ‘‘ba lance’’ ) ;
13 }
14 }
15 return balance ;
16 }

Figure 5.9: The Implementation of the getAccountBalance Method.
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Figure 5.10: The DI-FSM for the lockAccount Method.

1 public boolean lockAccount( int c n ) throws SQLException
2 {
3 boolean completed = f a l se ;
4 S t r ing qu l ck = ‘‘update User In fo s e t a cc t l o ck=1’’ +
5 ‘‘ where card number=’’ + c n + ‘‘ ; ’’ ;
6 Statement update lock = m connect . c reateStatement ( ) ;
7 int r e s u l t l o c k = update lock . executeUpdate ( qu l ck ) ;
8 i f ( r e s u l t l o c k == 1 )
9 {

10 completed = true ;
11 }
12 return completed ;
13 }

Figure 5.11: The Implementation of the lockAccount Method.
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Figure 5.12: Inputs and Output of a Generation Function.

in the DI-FSM also shows that lockAccount interacts with the UserInfo relation. We classify the DI-FSM

in Figure 5.10 as partially dynamic because it contains a µ-transition. The component creates the transition

δ(q9, µ) = q10 because the lockAccount method uses the c n parameter to define the where clause. During

the analysis of the lockAccount method, the adequacy component conservatively enumerates all of the

database entities in the UserInfo relation.

The test adequacy component constructs a DI-FSM like the ones provided in Figure 5.13 through Fig-

ure 5.15 whenever P uses an iteration or recursion construct to assemble the SQL string that it submits to

the database. We create the DI-FSM in Figure 5.13 because P iteratively constructs a listing of attributes

to select from relation relj . The component produces the DI-FSM in Figure 5.14 since P uses iteration

to create the list of relations. We make Figure 5.15’s DI-FSM when P uses iteration to designate both

the attributes and the relations. We classify the DI-FSMs in Figure 5.13 through Figure 5.15 as partially

dynamic because they contain one or more µ-transitions. Even though we focus the discussion on the select

statement, the adequacy component uses similarly defined techniques to create DI-FSMs for the update,

insert, and delete commands.

5.4.4 Generating Relational Database Entities

The adequacy component uses generation functions to conservatively identify the database entities that are

subject to interaction at node Nr. Figure 5.12 shows that a generation function analyzes both the DI-FSM

associated with a database interaction point and the current state of the relational database. The output of

a generation function is a set of entities that are (i) part of either the databases’ state or structure and (ii)

subject to interaction at the specified DIP. We present generation functions for the five levels of database

interaction granularity (e.g., the database, relation, attribute, record, and attribute value levels). For real

world database-centric applications, the generation functions can return a prohibitively large number of

database entities. This is due to the fact that the state of a database is practically infinite [Chays et al.,

2000].

We use the parameter λ in order to limit the number of generated database entities and thus ensure that it

is practical to enumerate database-aware test requirements. Suppose that a generation function GEN returns
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Figure 5.13: A DI-FSM with Unknown Attributes.
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Figure 5.15: A DI-FSM with Unknown Attributes and Relations.
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w database entities and we have GEN =λ {d1, . . . , dw}. We use the =λ operator to indicate that GEN

returns all w database entities when λ ≥ w and one of the
(
w
λ

)
sets of λ entities when λ < w. For example,

suppose that the UserInfo relation contains five records of data when the adequacy component invokes the

GEN function. Since UserInfo has four attributes, this mean that GEN could return up to twenty attribute

values. However, if we set λ = 10, then GEN may return any ten of the twenty attribute values that are

in the UserInfo relation. Throughout our discussion of the generation functions, we also assume that any

statically specified fragment of a SQL statement adheres to the format described in Figure 2.1.

5.4.4.1 Databases The test adequacy component uses the GEND function to discover the databases

that are subject to interaction at node Nr. All Java programs that connect to relational databases must use

one of the getConnection methods that the java.sql.DriverManager class provides. Since the connection

variable var can be defined at one or more nodes within P ’s ICFG GP , we use reaching definitions analysis

to identify all of var’s definition nodes that reach the use at Nr. If node Nr uses the database connection

variable var, then Equation (5.1) provides the generation function GEND(GP , Nr, var, λ) that returns the

databases with which node Nr interacts. This equation uses Dρ to denote the set of databases to which

reaching definition node Nρ could bind connection variable var. If the database Df is statically specified at

Nρ, then Dρ = {Df}. We conservatively assume that Nr connects to any of the databases if Nρ specifies the

database at run-time and thus Dρ = {D1, . . . , De}.

GEND(GP , Nr, var, λ) =λ

⋃

Nρ∈RD(GP ,Nr,var)

Dρ (5.1)

Since GEND must identify the set RD(GP , Nr, var) for connection variable var, we know that the worst-

case time complexity of GEND is O(Υ×Ψ×Ω+λ) where Equation (5.2) through Equation (5.4) respectively

define Υ, Ψ, and Ω. In the time complexity for GEND the term Υ×Ψ × Ω corresponds to the worst-case

time complexity for the computation of RD(GP , Nr, var) in a demand-driven fashion [Duesterwald et al.,

1996]. Equation (5.2) uses caller(mj , mk) to denote the set of nodes call mj ∈ Nk for the CFGs Gj , Gk ∈ ΓP .

Therefore, Υ is the maximum number of calls to the same method within one of P ’s methods. Equation (5.3)

uses define(Nk) to denote the set of nodes that contain definitions of program variables and thus Ψ is the

maximum number of variable definitions within one of P ’s methods. Equation (5.4) defines Ω as the total

number of nodes in all of the control flow graphs. Finally, the λ term in GEND ’s time complexity corresponds

to the use of Equation (5.1) to iteratively create the set Dρ and return at most λ databases.

Υ = max{ |caller(mj , mk)| : Gj , Gk ∈ ΓP } (5.2)

Ψ = max{ |define(Nk)| : Gk = 〈Nk, Ek〉 ∈ ΓP } (5.3)

Ω =
∑

Gk=〈Nk,Ek〉∈ΓP

|Nk| (5.4)
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Figure 5.16: The GENR(Fr, Df , λ) Function for the select Statement.

5.4.4.2 Relations Figure 5.16 shows the input and output when the GENR(Fr, Df , λ) function enu-

merates up to λ relations that are used in a select statement. This figure reveals that GENR(Fr , Df , λ) =λ

{rel1, . . . , relw} or {rel1, . . . , relWf
}. GENR returns {rel1, . . . , relw} when Fr does not contain the tran-

sitions δ(q, R) = q′ and δ(q, µ) = q′ for q, q′ ∈ Q (i.e., the select statement fully specifies its relations)

and these w relations are inside of the database Df . In this circumstance, GENR outputs each relation

relj ∈ {rel1, . . . , relw} when δ(q, relj) = q′ and δ(q, R) = q′. Figure 5.16 uses Wf to denote the total

number of relations in database Df . If there exists states q, q′ ∈ Q with δ(q, R) = q′ and δ(q, µ) = q′ (i.e.,

the select command has one or more unspecified relations), then GENR outputs {rel1, . . . , relWf
}. GENR

also returns {rel1, . . . , relWf
} when the DI-FSM Fr specifies the relations rel1, . . . , relw but these relations

are not inside of Df .

GENR conservatively produces this output when GEND returns Df and Fr does not reveal anything

about Nr’s interaction with the relations in this database. If we take the output of a relation relj as the

basic operation, then we know that GENR has a worst-case time complexity of O(λ). The other generation

functions GENA, GENRc
, and GENAv

also have the same time complexity. Figure 5.17 shows the input and

output for the GENR function that handles the update, insert, and delete statements. Since these SQL

commands only interact with a single relation, GENR returns relj when the relation is statically specified

in Fr. Like the GENR for the SQL select, this generation function also returns {rel1, . . . , relWf
} whenever

(i) Fr contains one or more µ-transitions for the relation or (ii) the specified relation is not in Df .

5.4.4.3 Attributes, Records, and Attribute Values Figure 5.18 reveals that the GENA function

returns two different outputs depending upon the structure of Fr and the relation relj . If Fr does not

contain δ(q, A) = q′ and δ(q, µ) = q′ for q, q′ ∈ Q (i.e., the select statement fully specifies its attributes)

and these z attributes are inside of the relation relj , then GENA returns {A1, . . . , Az}. If Fr has one or

more µ-transitions that have an A-transition decoration, then we assume that Nr interacts with all of the

Zj attributes in relj and GENA returns {A1, . . . , AZj
}. GENA also returns this set when Fr specifies an

interaction with A1, . . . , Az and these attributes are not inside of the input relation relj .
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Figure 5.17: The GENR(Fr, Df , λ) Function for the update, insert, and delete Statements.
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Figure 5.18: The GENA(Fr, relj , λ) Function for the select Statement.
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Figure 5.19: The GENA(Fr, relj , λ) Function for the insert and delete Statements.
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Figure 5.20: The GENA(Fr, relj , λ) Function for the update Statement.

Figure 5.19 reveals that the GENA function for the SQL insert and delete statements always returns

{A1, . . . , AZj
}. This is due to the fact that the insert and delete statements always interact with all of the

attributes in the relation relj , regardless of whether or not there exists states q, q′ ∈ Q with δ(q, A) = q′ and

δ(q, µ) = q′. Figure 5.20 shows the output of the GENA function for the SQL update statement. GENA

returns {Al, Al′} when these attributes are statically specified in Fr and relj contains these attributes. We

conservatively return {A1, . . . , AZj
} when Fr has one or more dynamic attribute transitions or the specified

Al and Al′ are not contained in relation relj . We also provide GENRc
and GENAv

generation functions

that analyze the state of the input relation and record, respectively. Since these two functions focus on the

state of the database, they do not need to examine the Fr that models the SQL statement. The function

GENRc
(relj , λ) inspects the state of relation relj = {t1, . . . , tu} and returns (i) one of the

(
u
λ

)
sets of

records when λ < u or (ii) all u records when λ ≥ u. Finally, GENAv
(tk, λ) examines the state of record

tk = 〈tk[1], . . . , tk[z]〉 and outputs (i) one of the
(
z
λ

)
sets of attribute values when λ < z or (ii) all z attribute

values when λ ≥ z.

5.4.5 Enumerating Unique Names for Database Entities

The test adequacy component invokes enumeration algorithms like EnumerateDatabases and EnumerateRe-

lations. These algorithms use the (i) name function, (iii) context stack, and (i) generation functions in

order to enumerate a set of unique database entity names that are involved in the interaction at node Nr.

Figure 5.21 contains the EnumerateDatabases algorithm that returns the set of database names denoted D.

Line 1 initializes D to the empty set. After GEND performs a reaching definitions analysis on GP , the

algorithm adds the name of each Df into the set D. Our characterization of the worst-case time complexity

of EnumerateDatabases and the other enumeration algorithms assumes the prior invocation of the GEN

functions and the caching of their output.1 If we take line 3 as the basic operation, then we know that Enu-

merateDatabases has a worst-case time complexity of O(|GEND |). We use the notation |GEND | to stand

1Our implementation of the adequacy component caches the output of a GEN function for specific inputs. This technique
reduces time overhead at the cost of increasing space overhead. The worst-case time complexity of every enumeration algorithm
would increase by one or more factors of λ if we assumed that the algorithms do not use caching. These additional factor(s)
corresponds to the repeated invocation of GEN during the use of the CreateRepresentation algorithm in Figure 5.28.
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Algorithm EnumerateDatabases(GP , Fr, Nr, var, λ)
Input: ICFG GP ;

DI-FSM Fr;
Database Interaction Node Nr;
Database Connection Variable var;
Generation Function Limit λ

Output: Set of Database Names D
1. D ← ∅
2. for Df ∈ GEND(GP , Nr, var, λ)
3. do D ← D ∪ {name(Df )}
4. return D

Figure 5.21: The EnumerateDatabases Algorithm.

for the number of unique database entity names that GEND returns. We can also classify this algorithm as

O(λ) since GEND can return at most λ databases. In certain applications, such as TM, the program only

interacts with one database. We know that D = {“Bank”} at all of TM’s database interaction points because

the application only interacts with the Bank database.

Figure 5.22 provides the EnumerateRelations algorithm that uses the generation functions GEND and

GENR to enumerate the set of relation names R that are subject to interaction at node Nr. Line 1 initializes

the context stack C to ⊥, the symbol that we use to denote the empty stack. Line 2 of EnumerateRelations

initializes R to the empty set and the remaining lines of the algorithm populate this set. Line 3 uses the

database generation function GEND and line 4 pushes the database Df onto the context stack. Next, line 5

uses GENR to generate relation relj and line 6 adds the current relation name to R. Since EnumerateRe-

lations contains two nested for loops, we know that the algorithm is O(|GEND | × |GENR|). We can also

characterize the worst-case time complexity of EnumerateRelations as O(λ2) because the generation functions

can respectively return at most λ databases and relations. The getAccountBalance method in Figure 5.9

has a database interaction point on line 6 so that R = {“Bank.Account”}. Furthermore, the lockAccount

method described in Figure 5.11 has a database interaction point on line 7 where R = {“UserInfo”}.

Figure 5.23 includes the EnumerateAttributes algorithm that returns the set of attribute names A. This

algorithm operates in a similar fashion to the EnumerateRelations algorithm in Figure 5.22. Line 1 and

line 2 initialize the context stack and the set of unique attributes names. The outer for loop generates

the database name with GEND while the inner for loops use GENR and GENA to respectively generate

the relations and attributes that are subject to interaction at CFG node Nr. If we regard line 8 as the

basic operation, then we can classify EnumerateAttributes as O(|GEND | × |GENR| × |GENA|) or O(λ3).

When the adequacy component analyzes the DIP in the getAccountBalance method, it produces A =

{“Bank.Account.ID”, “Bank.Account.Balance”}. The database interaction point in the lockAccountmethod

yields the attribute names A = {“Bank.UserInfo.acct lock”, “Bank.UserInfo.card number”}.

Figure 5.24 describes the EnumerateRecords algorithm that returns the set of unique record names Rc.

After initializing C and Rc, this algorithm uses the GEND and GENR generation functions and places

the resulting Df and relj onto the context stack. Line 7 calls the function GENRc
and then line 8 adds
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Algorithm EnumerateRelations(GP , Fr, Nr, var, λ)
Input: ICFG GP ;

DI-FSM Fr;
Database Interaction Node Nr;
Database Connection Variable var;
Generation Function Limit λ

Output: Set of Relation Names R
1. C ←⊥
2. R← ∅
3. for Df ∈ GEND(GP , Nr, var, λ)
4. do C.push(Df )
5. for relj ∈ GENR(Fr, λ)
6. do R← R ∪ {name(C, relj)}
7. C.pop()
8. return R

Figure 5.22: The EnumerateRelations Algorithm.

Algorithm EnumerateAttributes(GP , Fr, Nr, var, λ)
Input: ICFG GP ;

DI-FSM Fr;
Database Interaction Node Nr;
Database Connection Variable var;
Generation Function Limit λ

Output: Set of Attribute Names A
1. C ←⊥
2. A ← ∅
3. for Df ∈ GEND(GP , Nr, var, λ)
4. do C.push(Df )
5. for relj ∈ GENR(Fr, λ)
6. do C.push(relj)
7. for Al ∈ GENA(Fr, λ)
8. do A ← A ∪ {name(C, Al)}
9. C.pop()
10. C.pop()
11. return A

Figure 5.23: The EnumerateAttributes Algorithm.
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Algorithm EnumerateRecords(GP , Fr, Nr, var, λ)
Input: ICFG GP ;

DI-FSM Fr;
Database Interaction Node Nr;
Database Connection Variable var;
Generation Function Limit λ

Output: Set of Record Names Rc

1. C ←⊥
2. Rc ← ∅
3. for Df ∈ GEND(GP , Nr, var, λ)
4. do C.push(Df )
5. for relj ∈ GENR(Fr, λ)
6. do C.push(relj)
7. for tk ∈ GENRc (relj , λ)
8. do Rc ←Rc ∪ {name(C, tk)}
9. C.pop()
10. C.pop()
11. return Rc

Figure 5.24: The EnumerateRecords Algorithm.

Algorithm EnumerateAttributeValues(GP , Fr, Nr, var, λ)
Input: ICFG GP ;

DI-FSM Fr;
Database Interaction Node Nr;
Database Connection Variable var;
Generation Function Limit λ

Output: Set of Attribute Value Names Av

1. C ←⊥
2. Av ← ∅
3. for Df ∈ GEND(GP , Nr, var, λ)
4. do C.push(Df )
5. for relj ∈ GENR(Fr, λ)
6. do C.push(relj)
7. for tk ∈ GENRc (relj , λ)
8. do C.push(tk)
9. for Al ∈ GENA(Fr, λ)
10. do C.push(Al)
11. for tk[l] ∈ GENAv (tk, λ)
12. do Av ← Av ∪ {name(C, tk[l])}
13. C.pop()
14. C.pop()
15. C.pop()
16. C.pop()
17. return Av

Figure 5.25: The EnumerateAttributeValues Algorithm.
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each tk into the set Rc. If line 8 is the basic operation, then we classify EnumerateRecords as O(|GEND | ×

|GENR|×|GENRc
|) or O(λ3). If we use the instance of the relational schema provided in Figure 2.4, then the

DIP in getAccountBalancemethod producesRc = {name(C, 〈1, . . . , 1000, 1〉), . . . , name(C, 〈5, . . . , 125, 4〉)}.

Since the DIP in the lockAccount method depends upon the input to the operation, EnumerateRecords

conservatively outputs all of the records inside of the UserInfo relation. If we knew that card number = 1

during the execution of this method (i.e., because lockAccount was invoked so that the formal parameter

c n = 1), EnumerateRecords would return Rc = {name(C, 〈1, 32142, . . . , 0〉)}.

Figure 5.25 provides the EnumerateAttributeValues algorithm that returns Av , the set of unique names

for attribute values. Line 3 through line 9 iteratively invoke the GEND, GENR, GENRc
, and GENA

generation functions and respectively push Df , relj , tk, and Al onto the context stack C. The function

GENAv
inspects the state of record tk and returns an attribute value tk[l]. Line 12 of EnumerateAt-

tributeValues adds tk[l] to Av. If line 12 is the basic operation, then we know that this algorithm is

O(|GEND | × |GENR| × |GENRc
| × |GENA| × |GENAv

|) or O(λ5). When the adequacy component an-

alyzes the instance of the relational schema provided in Figure 2.4 and the DIP in the getAccountBalance

method, this yields Av = {name(C, 1), name(C, 1000), . . . , name(C, 5), name(C, 125)}. The input-dependent

database interaction point in lockAccount forces EnumerateAttributeValues to return all of the attribute

values within the records of the UserInfo relation.

The enumeration algorithms in Figure 5.21 through Figure 5.25 return a set of database entity names for

a single interaction point. For example, the output of the EnumerateRecords algorithm returns Rc, the set

of record names for a single interaction point Nr. Yet, Section 4.3.2 explains that the database-aware test

adequacy criteria focus on the database interaction association 〈Ndef , Nuse, varDB〉 where relational database

entity varDB is an element of one of the sets D(Gk), R(Gk), A(Gk), Rc(Gk), or Av(Gk). To this end,

Equation (5.5) defines D(Gk), the set of database names that are subject to interaction in the method mk.

This equation uses D(Nr) to denote the set of databases with which node Nr ∈ Nk interacts. Equation (5.5)

shows that we enumerate the set D(Gk) through the iterative invocation of EnumerateDatabases algorithm

for each database interaction point in the method. We define the sets R(Gk), A(Gk), Rc(Gk), and Av(Gk)

in an analogous fashion.

D(Gk) =
⋃

Nr∈Nk

D(Nr) (5.5)

5.5 CONSTRUCTING A DATABASE-AWARE REPRESENTATION

The database interaction control flow graph is an extended CFG that contains transfers of control to the

nodes from one or more database interaction graphs (DIGs). A DIG represents a database interaction point

at a single level of interaction granularity and multiple DIGs can exist within a DI-CFG. While the code

examples in Figures 5.9 and 5.11 indicate that DIPs occur in assignment statements, the predicate of a

conditional logic statement can also perform a database interaction. In order to preserve the semantics of a
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Figure 5.26: The Order of Algorithm Invocation when Constructing the Database-Aware Representation.

method mk that is represented by Gk = 〈Nk, Ek〉, we integrate a DIG before the node Nr ∈ Nk where the

interaction takes place. Figure 5.26 shows the order in which the adequacy component invokes the algorithms

that construct the DI-ICFG.

First, CreateRepresentation uses the CreateDIFSM algorithm to construct a DI-FSM Fr that models the

submitted SQL statement, as described in Section 5.4.3. The GetConnectionVariable operation identifies the

program variable that Nr uses to communicate with the database, as discussed in Section 5.4.4. Figure 5.26

reveals that CreateRepresentation executes the EnumerateDatabaseEntities algorithm. Once the names of

the database entities are available, CreateRepresentation invokes the CreateDIG algorithm to construct a

database interaction graph. As depicted in Figure 5.27, the DIG models an interaction point at a single level

of interaction granularity. CreateDIG uses the CreateDIGNodes algorithm to construct a definition and/or

use node for each one of the database entities involved in the interaction. Finally, CreateRepresentation calls

CreateDICFG in order to produce a DI-CFG for each traditional CFG. A single DI-CFG GDI(k) statically

represents all of the definitions and uses of relational database entities that could occur during the execution

of mk. Since the DI-CFG is an extension of a traditional CFG, GDI(k) also represents all of the definitions

and uses of the program variables in method mk.

While Figure 5.26 presents a high level ordering of the algorithm invocations, the CreateRepresentation

algorithm in Figure 5.28 explicitly shows the iterative construction of the program’s database aware repre-

sentation on a per method basis. Since this algorithm does not modify the connections between CFGs, line 1

of CreateRepresentation initializes the set of DI-ICFG edges to the set of edges within the traditional ICFG.

Line 2 initializes the set of DI-CFGs for program P , denoted ΓDI(P ), to the empty set and lines 3 through 15

create a DI-CFG and then add it to this set. For each CFG Gk = 〈Nk, Ek〉 ∈ ΓP , lines 4 and 5 initialize the

set of database interaction graphs, ΓDI(k), and the set of database entity names,Mk, to the empty set. For

every database interaction node Nr ∈ Nk, line 7 calls the CreateDIFSM algorithm that produces a DI-FSM

to model the database interaction and line 8 determines that var is the database connection variable used

at this node.

Lines 9 through 15 of Figure 5.28 indicate that the algorithm constructs a DIG for each level Lk ∈ L(k).

The function L(k) returns the levels of database interaction granularity at which we represent the interactions
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Figure 5.27: A Database Interaction Graph.

in method mk. To this end, we require that L(k) ⊆ {D,R,A,Rc,Av} and we assume that the tester specifies

L(k). If D ∈ L(k), then CreateRepresentation must construct a DIG to model a method mk’s interaction

with a relational database at the database level. Line 10 calls the EnumerateDatabaseEntities algorithm that

subsequently invokes the appropriate enumeration algorithm as specified by the value of Lk. For example, if

Lk = A, then the EnumerateDatabaseEntities operation invokes the EnumerateAttributes algorithm. Line 11

stores this set of database entity names, Mr, in the set of names for the entire method mk, denoted Mk.

A call to the CreateDIG algorithm yields the DIG GLk
r that the CreateRepresentation algorithm places into

ΓDI(k), mk’s set of DIGs.

After the DIGs have been constructed for all interaction points and interaction levels, the CreateDICFG

algorithm integrates the DIGs into the CFG Gk in order to produce the DI-CFG GDI(k). Line 14 of

Figure 5.28 shows that the CreateDICFG algorithm uses the traditional CFG, the set of DIGs, and the set

of database entity names in order to produce the DI-CFG called GDI(k). The worst-case time complexity

of CreateRepresentation is O(|ΓP | × Nmax × Lmax) where ΓP is the set of P ’s CFGs and Equations (5.6)

and (5.7) define Nmax and Lmax, respectively. We use Nmax to denote the maximum number of database

interaction points within the CFG of a single method. Equation (5.7) uses Lmax to stand for the maximum

number of interaction levels that were chosen to represent the DIGs for an individual method.

Nmax = max{

∣∣∣∣∣
⋃

Nr∈Nk

Nr

∣∣∣∣∣ : Gk = 〈Nk, Ek〉 ∈ ΓP } (5.6)

Lmax = max{ |L(k)| : Gk ∈ ΓP } (5.7)

Figure 5.29 provides the CreateDIG algorithm that constructs a DIG Gr = 〈Nr, Er, Nr〉 for a database

interaction node Nr. A DIG contains a set of nodes Nr, a set of edges Er, and the database interaction

node whose interaction it represents. Lines 1 and 2 of CreateDIG initialize these sets of nodes and edges
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Algorithm CreateRepresentation(GP ,L, λ)
Input: ICFG GP = 〈ΓP , EP 〉;

Levels of DIP Representation L;
Generation Function Limit λ

Output: DI-ICFG GDI(P ) = 〈ΓDI(P ), EDI(P )〉
1. EDI(P ) ← EP

2. ΓDI(P ) ← ∅
3. for Gk = 〈Nk, Ek〉 ∈ ΓP

4. do ΓDI(k) ← ∅
5. Mk ← ∅
6. for Nr ∈ Nk

7. do Fr ← CreateDIFSM(GP , Nr)
8. var← GetConnectionVariable(Nr)
9. for Lk ∈ L(k)
10. do Mr ← EnumerateDatabaseEntities(Fr, var, λ, Lk)
11. Mk ←Mk ∪Mr

12. GLk
r ← CreateDIG(Mr, Nr, Fr, Lk)

13. ΓDI(k) ← ΓDI(k) ∪ {G
Lk
r }

14. GDI(k) ← CreateDICFG(Gk, ΓDI(k),Mk)
15. ΓDI(P ) ← ΓDI(P ) ∪ {GDI(k)}
16. return 〈ΓDI(P ), EDI(P )〉

Figure 5.28: The CreateRepresentation Algorithm.

to the empty set. The entry and exit points of a DIG Gr are demarcated by the nodes 〈entryr, Lk〉 and

〈exitr, Lk〉. These nodes contain the annotation Lk to indicate that Gr represents the database interaction at

the granularity level Lk. The nested for loops in CreateDIG iteratively construct a straight-line code segment

that connects all of the database entities d ∈ Mr. Line 4 shows that we initialize the current node Np to the

entry node and line 6 calls the CreateDIGNodes algorithm that returns a tuple of DIG nodes, denoted Nd.

Line 8 of Figure 5.29 adds DIG node Nd into the set Nr and line 9 places the edge (Np, Nd) into the set Er.

After handling every database entity d ∈ Mr, the algorithm connects the last node Np to the exit node of Gr

and returns the DIG to the CreateRepresentation algorithm. Figure 5.27 shows the DIG that we create for the

DI-FSM from Figure 5.8, the set of database entity namesMr = {Bank.Account.id, Bank.Account.balance}

and the granularity marker Lk = A. We know that |Nd| ∈ {1, 2} because CreateDIGNodes can return either

(i) one definition node, (ii) one use node, or (iii) one definition and one use node. Since |Nd| is a always a

small constant, we have that CreateDIG is O(|Mr |).

Figure 5.30 describes the CreateDIGNodes algorithm that returns a tuple of DIG nodes, Nd, when

provided with a DI-FSM Fr and a single database entity d. This algorithm uses ] as the union operator

for tuples. If Fr models a DIP that is defining or using, then this algorithm returns a tuple with a single

node of the form 〈d, op〉 where op ∈ {def ,use}. If Fr models a database interaction that is defining-using,

then CreateDIGNodes returns a tuple Nd = 〈〈d,use〉, 〈d,def〉〉. We place d’s use node before the definition

node in order to ensure that the database interaction associations span the DIGs of a DI-CFG. The Used

operation on line 2 inspects the DI-FSM Fr in order to determine whether the DIP defines or uses d. If

we have δ(q, select) = q′ and δ(q, O) = q′ for q, q′ ∈ Q, then Used returns true. The Used operation also

returns true when δ(q, A) = q′ and δ(q, d) = q′ and d exists in the where clause of either a SQL delete
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Algorithm CreateDIG(Mr , Nr, Fr, Lk)
Input: Set of Database Entity Names Mr;

Database Interaction Node Nr;
Database Interaction FSM Fr;
Database Interaction Granularity Lk;

Output: Database Interaction Graph Gr = 〈Nr, Er, Nr〉
1. Nr ← ∅
2. Er ← ∅
3. Nr ← Nr ∪ {〈entryr, Lk〉, 〈exitr, Lk〉}
4. Np ← 〈entryr, Lk〉
5. for d ∈Mr

6. do Nd ← CreateDIGNodes(Fr, d)
7. for Nd ∈ Nd

8. do Nr ← Nr ∪ {Nd}
9. Er ← Er ∪ {(Np, Nd)}
10. Np ← Nd

11. Er ← Er ∪ {(Np, 〈exitr, Lk〉)}
12. return 〈Nr, Er, Nr〉

Figure 5.29: The CreateDIG Algorithm.

or an update statement. The Defined method also examines Fr and it operates in an analogous fashion

to Used. If we assume that the execution time of Defined and Used is bounded by a small constant, then

CreateDIGNodes is a O(1) algorithm.

Figure 5.31 gives the CreateDICFG algorithm that produces a DI-CFG GDI(k) = 〈NDI(k), EDI(k)〉 from

a traditional CFG Gk, the set of DIGs ΓDI(k), and the set of database entity names Mk. Lines 1 and 2

initialize the set of nodes and edges in the DI-CFG to the nodes and edges within the CFG. The Create-

DICFG algorithm iteratively removes and adds edges to EDI(k), while only adding nodes to NDI(k). Lines 3

and 4 initialize the nodes Nl and Ncr to null. We use Nl to denote the last node in a DIG and Ncr points

to the current database interaction node Nr. Line 5 calls the DefineTemporaries operation that adds nodes

to NDI(k). These nodes define temporary variables that we initialize to the value of method mk’s formal pa-

rameters [Duesterwald et al., 1996]. DefineTemporaries also treats the entities within the relational database

as global variables and inserts temporary variables to represent these data elements.

The CreateRepresentation algorithm orders the DIGs within ΓDI(k) so that Gr and Gr′ are adjacent when

they represent the same Nr at different levels of granularity. When we encounter the node Nr for the first

time, lines 12 through 14 remove the edge (Np, Nr) from EDI(k) for each node Np ∈ pred(Nr). After we

disconnect the predecessor node Np from Nr, we create a new edge (Np, entryr) for the node entryr ∈ Nr.

Next, line 15 sets node Nl to the exit node of the current Gr so that the algorithm can integrate subsequent

DIGs (for the same Nr) after this DIG. Line 16 sets Ncr to Nr in order to indicate that Nr is the current

database interaction node under analysis. If Ncr 6= Nr and Nl 6= null (i.e., we have encountered DIGs for

a new Nr and there is a residual Nl from the previous execution of the for loop on line 6), then line 11

connects the last node Nl to Ncr. If Gr is not the first DIG under analysis for a given Nr, then CreateDICFG

executes lines 18 though 19 so that it can connect the exit node of the previous DIG to the entry node of

the current DIG. Finally, line 20 connects the exit node of the last DIG to the last interaction node.
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Algorithm CreateDIGNodes(Fr , d)
Input: Database Interaction FSM Fr;

Database Entity d;
Output: Tuple of Database Interaction Graph Nodes Nd

1. Nd ← ∅
2. if Used(Fr, d) = true
3. then op← use
4. Nd ← 〈d, op〉
5. Nd ← Nd ] 〈Nd〉
6. if Defined(Fr, d) = true
7. then op← define
8. Nd ← 〈d, op〉
9. Nd ← Nd ] 〈Nd〉
10. return NDB

Figure 5.30: The CreateDIGNodes Algorithm.

Figure 5.32 shows the DIGs Gr and Gr′ and the CFG Gk before we integrate them into a single DI-CFG

GDI(k). For this example, we assume that pred(Nr) = {N1, . . . , Nφ} and ΓDI(k) = {Gr, Gr′}. In an attempt

to preserve simplicity, suppose that Gr and Gr′ represent the same Nr at two different levels of interaction

granularity. Figure 5.33 depicts the structure of the DI-CFG after the execution of the CreateDICFG

algorithm. This figure reveals that all nodes Np ∈ pred(Nr) are now connected to the entry node of the

first DIG, Gr. We also see that CreateDICFG connected the exit node of Gr to the entry node of Gr′ . The

connection of the last DIG’s exit node to node Nr completes the transfer of control back to the nodes within

Nk. Figure 5.34 shows the complete DI-CFG for the lockAccount operation that represents the method’s

interaction with the database at the level of database (label D) and attribute (label A).

The worst-case time complexity of CreateDICFG is O(|ΓDI(k)| + Ntot × PREDmax) where |ΓDI(k)| is

the total number of database interaction graphs for method mk and Equations (5.8) and (5.9) respectively

define Ntot and PREDmax. The variable Ntot defines the total number of database interaction nodes within

a single CFG Gk = 〈Nk, Ek〉. We use PREDmax to denote the maximum number of predecessor nodes

for an interaction point Nr. The |ΓDI(k)| term in the time complexity corresponds to the execution of

CreateDICFG’s outer for loop. The Ntot×PREDmax term stands for the execution of the inner for loop on

lines 12 through 14. Even though these lines execute within a doubly nested for loop, they only execute when

CreateDICFG encounters a new node Nr (i.e., Ncr 6= Nr). Since no database interaction node Nr ∈ Nk can

contain more than PREDmax predecessors, the body of the inner for loop executes with at most PREDmax

iterations.

Ntot =

∣∣∣∣∣
⋃

Nr∈Nk

Nr

∣∣∣∣∣ (5.8)

PREDmax = max{

∣∣∣∣∣∣
⋃

Np∈pred(Nr)

Np

∣∣∣∣∣∣
: Gk = 〈Nk , Ek〉, Nr ∈ Nk} (5.9)
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Algorithm CreateDICFG(Gk , ΓDI(k),M)
Input: Traditional CFG Gk = 〈Nk, Ek〉;

Set of Database Interaction Graphs ΓDI(k);
Set of Database Entities Mk

Output: DI-CFG GDI(k) = 〈NDI(k), EDI(k)〉
1. NDI(k) ← Nk

2. EDI(k) ← Ek

3. Nl ← null
4. Ncr ← null
5. DefineTemporaries(Gk,Mk)
6. for Gr = 〈Nr, Er, Nr, Lr〉 ∈ ΓDI(k)

7. do NDI(k) ← NDI(k) ∪Nr

8. EDI(k) ← EDI(k) ∪ Er

9. if Ncr 6= Nr

10. then if Nl 6= null
11. then EDI(k) ← EDI(k) ∪ {(Nl, Ncr)}
12. for Np ∈ pred(Nr)
13. do EDI(k) ← EDI(k) − {(Np, Nr)}
14. EDI(k) ← EDI(k) ∪ {(Np, entryr)}
15. Nl ← exitr

16. Ncr ← Nr

17. else
18. EDI(k) ← EDI(k) ∪ {(Nl, entryr)}
19. Nl ← exitr

20. EDI(k) ← EDI(k) ∪ {(Nl, Ncr)}
21. return 〈NDI(k), EDI(k)〉

Figure 5.31: The CreateDICFG Algorithm.

5.6 IMPLEMENTATION OF THE TEST ADEQUACY COMPONENT

The implementation of the adequacy component uses the Soot 1.2.5 program analysis framework. During the

analysis of the methods in a database-centric application, we use the three address code intermediate repre-

sentation called Jimple [Vallée-Rai et al., 1999, 2000]. Since a database-centric application frequently uses

the exception handling constructs of the Java programming language, we use a Soot CFG that conservatively

models the flow of exceptions across method boundaries. We also use Soot’s points-to analysis techniques

in order to (i) identify the heap objects to which a reference variable can point, (ii) resolve the potential

destination(s) of all polymorphic method dispatches, and (iii) create the interprocedural control flow graph

[Berndl et al., 2003, Lhoták and Hendren, 2003]. It is possible to extend the test adequacy component by in-

corporating recent demand-driven points-to analysis techniques [Sridharan et al., 2005, Sridharan and Bodik,

2006].

We employ the Java String Analyzer (JSA) to generate a DI-FSM for each DIP in a database-centric

application [Christensen et al., 2003]. The adequacy component uses the HSQLDB parser to perform CFL

reachability and to annotate a DI-FSM with the R, A, O−transitions. The current implementation supports

the integration of parsers that handle different SQL dialects. The adequacy component also uses Soot to im-

plement the DI-ICFG creation algorithms described in Section 5.5. Using Soot, the test adequacy component

performs an exhaustive intraprocedural data flow analysis in order to enumerate the def-use and database
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Adequacy Criteria Pairing (Av , Rc) (Av , A) (Av , D) (Rc, R) (A, R) (R, D)

Table 5.1: Test Adequacy Pairings for the Measurement of T R.

Adequacy Criteria Pairing (P + Av, P + Rc) (P + Av, P + A) (P + Av, P + D)

(P + Rc, P + R) (P + A,P + R) (P + R, P + D) (P + Av, P )

Table 5.2: Test Adequacy Pairings for the Measurement of T and S.

interaction associations for the individual methods of a database-centric application [Vallée-Rai et al., 1999,

2000]. The adequacy component supports the inclusion of other data flow analyzers as long as they operate

on the Jimple intermediate representation.

5.7 EXPERIMENT GOALS AND DESIGN

The primary goal of the experiments is to measure the number of database interaction associations that

each test adequacy criterion requires. The secondary experiment goal is the measurement of the time and

space overheads of the test requirement enumeration process. We measure the increase and subsequently

calculate the percent increase in the number of test requirements when a stronger test adequacy criterion

Cα is selected instead of a weaker criterion Cβ (i.e., Cα subsumes Cβ). The experiments also calculate the

additional time and space overheads that are incurred during the enumeration of test requirements with the

criterion Cα in place of Cβ . We evaluate the number of test requirements (T R), the time overhead (T ), and

the space overhead (S). We determine space overhead according to the number of nodes (SN ) and edges

(SE) in the traditional and database-aware control flow graphs. Equation (5.10) defines T RI(Cα, Cβ), the

increase in T R when the adequacy criterion Cα is used instead of the criterion Cβ . Equation (5.11) defines

the percent increase in the evaluation metric T R, denoted T R%
I (Cα, Cβ). We define the increase and percent

increase of T , SE , and SN in an analogous fashion.

T RI(Cα, Cβ) = T R(Cα)− T R(Cβ) (5.10)

T R%
I (Cα, Cβ) =

T RI(Cα, Cβ)

T R(Cα)
× 100 (5.11)

The experiments compare the following test adequacy criteria: all-database-DUs (D), all-relation-DUs

(R), all-record-DUs (Rc), all-attribute-DUs (A), all-attribute-value-DUs (Av), and all-DUs (P ). In order to

limit the number of empirical comparisons, we examine T R%
I (Cα, Cβ) with the six different adequacy pairs

that include (Cα, Cβ) for every pair of adjacent adequacy criteria and the additional pairing of the strongest

(Av) and weakest (D) criterion. Table 5.1 summarizes the pairings that we use to evaluate the percent

increase in the number of test requirements. For example, the pairing (Av , Rc) means that we calculate

T R%
I when we use all-attribute-value-DUs in place of all-record-DUs and (R, D) indicates that we measure

the percent increase in T R when we replace all-database-DUs with all-record-DUs.
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NCSS # Methods # Rels Total # Attrs # Attrs Per Rel

mp3cd 2913 452 7 25 3.6

Table 5.3: Characteristics of the mp3cd Case Study Application.

A single execution of the test adequacy component can list test requirements for one or more adequacy

criteria. For example, a tester can use the adequacy component to enumerate the test requirements necessi-

tated by the all-DUs, all-database-DUs, and all-record-DUs criteria. We record the time and space overhead

required to analyze application A in light of all-DUs criterion and one of the database-aware test adequacy

criterion. During the evaluation of time and space overhead, we analyze the percent increase in T and S

for seven different adequacy pairings, as described in Table 5.2. This table uses the notation P + Av to

indicate that we measure the time overhead incurred during the enumeration of traditional def-use associ-

ations and attribute value DIAs. For example, T %
I (P + Av , P + D) denotes the percent increase in time

overhead when we enumerate test requirements for the all-attribute-value-DUs and all-DUs criteria instead

of the all-database-DUs and all-DUs criteria.

We use the test adequacy component to identify the test requirements and to calculate T R. We compute

the time overhead metric T with a profiling tool and we measure the space overhead metrics SN and SE

by counting the number of nodes and edges in the CFGs and the DI-CFGs, respectively. We conducted

all of these experiments on the GNU/Linux workstation with kernel 2.4.18-14smp, dual 1 GHz Pentium III

Xeon processors, 512 MB of main memory, and a SCSI disk subsystem. We executed the test adequacy

component in five separate trials for each case study application and each test adequacy criterion. Since

the time overhead metric varied across each trial, we calculate arithmetic means and standard deviations

for T (the T R, SN , and SE metrics did not vary across the separate trials). We design the bar charts in

Figure 5.36 to use an error bar to represent one standard deviation from the arithmetic mean of the time

overheads. Since the standard deviation for T was insignificant, the diamonds at the top of the bars in

Figure 5.36 indicate that no visible error bar could be produced.

The experiments applied the adequacy component to two subjects: TransactionManager and mp3cd.

The mp3cd subject manages a local collection of MP3 files and it is available for download at

http://mp3cdbrowser.sourceforge.net/mp3cd/. We do not use mp3cd in subsequent experiments and

we did not discuss it in Chapter 3 because this application does not have a test suite. However, Chapter 3

provides more details about the TM case study application. mp3cd contains 2913 non-commented source state-

ments, not including its JDBC driver. This application also uses the Java bytecode of an MP3 manipulation

utility. The MP3 manipulation bytecodes and the complete mp3cd application required the analysis of 453

methods. mp3cd interacts with a relational database that contains seven relations named Album, Altr, Aral,

Artist, Cd, Track, and Version. Table 5.3 summarizes the characteristics of the mp3cd case study application.

In future work we will use the test adequacy component to analyze other database-centric applications.
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T R%
I (R, D) (Rc, R) (A, R) (Av , Rc) (Av , A) (Av , D)

TM 4.9 49.3 61.6 60.0 47.2 80.7

mp3cd 49.0 49.2 72.4 71.1 46.8 92.5

Table 5.4: Percent Increase in the Number of Test Requirements.

5.8 KEY INSIGHTS FROM THE EXPERIMENTS

Section 5.9 furnishes a detailed review of the experimental results. This section summarizes the key insights

from the experiments that we introduced in Section 5.7. We identify the following high level trends in the

empirical results.

1. Number of Test Requirements

a. The database-aware test requirements constitute between 10 and 20% of the total number of data

flow-based test requirements.

b. The number of DIAs increases by almost 50% when we use the state-based all-record-DUs adequacy

criterion instead of the structure-based all-relation-DUs.

2. Time Overhead

a. We can enumerate the test requirements for small and moderate size applications in less than forty

seconds. Across multiple executions, this analysis exhibits little variation in time overhead.

b. Enumerating test requirements at the finest level of database interaction granularity never increases

analysis time by more than 15% over the base line configuration.

3. Space Overhead

a. Moderate size applications exhibit a 25% increase in the number of CFG nodes and edges when we

include the database interactions at the attribute value level instead of the database level.

b. For small database states, the use of the state-based all-record-DUs instead of the structure-based

all-relation-DUs only increases the number of CFG nodes and edges by 5%.

5.9 ANALYSIS OF THE EXPERIMENTAL RESULTS

5.9.1 Number of Test Requirements

Table 5.4 shows the percent increase in the number of test requirements for different test adequacy criteria

pairs and Figure 5.35 depicts the number of def-use and database interaction associations for both case study

applications. Since all-DUs does not have a subsumption relationship with any of the database-aware criteria,

Table 5.4 does not display any percent increases for a criteria pair involving all-DUs. Figure 5.35 shows that

all-DUs produces a significantly greater number of test requirements than any of the database aware criteria.

This is due to the fact that TM and mp3cd both interact with databases that have relatively few relations and
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Figure 5.35: Number of Def-Use and Database Interaction Associations for (a) TM and (b) mp3cd.

records. Since Figure 5.35 reveals that mp3cd always produces a greater number of test requirements than

TM, it is clear that mp3cd is a larger application that could be more difficult to test adequately. T R%
I (R, D)

is 49% for mp3cd and only 4.9% for TM because mp3cd has seven relations and TM only has two. When we use

the state-based all-record-DUs instead of all-relation-DUs, this yields an almost 50% increase in T R. These

results quantitatively demonstrate that it is more difficult for a test suite to satisfy the adequacy criteria

that consider the definition and use of the databases’ state.

Even though both case study applications yield larger T R%
I values for (Av , Rc) than (Av , A), the rela-

tionship between these percent increases could change as the number of records within the database increases

(the DI-CFGs in this study represented interactions with a small number of records). TM’s 80.7% and mp3cd’s

92.5% values for T R%
I (Av , D) demonstrate that the strongest criterion requires test suites to cover a con-

siderably greater number of database interaction associations than the weakest criterion. The results in

Figure 5.35 also show that TM’s 203 attribute value DIAs represent 9.6% of the total number of def-use

and database interaction associations. mp3cd’s 1768 attribute value DIAs correspond to 16.8% of the total

number of variable and database entity associations. These results provide quantitative evidence that the

database-aware test adequacy criteria require test suites to exercise additional associations that traditional

def-use testing would neglect.

5.9.2 Time Overhead

Table 5.5 shows the percent increase in the time overhead for different test adequacy criteria pairs. Figure 5.36

depicts the time that was required to enumerate the traditional def-use associations (e.g., label P ) and all of

the associations for the program variables and the database entities at a single level of interaction granularity

(e.g., label P +D). These graphs show that no execution of the data flow analyzer took more than thirty-nine

seconds. Since the the standard deviation for T was always less than .08 seconds for TM and .46 seconds

for mp3cd, it is clear that the time overhead measurement demonstrated little variation across experiment

trials. The time overhead results in Figure 5.36 indicate that the complete data flow analysis of mp3cd always

takes longer than the same analysis of TM. For example, the all-DUs criterion requires 37.72 seconds of time
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Figure 5.36: Time Required to Enumerate Test Requirements for (a) TM and (b) mp3cd.

overhead for mp3cd and 20.5 seconds of time for TM. This is due to the fact that mp3cd is a larger application

that has more data flow-based test requirements than TM.

Table 5.5 reveals that the percent increase in analysis time for TM is small since T %
I is 1.5% for (P +

Av , P + D) and 2.7% with (P + Av, P ). This demonstrates that for small database-centric applications like

TM, testing can factor in database interaction associations while only incurring a minimal time overhead

during test requirement enumeration. For moderate sized applications like mp3cd, the time overhead is still

satisfactory since Table 5.5 shows that T %
I is 9.3% for (P + Av , P + D) and 14.4% for (P + Av , P ). The

database interaction association is at the heart of the family of data flow-based test adequacy criteria. The

empirical results suggest that the adequacy component can enumerate DIAs with acceptable time overhead

and minimal variability.

5.9.3 Space Overhead

Tables 5.6 and 5.7 respectively provide the percent increases when the space overhead metrics corresponds

to the nodes (SN ) and edges (SE) within a CFG or DI-CFG. Figure 5.37 displays the space that was needed

for both a traditional CFG (e.g., label P ) and a DI-CFG that contains the CFG’s nodes and edges and

the extra DIG nodes and edges that represent the database interaction (e.g., label P + D). The space

overhead results in Figure 5.37 indicate that both the CFGs and DI-CFGs have on average more edges

than nodes. This is due to the fact that Soot 1.2.5’s CompleteUnitGraph data structure includes an edge

from a node to an exception handler CFG whenever that node exists along a sub-path that can throw an

exception [Vallée-Rai et al., 1999, 2000]. Tables 5.6 and 5.7 also demonstrate the percent increase in the

number of nodes and edges is always less than 5% when we use all-record-DUs instead of all-relation-DUs.

This implies that testing can focus on database records instead of relations without significantly raising the

space overhead.

The space overhead metrics always yield higher percent increases for (P +Av, P +Rc) than (P +Av, P +A).

As noted in Section 5.9.1, the relationship between these percent increases could change if the relations within

the database contain a greater number of records. Tables 5.6 and 5.7 also reveal that the percent increase
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T %
I (P + R, P + D) (P + Rc, P + R) (P + A, P + R)

TM .1 .04 .8

mp3cd .5 .8 4.3

T %
I (P + Av, P + Rc) (P + Av, P + A) (P + Av, P + D) (P + Av, P )

TM 1.3 .6 1.5 2.7

mp3cd 8.1 4.9 9.3 14.4

Table 5.5: Percent Increase in the Time Overhead.

SN%
I (P + R, P + D) (P + Rc, P + R) (P + A, P + R)

TM .6 2.5 4.3

mp3cd 2.0 3.8 9.5

SN%
I (P + Av, P + Rc) (P + Av, P + A) (P + Av, P + D) (P + Av, P )

TM 7.5 5.8 10.4 12.2

mp3cd 15.5 10.2 20.4 21.6

Table 5.6: Percent Increase in the Space Overhead for Nodes.

in the number of nodes and edges is less than 23% for mp3 and 11% for TM when the weakest database aware

criterion (D) is replaced with the strongest criterion (Av). For smaller applications like TM the experimental

results suggest that the DI-CFGs will create less than a 13% increase in the number of nodes and edges when

we use all-attribute-value-DUs and all-DUs instead of just all-DUs. The results also indicate that moderate

size applications such as mp3cd will incur no more than a 24% increase in the number of nodes and edges

when we evaluate the adequacy of a test suite at the P + Av level rather than the P level. In summary, the

experiments quantitatively confirm that the control flow graph can represent a program’s interaction with a

relational database in an acceptable amount of space.

5.10 THREATS TO VALIDITY

The experiments described in this chapter are subject to validity threats and Chapter 3 explains the steps

that we took to control these threats during experimentation. We also took additional steps to handle

the threats that are specific to experimentation with the test adequacy component. Internal threats to

validity are those factors that have the potential to impact the measured variables defined in Section 5.7.

One internal validity threat is related to defects in the test adequacy component. These defects could

compromise the correctness of the (i) control flow graphs, (ii) sets of database entities, or (iii) database

interaction associations. We controlled this threat by visualizing all of the DI-CFGs and checking them to

ensure correctness. For example, we verified that each database interaction graph was a straight line code
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SE%
I (P + R, P + D) (P + Rc, P + R) (P + A, P + R)

TM 0.0 2.4 4.2

mp3cd 2.1 4.4 10.5

SE%
I (P + Av, P + Rc) (P + Av, P + A) (P + Av, P + D) (P + Av, P )

TM 7.4 5.7 9.7 11.4

mp3cd 16.7 11.0 22.1 23.8

Table 5.7: Percent Increase in the Space Overhead for Edges.

segment that was placed at the correct database interaction location within the DI-CFG. We also selected

database interaction points and checked that the interaction analyzer produced a correct set of database

entities. Finally, we inspected the sets of database interaction associations for methods in order to guarantee

that the data flow analyzer worked properly.

Construct validity is related to the appropriateness of the evaluation metrics described in Section 5.7.

Even though T R does not directly measure the effectiveness of a test adequacy criterion with respect to its

ability to isolate defects, it is still useful in an evaluation of the test adequacy component because it reveals

the relative difficulty of satisfying an adequacy criterion. The measurement of space overhead by calculating

the number of nodes and edges in a control flow graph is not directly tied to the consumption of bytes of

memory and thus not as useful to software testing practitioners. Yet, if S was the number of bytes used

by the in-memory or on-disk representation of a database-centric application, then these values could be

dependent upon the choice of the file system, operating system, and Java virtual machine. The number of

CFG nodes and edges are also established metrics for measuring the size of graphs [Tip and Palsberg, 2000].

The experiments did not measure the costs associated with all aspects of the test adequacy component.

Since our research is not directly related to the construction of interprocedural CFGs, we did not focus on

the time consumed by the points-to analysis and the CFG construction technique. Moreover, these static

analysis techniques have been studied extensively by previous research efforts [Lhoták and Hendren, 2003,

2006]. Our experiments did not concentrate on measuring the cost of DI-FSM creation since other researchers

have provided preliminary insights into the performance of this process [Christensen et al., 2003]. Yet, this

chapter provides a detailed analytical evaluation of the worst-case time complexity of each key algorithm

within the test adequacy component. We judge that the time complexity analysis serves as the foundation

for future empirical evaluations of these techniques.

5.11 CONCLUSION

This chapter explains the test adequacy component that (i) constructs a database-aware program repre-

sentation, (ii) analyzes database interaction points, and (iii) lists the test requirements. We describe the

89



5 10 15 20
Node and Edge Count

P+Av

P+A

P+Rc

P+R

P+D

P
A
d
e
q
u
a
c
y

C
r
i
t
e
r
i
a

P+Av

P+A

P+Rc

P+R

P+D

P

17.5

16.5

16.2

15.8

15.8

15.5

17.2

16.2

15.9

15.5

15.4

15.1

Edges

Nodes

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

(a)

5 10 15 20 25 30 35
Node and Edge Count

P+Av

P+A

P+Rc

P+R

P+D

P

A
d
e
q
u
a
c
y

C
r
i
t
e
r
i
a

P+Av

P+A

P+Rc

P+R

P+D

P

29.8

26.5

24.8

23.7

23.2

22.7

24.5

22.0

20.7

19.9

19.5

19.2

Edges

Nodes

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

(b)

Figure 5.37: Average Space Overhead for (a) TM and (b) mp3cd.

database interaction finite state machine (DI-FSM) that models a single database interaction point and we

explain how to use a DI-FSM to enumerate database entities. We also show how to transform a traditional

interprocedural control flow graph (ICFG) into a database interaction interprocedural control flow graph (DI-

ICFG). This chapter examines the implementation of the test adequacy component and it provides empirical

evidence that it is possible to enumerate database-aware test requirements with acceptable time and space

overhead. Further experimentation with larger case study applications will serve to confirm the scalability

of enumerating database interaction associations (DIAs). The experiments suggest that our database-aware

adequacy criteria obligate test suites to cover test requirements that traditional def-use testing would over-

look. In summary, this chapter shows that the test adequacy component is promising and thus warrants

further empirical investigation.
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6.0 FOUNDATIONS OF TEST COVERAGE MONITORING

6.1 INTRODUCTION

This chapter presents a database-aware test coverage monitoring technique. We identify and address the

major challenges associated with monitoring a test suite’s coverage of a database-centric application. We

encounter these challenges during the (i) instrumentation of a database-centric application, (ii) creation

and storage of the coverage results, and (iii) calculation of test suite adequacy. This chapter describes the

database-aware test coverage monitoring (TCM) trees that represent a test suite’s coverage. We also discuss

the algorithms that construct the TCM trees and show how to use these trees to calculate the adequacy of

a test suite. In particular, this chapter furnishes:

1. A high level overview of the test coverage monitoring process (Section 6.2).

2. A discussion of the challenges associated with test coverage monitoring (Section 6.3).

3. The description of the TCM trees and the monitoring instrumentation that records coverage information

in a database-aware fashion (Section 6.4).

4. An interprocedural representation for a test suite that supports the calculation of test adequacy (Sec-

tion 6.5.1).

5. A technique for calculating test suite adequacy according to the family of data flow-based adequacy

criteria described in Chapter 4 (Section 6.5.2).

6.2 OVERVIEW OF THE COVERAGE MONITORING PROCESS

The overarching goal of test coverage monitoring is to record the requirements that the test suite covers during

testing. Since we focus on database-aware test requirements, our test coverage monitor stores information

about the definition and use of relational database entities. Figure 6.1 depicts the process of test coverage

monitoring. This diagram shows that the instrumentation phase accepts adequacy criteria (e.g., all-record-

DUs and all-database-DUs), a test suite, and the program under test. We instrument the program under

test by placing probes at key locations within the control flow graph. These probes execute payloads that

record information about the coverage of the test requirements [Misurda et al., 2005]. For example, suppose

that method mk contains a database interaction that submits a SQL select statement to the database. A

database-aware test coverage monitor inserts a probe after the execution of the select statement in order

to inspect the records that match the database query. Since the tests for a database-centric application
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Figure 6.1: Overview of the Test Coverage Monitoring Process.

often modify and inspect the databases [Haftmann et al., 2005a], we also instrument the tests with coverage

monitoring probes. For example, assume that a test case uses the SQL delete statement to remove records

from the database before it executes the method under test. Our database-aware instrumentor inserts probes

to identify the attribute values that the test case deleted from the database.

This chapter describes an instrumentation technique that supports the introduction of probes before or

during test suite execution. If we instrument the program and test suite before testing, then we adhere to

a static instrumentation scheme. We perform dynamic instrumentation when the test coverage monitoring

engine introduces the instrumentation during testing. Even though our coverage monitoring component

supports both types of instrumentation, it only requires the use of either static or dynamic instrumentation

in order to produce the coverage report. A test coverage monitor must place static instrumentation into the

database-centric application each time the source code of the program under test or the test suite changes.

The dynamic approach to instrumentation obviates the repeated instrumentation of the database-centric

application since it always introduces the payloads during testing. However, the flexibility that dynamic

instrumentation affords is offset by the fact that dynamically instrumenting a database-centric application

often increases the time overhead of testing more than the use of static instrumentation.

The execution of either a statically or dynamically instrumented program and test suite yields the

database-aware coverage results. The coverage report shows how the methods under test define and use

the relational database entities. We use the database interaction test coverage monitoring tree (DI-TCM) to

maintain coverage information on a per-test basis. A DI-TCM contains nodes that correspond to the defini-

tion and use of relational database entities in the context of both the method and the test that performed the
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database interaction. Since the size of a DI-TCM can be prohibitively large, we also leverage compression

algorithms in order to reduce the size of the coverage report. When we have the coverage results and the

test requirements for a test case, we can calculate the adequacy of this test. The adequacy of a test case is

simply the number of covered test requirements divided by the total number of requirements.

6.3 TEST COVERAGE MONITORING CHALLENGES

6.3.1 Location of the Instrumentation

The majority of traditional test coverage monitoring frameworks place instrumentation probes into the pro-

gram under test through the use of either static instrumentation or Java virtual machine (JVM)-based

techniques [Misurda et al., 2005, Pavlopoulou and Young, 1999, Tikir and Hollingsworth, 2002]. It is chal-

lenging to develop a database-aware instrumentation approach because the coverage monitor must place

the probes in the appropriate locations within the program, the test suite, and/or the execution environ-

ment. We use the different execution environments for a Java database-centric application, as depicted in

Figure 6.2, to illustrate these challenges with a concrete example. In the context of applications written in

Java, we must accommodate the wide variety of Java virtual machines, JDBC drivers, database managers,

and operating systems that exist in an application’s execution environment. As noted in Chapter 3, we

assume that the program and the test suite interact with the database manager through a Java database

connectivity driver. Prior monitoring techniques place the instrumentation probes in the (i) program and

the test suite (e.g., [Misurda et al., 2005]), (ii) JDBC driver (e.g., [Bloom, 2006]), (iii) relational database

management system (e.g., [Chays et al., 2004]), or (iv) operating system (OS) (e.g., [Engel and Freisleben,

2005, Tamches and Miller, 1999]). Figure 6.2(a) shows a program and a test suite that execute on a Java

virtual machine and interact with a Java-based RDBMS. We configured the case study applications to exe-

cute in this manner, as discussed in Chapter 3. Finally, Figure 6.2(b) describes an application that interacts

with a native database manager that directly executes on the operating system instead of using a JVM.

The coverage monitor cannot place instrumentation into the relational database management system

because we want the monitoring technique to function properly for all of the database management systems

that provide a JDBC interface. Since the testing framework does not require a database-centric applica-

tion to execute on specific operating system(s), it is not practical to monitor coverage by instrumenting

the OS. Moreover, OS-based instrumentation is unlikely to reveal how the JVM executes the test suite.

For example, instrumentation in the operating system can capture system calls but it will not normally

be able to monitor method invocations within the program and the test suite. The JDBC Web site at

http://developers.sun.com/product/jdbc/drivers/ reveals that there are currently over two hundred

different JDBC driver implementations. A JDBC driver could be written in Java or in a combination of

the Java, C, and C++ programming languages. If the JDBC driver is partially written in C and/or C++,

then it must use the Java Native Interface (JNI) to make its functionality accessible to the database-centric

application that uses Java. The testing framework does not stipulate that the database-centric application
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Figure 6.2: The Execution Environment for a Database-Centric Application.

use a particular JDBC driver. Without a general and automated technique for instrumenting an arbitrary

JDBC driver, it is unrealistic for the coverage monitor to record database interactions by placing probes into

all of the currently available JDBC drivers.

Our database-aware testing framework does not assume that the program and the test suite execute on

a certain Java virtual machine. For example, the program and the tests might use the Sun HotSpotTMJVM

or the Jikes Research Virtual Machine (RVM) [Alpern et al., 2005]. The wide variety of JVMs indicates that

it is challenging to dynamically introduce the test coverage monitoring instrumentation with the JVM that

runs the test suite. In light of our analysis of the potential instrumentation locations, we implemented static

and dynamic instrumentation techniques that only modify the program and the test suite. Since a tester

does not always have access to an application’s source code, it is also preferable if the test coverage monitor

can statically instrument Java bytecode. To this end, we designed the TCM component so that it can

operate on Java source code, bytecode, or a combination of both types of program representations. Finally,

our dynamic instrumentation technique operates on well-established interfaces that exist in all Java virtual

machines (the current implementation performs load-time instrumentation using the JVM class loader).

6.3.2 Types of Instrumentation

Instrumenting a traditional program requires the placement of probes at control flow graph locations that (i)

execute CFG nodes and edges, (ii) define and use program variables, and/or (iii) invoke program methods

[Misurda et al., 2005, Pavlopoulou and Young, 1999, Tikir and Hollingsworth, 2002]. The payload of a tra-

ditional probe simply marks an entity within a control flow graph as covered if a test causes the execution of

this entity. For example, a probe that monitors the coverage of CFG nodes executes a payload to record the

fact that a node was executed during testing. In contrast, database-aware instrumentation must intercept

database interactions and efficiently analyze the state and structure of the databases that are subject to
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Figure 6.3: Instrumentation for Database-Aware Test Coverage Monitoring.

interaction. For example, the coverage instrumentation for the SQL delete statement examines the state of

the relational database in order to determine which records were removed.

Figure 6.3 categorizes the types of instrumentation that we use to monitor the coverage of the test

suites for a database-centric application. This diagram shows that the location of a database interaction is

either in the program or the test suite. A database-centric application maintains a significant amount of

external state and the tests for a database-centric application frequently change the state of the database

[Haftmann et al., 2005a]. For example, a test for the removeAccount method in the TransactionManager

application might need to add accounts into the database before executing the method under test. Since

the test suite for a database-centric application directly modifies the state of the database, the test coverage

monitor places additional instrumentation into the tests. The coverage monitoring instrumentation must

also handle database interactions that are either of type defining, using, or defining-using (c.f. Section 4.3.2

for a discussion of these types of interactions).

Similar to [Christensen et al., 2003, Halfond and Orso, 2005], we focus on the testing and analysis of

database-centric applications that interact with a database by submitting SQL strings. Since our testing

framework does not restrict which relational database management system controls the program’s access

to the databases, the program of a database-centric application might interact with the databases that

are managed by a MySQL, PostreSQL, HSQLDB, or Oracle RDBMS. It is challenging to instrument a

database-centric application for coverage monitoring because different RDBMS support different dialects of

the structured query language. Figure 6.4 provides four SQL select statements that extract records tbegin

through tend from the relation relj = {t1, . . . , tu}. We use the notation recbegin and recend to respectively

denote the numerical index to records tbegin and tend, as depicted in Figure 6.5. The SQL select for the

Oracle RDBMS uses the rownum variable to bound the records in the select’s result set while the MySQL,

PostreSQL, and HSQLDB statements use the limit and/or offset keywords. Our test coverage monitor

supports the testing of programs that use different RDBMS because the instrumentation limits the parsing

of the SQL strings to the syntactical elements that all SQL dialects have in common.

It is also challenging to perform database-aware coverage monitoring because the probes must examine

the state and structure of the database without inadvertently introducing defects into the program. Since
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select A1, A2, . . . , Az

from relj limit recbegin , recend

(a)

select A1, A2, . . . , Az

from relj limit recend offset recbegin

(b)

select A1, A2, . . . , Az

from relj limit recbegin recend

(c)

select A1, A2, . . . , Az from relj

where rownum ≥ recbegin and rownum ≤ recend

(d)

Figure 6.4: Syntax for the SQL select in (a) MySQL, (b) PostreSQL, (c) HSQLDB, and (d) Oracle.
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Figure 6.5: The Matching Records from the SQL select Statement.
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Figure 6.6: Support for a Single Iteration of the Result Set.

this research focuses on the testing and analysis of database-centric applications written in Java, we illustrate

this challenge with a concrete example that assumes the use of this language. A using database interaction

occurs when the method under test submits a SQL select statement to the database. A database-centric

application written in Java uses the executeQuery(String sql) method to submit a select statement. The

executeQuery operation returns a result set that the calling method inspects in order to determine which

database records matched the query. Our database-aware test coverage monitoring probes intercept this

result set and save the records that the select used.

After the instrumentation analyzes the set of matching records, the probes must return the records to the

program under test so that testing can continue. Figure 6.6 demonstrates the default behavior of the program

under test when it iterates through the result set that the executeQuery method returns. The “X” that

labels the directed edge from the end node to the start node indicates that the program can only examine the

results of the select statement once. If the test coverage monitoring probe iterates through the result set,

then the instrumentation will incorrectly change the behavior of the program under test. The method under

test will inappropriately terminate if it attempts to analyze a result set that has already been exhausted by

the test coverage monitoring instrumentation. This example suggests that the instrumentation must take

special steps to preserve the correctness of the application that it is monitoring. Our TCM component uses

instrumentation payloads that can either (i) examine a copy of the result set that a select statement returns

or (ii) transparently modify the result set so that it supports multiple iterations.

The update, insert, and delete statements define and/or use the state of the database. The cover-

age monitoring instrumentation should identify which database records were modified without relying upon

RDBMS-specific facilities, such as triggers, to isolate the altered records. Even though we provide a specific
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Figure 6.7: A Database Relation (a) Before and (b) After a delete Statement.

example of this challenge in the context of the SQL delete statement, we also confront similar instrumenta-

tion challenges when we handle the update and insert statements. Since different RDBMS vary the syntax

of the SQL delete statement, we use instrumentation that minimizes the parsing of the delete when it

determines which record(s) will be removed. To this end, the coverage monitoring probes preserve a snap-

shot of the relevant database state before and after the database interaction occurs. These probes execute a

payload that first determines which relation is being defined and then use a SQL select statement to record

the current state of this relation. Figure 6.7 shows the state of a relation relj = {t1, . . . , tu} before and after

the execution of a SQL delete statement. This diagram reveals that the delete removed records t3 and

tu−1 from relation relj . For this example, the probe will add an entry to the coverage report to indicate that

the delete defined the records t3 and tu−1. In order to minimize space overhead, we designed the coverage

monitoring probe to only maintain the state of the relation that the program is currently defining. Once

the RDBMS finishes executing the delete statement and the instrumentation records the final state of the

database, the probe uses efficient relational difference operators to determine which records were deleted.

We must take into account several additional considerations when we develop the database-aware instru-

mentation technique. Our primary concern is to ensure that the payloads always preserve the correctness

of the database-centric application. Our secondary goal is to control the time and space overhead of the

instrumentation payloads. The previous discussion reveals that the coverage monitoring instrumentation for

a database-centric application often requires the parsing of SQL strings. Whenever possible, the instrumen-

tation payloads use efficient context-insensitive parsing techniques. Since the monitoring of a single database

interaction requires the execution of two probes (i.e., Before and After instrumentation, as discussed in Sec-

tion 6.4), we designed the payload at each probe to execute with minimal time overhead. The tester can also

decrease the cost of the instrumentation by configuring the probes to store less execution context or record

the database interactions at a coarser level of granularity.
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Figure 6.8: A Coverage Monitoring Tree that Offers Full Context for the Test Coverage Results.

In order to reduce the space overhead, the test coverage monitor must release any database state that it

does not need to store in the coverage report. For example, the payload for a SQL delete statement should

relinquish the storage that it uses to maintain the temporary before and after database snapshots. However,

the allocation and de-allocation of memory could impact the performance and behavior of the program

under test. For example, increasing the use of a JVM’s garbage collector (GC) can impact the performance

of the program under test [Blackburn et al., 2004, Brecht et al., 2006, Xian et al., 2006]. In the context of a

Java database-centric application (and any others that use automatic memory management), the allocation

and de-allocation of memory by the coverage monitoring instrumentation should not noticeably impact the

behavior of the GC subsystem. To this end, we designed the coverage report so that the tester can trade-off

the pressure that a tree places on the memory subsystem with the level of detail that the tree provides.

6.3.3 Format of the Test Coverage Results

The test coverage monitor must record coverage information in the appropriate context in order to permit

the calculation of test adequacy. For example, the instrumentation payload should store the definition of

a relational database entity in the context of the method that performed the database interaction. When

test case Ti tests method mk, the coverage report needs to reflect the fact that this test causes mk to

define and/or use certain database entities. Yet, the majority of test coverage monitoring tools, such as

Clover [Kessis et al., 2005], Jazz [Misurda et al., 2005], and Emma [Roubtsov, 2005], keep coverage results
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Tree Database Aware? Testing Context Probe Time Overhead Tree Space Overhead

CCT × Partial Low - Moderate Low

DCT × Full Low Moderate - High

DI-CCT X Partial Moderate Moderate

DI-DCT X Full Moderate High

Database Aware? ∈ {×, X}
Context ∈ {Partial, Full}
Probe Time Overhead ∈ {Low, Moderate, High}
Tree Space Overhead ∈ {Low, Moderate, High}

Table 6.1: High Level Comparison of the Different Types of Coverage Monitoring Trees.

on a per-test suite basis. This approach only supports the calculation of adequacy for an entire test suite

and it hampers the efficiency of many prioritization techniques [Walcott et al., 2006]. The preservation of

testing context also enables debuggers and automatic fault localization tools to more efficiently and effectively

isolate defective program and/or database locations [Jones and Harrold, 2005]. Our database-aware coverage

monitor always preserves enough testing context to ensure the correct calculation of adequacy in a per-test

and per-test suite fashion. It is challenging to devise different types of coverage reports that balance the

benefits of full context with the time and space overheads that come with storing additional coverage context.

Our coverage monitor achieves this balance by allowing the tester to select different types of TCM trees.

Figure 6.8 provides an example of a coverage report that could be produced by the TCM component

described in Chapter 7. For simplicity, we assume that a test suite T contains two tests Ti and Tj . We use

edges of the form T → Ti and Ti → mk to respectively indicate that test suite T calls test Ti and Ti invokes

method mk. The bold edges Nr1 → Df and Df → relj demonstrate that database interaction point Nr1

interacts with database Df and relation relj . This coverage report fully contextualizes T ’s testing of methods

mk and mk′ . In order to preserve the simplicity of the example, this tree does not distinguish between the

definition and use of an entity in the database (the database-aware TCM trees that Section 6.4.3 describes

make a distinction between nodes that define and use the relational database entities). This tree-based

report reveals that the first execution of test Ti calls method mk two times and both invocations of this

method execute database interaction point Nr1 .

The tree also shows that Ti’s initial call to mk interacts with relation relj and the subsequent call

manipulates a different relation relj′ . The coverage report indicates that test case Tj tests method mk′ and

causes the execution of the database interaction at node Nr2 . The coverage results demonstrate that (i)

the first call to method mk′ does not yield any database interactions and (ii) the subsequent recursive call

interacts with relation relj in the database Df ′ . Since the coverage monitoring tree preserves execution and

database interaction context, it is clear that methods mk and mk′ interact with different relations during

testing. Figure 6.8 shows that this execution of test suite T calls the test case Ti two times. The tree reveals

that the third invocation of method mk during the second run of Ti causes an interaction with relj at the

point Nr3 .
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Test Coverage Monitoring Trees

Tree Type Node Type

Dynamic Call Tree Context Calling Tree Method Method and Database
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Figure 6.9: Categorization of the Test Coverage Monitoring Trees.

We must consider several additional constraints when we implement the database-aware coverage mon-

itoring component. Debugging and fault localization techniques should be able to analyze the coverage

results in order to determine what happened during testing. For example, it might be useful to enumerate

all of the failing tests that cause a method to interact with a specific record in a certain database. We can

improve the process of debugging a database-centric application if it is possible to use the coverage report

to automatically determine which methods do not interact with a database. Since it might be expensive to

identify the data flow-based test requirements for some database-centric applications, the coverage results

must support the efficient calculation of alternative forms of test adequacy. For example, McMaster and

Memon propose a call stack-based coverage metric that avoids data flow analysis by efficiently creating test

requirements from the observed behavior of the test suite [McMaster and Memon, 2005]. We have designed

the coverage trees so that they can support the calculation of data flow-based adequacy (c.f. Section 6.5) or

database-aware call stack coverage (c.f. Chapter 8). Since our coverage monitor stores details about the state

and structure of a relational database, the coverage report can become very large. Therefore, we maintain

the coverage results in a highly compressible format.

6.4 DATABASE-AWARE TEST COVERAGE MONITORING TREES

6.4.1 Overview

A database interaction at node Nr always occurs through the invocation of a method such as executeQuery

or executeUpdate. Therefore, we construct a coverage report by using instrumentation that operates before

and after the execution of a method. Table 6.1 compares the types of trees that we use to store the coverage

information. The test coverage monitor can construct either a dynamic call tree (DCT) or a calling context

tree (CCT). The DCT records the complete execution context while incurring low TCM probe overhead and

moderate to high tree space overhead. Alternatively, the CCT provides less execution context and low tree

space overheads at the expense of slightly increasing the execution time of the probes. Since both the CCT

and the DCT do not record a program’s interaction with a relational database, they are not directly suited
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Figure 6.10: Examples of the Traditional (a) Dynamic and (b) Calling Context Trees.
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to maintaining the coverage of the tests for a database-centric application. To this end, Table 6.1 shows

that the TCM component can also produce a database interaction DCT and CCT (i.e., the DI-DCT and

DI-CCT) that could incur additional time and space overhead because they are database-aware.

Figure 6.9 shows that the nodes in a traditional TCM trees always represent method calls (i.e., the “Node

Type” subtree contains the leaf node “Method”). The database-aware trees contain nodes that correspond

to either a method call or the interaction with a relational database entity (i.e., “Method and Database” is

a child of the “Node Type”). Since the DCT includes a node to represent each method and test case that is

invoked during the testing process, it preserves the full testing context in a manner that can be used during

debugging and fault localization. Even though the CCT coalesces certain nodes in order to minimize space

overhead, it still preserves all unique method call and database interaction contexts. Figure 6.10 provides an

example of a DCT with thirteen nodes and twelve edges. In this tree a node with the label “A” corresponds

to the invocation of the method A and the edge A → B indicates that method A invokes method B. The

existence of the two DCT edges A → B reveals that method A repeatedly invokes method B.

In the example from Figure 6.10, the dynamic call tree represents the recursive invocation of method

G by chaining together edges of the form G → G. The CCT in Figure 6.10(b) coalesces the DCT nodes

and yields a 30.7% reduction in the number of nodes and a 16.6% decrease in the number of edges. For

example, the CCT combines the two B nodes in the DCT into a single node. The CCT also coalesces nodes

and introduces back edges when a method calls itself recursively (e.g., the DCT path G → G → G) or a

method is repeatedly executed (e.g., the DCT path H→ I→ H). Figure 6.10(b) shows that we depict a CCT

back edge with a dashed line.1 Section 6.4.2 provides a formal definition of the traditional DCT and CCT

and Section 6.4.3 explains how we enhance these trees so that they can store the details about a program’s

database interactions. Section 6.4.4 reveals how the TCM component modifies the control flow graph of

a database-centric application in order to introduce the instrumentation that generates the trees. Finally,

Section 6.5 describes how we traverse the coverage trees in order to identify the covered test requirements

and calculate test suite adequacy.

6.4.2 Traditional Trees

6.4.2.1 Dynamic Call Trees Throughout the remainder of this research, we use τ to denote any type

of TCM tree and we use τdct and τcct to respectively stand for a dynamic call tree and a calling context tree.

Table A9 summarizes the notation that we use to describe the test coverage monitoring trees. Definition 5

defines the dynamic call tree τdct = 〈Nτ , Eτ , Na, N0〉. We use Nτ as the set of tree nodes and Eτ as the set

of edges. The node Na ∈ Nτ is the active node that the instrumentation payload references when it makes

modifications to τdct. We use the notation in(Nρ) and out(Nρ) to respectively refer to the in-degree and

out-degree of a node Nρ. For example, if the edges (Nφ1
, Nρ), (Nφ2

, Nρ), and (Nρ, Nφ3
) exist in τdct, then

we know that in(Nρ) = 2 and out(Nρ) = 1. The following Definition 5 requires τdct to have a distinguished

1The introduction of one or more back edges into a CCT forms cycle(s). Even though a CCT is not strictly a tree, the tree
edges are distinguishable from the back edges [Ammons et al., 1997]. Section 6.4.2 examines this issue in more detail.
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node N0, the root, such that τdct does not contain any edges of the form (Nφ, N0) (i.e., in(N0) = 0). For all

nodes Nφ ∈ Nτ−{N0}, Definition 5 requires in(Nφ) = 1 (i.e., every node except the root must have a unique

parent). The dynamic call tree preserves full testing context at the expense of having unbounded depth and

breadth [Ammons et al., 1997]. The DCT has unbounded depth because it fully represents recursion and it

has unbounded breadth since it completely represents iterative method invocation.

Definition 5. A dynamic call tree τdct is a four tuple 〈Nτ , Eτ , Na, N0〉 where Nτ is a set of nodes, Eτ is

a set of edges, Na ∈ Nτ is the active node, and N0 ∈ Nτ is the root with in(N0) = 0. For all nodes

Nφ ∈ Nτ − {N0}, we require in(Nφ) = 1.

Figure 6.11 describes the InitializeTCMTree algorithm that creates a tree τ with the root N0. We

invoke this algorithm at the start of test suite execution. InitializeTCMTree operates on any of the TCM

trees that we describe in Section 6.4.2 and Section 6.4.3. Line 1 stores the root in the set Nτ and line 2

initializes Eτ to the empty set. Finally, InitializeTCMTree makes N0 the active node and returns τ so that

the instrumentation payloads can use it during the remainder of test coverage monitoring. We construct a

test coverage monitoring tree by executing instrumentation payloads before and after a method invocation

or a database interaction. We use the Before and After instrumentation payloads to respectively modify τdct

before and after the execution of the structural entity σ. In a conventional control flow graph Gk = 〈Nk, Ek〉,

σ corresponds to the method invocation node call mj ∈ Nk or the database interaction node Nr ∈ Nk.

Figure 6.12 provides the Before instrumentation payload for the traditional dynamic call tree. Intuitively,

the Before instrumentation adds a new node to the tree as a child of the active node and then returns the

updated TCM tree. Line 1 adds the node σ to the set of tree nodes and line 2 adds the edge (Na, σ) to the

set of tree edges. After line 3 updates the active node Na to refer to the recently added node σ, the Before

payload returns the modified DCT. Figure 6.13 provides the After algorithm that modifies τdct by updating

the tree to show that the program is returning from the current method. This algorithm uses the operation

parent(Na) to retrieve the node Np when we have (Np, Na) ∈ Eτ . The Before and After algorithms for

the DCT have a O(1) worst-case time complexity. However, these instrumentation payloads yield large test

coverage monitoring trees because they frequently store duplicate nodes within the tree.

6.4.2.2 Calling Context Trees The following Definition 6 defines the CCT τcct = 〈τdct, EF , EB,NB〉.

Since the CCT contains a DCT, it still incorporates the sets of nodes and edges, a root, and an active node.

In addition to the standard components of a DCT, the calling context tree contains EF , the set of forward

edges, EB , the set of back edges, and NB , the set of nodes that receive a back edge. We say that Nρ receives

a back edge when (Nφ, Nρ) ∈ EB. Even though τcct is not strictly a tree, we can distinguish the back edges

in EB from the other edges in Eτ . Any node Nρ ∈ NB that receives a back edge also maintains an active

back edge stack Bρ. The active back edge stack enables the After instrumentation to properly update Na

if a single node receives multiple back edges. When the CCT’s Before instrumentation adds the back edge

(Nφ, Nρ) to τcct, it also executes Bρ.push(Nφ). If Nφ is at the top of Bρ, then τcct’s active node should point
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Algorithm InitializeTCMTree(N0)
Input: Root of the Tree N0

Output: Test Coverage Monitoring Tree τ
1. Nτ ← {N0}
2. Eτ ← ∅
3. Na ← N0

4. return 〈Nτ , Eτ , Na, N0〉

Figure 6.11: The InitializeTCMTree Algorithm.

Algorithm Before(τdct, σ)
Input: Dynamic Call Tree τdct = 〈Nτ , Eτ , Na, N0〉;

Structural Entity σ
Output: Updated Dynamic Call Tree τdct = 〈Nτ , Eτ , Na, N0〉
1. Nτ ← Nτ ∪ {σ}
2. Eτ ← Eτ ∪ {(Na, σ)}
3. Na ← σ
4. return 〈Nτ , Eτ , Na, N0〉

Figure 6.12: The Before Algorithm for the Dynamic Call Tree.

Algorithm After(τdct)
Input: Dynamic Call Tree τdct = 〈Nτ , Eτ , Na, N0〉
Output: Updated Dynamic Call Tree τdct = 〈Nτ , Eτ , Na, N0〉
1. Na ← parent(Na)
2. return 〈Nτ , Eτ , Na, N0〉

Figure 6.13: The After Algorithm for the Dynamic Call Tree.
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to Nφ upon termination of the After payload. Definition 6 also states that in(Nφ) = 1 for all CCT nodes

Nφ ∈ Nτ − {N0} − NB (i.e., all nodes, except for the root and those nodes that receive back edges, must

have a unique parent).

Definition 6. A calling context tree τcct is a four tuple τcct = 〈τdct, EF , EB ,NB〉, where τdct is a dynamic

call tree, EF is the set of forward edges, EB is the set of back edges, Eτ = EB ∪EF is the full set of edges, and

NB = {Nρ : (Nφ, Nρ) ∈ EB} is the set of nodes that receive a back edge. For all nodes Nφ ∈ Nτ−{N0}−NB,

we require in(Nφ) = 1.

When a new method is called during testing, the CCT instrumentation controls the depth of the TCM

tree by examining the previously executed methods in order to find one that is the same as the newly invoked

method. If the new method call (or, database interaction) represented by the tree node Nφ is equivalent

to a node Nρ that already exists in the tree, then the instrumentation designates Nρ as the new active

node. Figure 6.14 provides a recursive implementation of the EquivalentAncestor algorithm that determines

whether Nρ is an equivalent ancestor of Nφ. Lines 1 and 2 return Nρ when the input nodes Nφ and

Nρ are equivalent. Lines 3 and 4 show that EquivalentAncestor returns null to signal that the algorithm

has reached the root without finding an equivalent ancestor for the node Nφ. Line 5 reveals that the

search for an equivalent ancestor continues with the recursive call EquivalentAncestor(τcct, Nφ, parent(Nρ))

whenever (i) the equivalent ancestor has not yet been found and (ii) the algorithm is not currently at the

root of the tree. For the example CCT in Figure 6.15, EquivalentAncestor(τcct, A, C) returns the node

A because this equivalent node exists at a higher point in the tree. However, Figure 6.15 shows that

EquivalentAncestor(τcct, D, C) returns null since the node that corresponds to the invocation of method D

is not in the test coverage monitoring tree.

Figure 6.16 gives the Before instrumentation payload for the traditional calling context tree. This algo-

rithm examines the children of the active node, denoted children(Na), in order to determine if structural

entity σ has already been invoked by the active node Na. We say that Nφ ∈ children(Na) if (Na, Nφ) ∈ Eτ .

The assignment statement on line 1 shows that the Before algorithm initially assumes that an equivalent

child has not yet been found. Line 2 through line 5 iteratively examine each node Nφ ∈ children(Na) in

order to determine if Nφ is equivalent to σ. If call mj ∈ children(Na) and σ = call mj , then line 4 makes Nφ

the active node and line 5 assigns the value of true to found. The CCT’s Before instrumentation operates

in the same manner when Nr ∈ children(Na) and σ = Nr. The Before instrumentation in Figure 6.16

terminates and returns the updated test coverage monitoring tree when σ ∈ children(Na).

The Before algorithm executes line 7 through line 16 when σ is not a child of the active node (e.g.,

found = false). Line 7 calls the EquivalentAncestor algorithm in order to determine if an ancestor of Na is

equivalent to the node σ. When the call to EquivalentAncestor on line 7 of Figure 6.16 returns null, the

algorithm executes line 9 through line 11 in order to add the node σ to Nτ and the edge (Na, σ) to Eτ . These

lines add node σ to τcct so that it is a child of the active node and then they make σ the new active node.

Line 13 through line 16 of Before create a back edge from the active node Na to σ’s equivalent ancestor Nφ.
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Algorithm EquivalentAncestor(τcct , Nφ, Nρ)
Input: Calling Context Tree τcct = 〈τdct, EF , EB,NB〉;

Calling Context Tree Nodes Nφ and Nρ

Output: Equivalent Ancestor Node Nρ

1. if Nφ = Nρ

2. then return Nρ

3. if Nρ = N0

4. then return null
5. return EquivalentAncestor(τcct, Nφ, parent(Nρ))

Figure 6.14: The EquivalentAncestor Algorithm for the Calling Context Tree.
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Algorithm Before(τcct, σ)
Input: Calling Context Tree τcct = 〈τdct, EF , EB,NB〉;

Structural Entity σ
Output: Updated Calling Context Tree τcct = 〈τdct, EF , EB,NB〉
1. found ← false
2. for Nφ ∈ children(Na)
3. do if Nφ = σ
4. then Na ← Nφ

5. found← true
6. if found = false
7. then Nφ ← EquivalentAncestor(τ, σ, parent(σ))
8. if Nφ = null
9. then Nτ ← Nτ ∪ {σ}
10. Eτ ← Eτ ∪ {(Na, σ)}
11. Na ← σ
12. else
13. Eτ ← Eτ ∪ {(Na, Nφ)}
14. EB ← EB ∪ {(Na, Nφ)}
15. Bφ.push(Na)
16. Na ← Nφ

17. return 〈τdct, EF , EB ,NB〉

Figure 6.16: The Before Algorithm for the Calling Context Tree.

Algorithm After(τcct)
Input: Calling Context Tree τcct = 〈τdct, EF , EB,NB〉
Output: Updated Calling Context Tree τcct = 〈τdct, EF , EB,NB〉
1. if Ba.size() > 0
2. then Na ← Ba.pop()
3. else
4. Na ← parent(Na)
5. return 〈τdct, EF , EB ,NB〉

Figure 6.17: The After Algorithm for the Calling Context Tree.
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Dynamic Call Chain: A → B → C → A → D → E → A

Figure 6.18: The (a) CCT with Back Edges and (b) Corresponding Active Back Edge Stack.

We also push the node Na onto Nφ’s active back edge stack Bφ and establish Nφ as the new active node.

Figure 6.18 illustrates how the the Before instrumentation manipulates the active back edge stack and adds

in the back edges. This figure shows a simple CCT and the active back edge stack after the execution of the

method call chain A → B → C → A → D → E → A during testing. Since E is at the top of BA, the After

instrumentation in Figure 6.17 will make node E the active node when it re-traces the back edge (E,A) (i.e.,

BA ensures that After follows the back edge (E,A) before it re-traces the edge (C,A)).

If we assume that line 8 through line 16 of Before execute in constant time, then the Before instru-

mentation payload in Figure 6.16 has a worst-case time complexity of O(|children(Na)| + depth(Na)). We

recursively define the depth function so that depth(N0) = 0 and depth(Nφ) = 1 + depth(parent(Nφ)). The

term |children(Na)| corresponds to the execution of line 2 through line 5. This worst-case time complexity

holds when line 1 through line 4 of Figure 6.14 execute in constant time and the EquivalentAncestor al-

gorithm is recursively invoked depth(Na) + 1 times. The worst-case behavior of EquivalentAncestor occurs

when the root is equivalent to σ, or τcct does not contain an equivalent ancestor for σ. Even though the

time overhead associated with executing Before is greater for the CCT than for the DCT, the CCT’s Before

instrumentation yields smaller TCM trees that have bounded breadth and depth [Ammons et al., 1997].

The CCT has bounded depth because it coalesces nodes and uses back edges when methods are recursively

invoked during testing (e.g., line 13 through line 16 in Figure 6.16). The CCT has bounded breadth since

it coalesces nodes when testing causes the iterative invocation of methods (e.g., line 2 through line 5 of

Figure 6.16). Like the DCT’s instrumentation, the After payload for a CCT is also O(1).
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Figure 6.19: The Structure of a Database-Aware TCM Tree.

6.4.3 Database-Aware Trees

The traditional Before and After instrumentation from Section 6.4.2 does not include functionality to observe

a database interaction and update the TCM tree. The test coverage monitor also creates a database inter-

action dynamic call tree (DI-DCT) or a database interaction calling context tree (DI-CCT). These database-

aware trees still respectively adhere to Definitions 5 and 6. However, the nodes within a DI-DCT or DI-CCT

correspond to a (i) method invocation, (ii) definition of a database entity, or (iii) use of a database entity.

The instrumentation can insert database entity nodes into the tree at all levels of interaction granularity, as

described in Figure 6.19.

Following the convention that we established in Figure 6.8, we use bold edges to connect two database

entity nodes. If a node Nφ ∈ Nτ has the database interaction node Nr ∈ Nτ as its ancestor, then Nφ must

correspond to the definition or use of a database entity. Figure 6.19 reveals that a database node must

have an interaction node as its parent and a relation node is always a child of a database node. Figure 6.19

also shows that we place attribute value nodes below the record that contains the attribute value and the

attribute nodes are children of the containing relation. We structure a TCM tree in this manner because it

ensures the correct calculation of database-aware adequacy for each test and the entire test suite. Table A10

summarizes the notation that we use to describe the database-aware instrumentation.

6.4.3.1 Instrumentation to Monitor a Database Use Figure 6.23 provides the BeforeDatabaseUse

instrumentation payload. The test coverage monitor executes this payload before the use of a database by

either a program or a test suite. The program uses the database when it executes a SQL select statement.
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Figure 6.21: The Function that Maps Relations to Records.

A test suite uses the database when it executes an oracle to compare the actual and expected database

states. Figure B3 of Appendix B provides a test case that uses a database-aware test oracle to compare

the expected and actual state of the HomeworkMaster relation in the GradeBook database. Figure 6.23

shows that BeforeDatabaseUse returns the test coverage monitoring tree that Before(τ, Nr) outputs. The

call to Before(τ, Nr) places node Nr into the TCM tree and establishes this node as the parent for all of the

database entity nodes that the instrumentation subsequently adds. The database-aware payloads invoke the

appropriate Before and After instrumentation algorithms based upon the type of the TCM tree τ . If τ is a

DCT, then BeforeDatabaseUse runs the Before instrumentation given in Figure 6.12. Alternatively, if τ is a

CCT, then line 1 of Figure 6.23 executes the Before algorithm from Figure 6.16.

Figure 6.24 furnishes the AfterDatabaseUse instrumentation that determines how a SQL select statement

uses the database. Since a select can specify attributes from multiple relations, its result set S can contain

records whose attribute values are derived from one or more relations in the database. For example, the SQL

statement “select Al, Âl from relj , r̂elj where P” will yield a result set S that mixes attribute values from

relations relj and r̂elj (for the purpose of illustration, we assume that Al is an attribute of relj , relation r̂elj

contains Âl, and P is an arbitrary predicate whose form we defined in Figure 2.1 of Chapter 2). In order

to support the correct calculation of database-aware test adequacy, the instrumentation must determine

the containing record and relation for each attribute value in the result set. For example, if relation relj

contains attribute Al and S includes an attribute value from Al, then the TCM tree must have the edge

(〈relj ,use〉, 〈Al,use〉) in order to indicate that this relation and attribute were used during testing.

AfterDatabaseUse uses the functions HR:A and HR:Rc
, as respectively defined by Figure 6.20 and Fig-

ure 6.21, to identify the attributes and records that S contains. Figure 6.20 shows that HR:A returns the set
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of all attributes Al that exist in both the result set S and the specified relation relj . We use the notation

attr(S) and attr(relj) to denote the set of attributes that are associated with S and relj , respectively. Fig-

ure 6.21 reveals that HR:Rc
outputs the set of records tk that have an attribute value tk[l] inside of both the

result set S and the relation relj . Figure 6.22 provides an example of the input and output of the functions

HR:A and HR:Rc
. The execution of the SQL select statement in Figure 6.22 yields the result set S that

contains two records. In this example, HR:A(S, relj) outputs Al because this is the only attribute that is

in both the input result set and the relation. HR:A(S, relj) does not return the attribute Âl because this

attribute exists in the relation r̂elj . The function HR:Rc
(S, relj) returns {t1, t3} since the attribute values

from these records in relj are also in S. HR:Rc
(S, relj) does not output the record t2 since it is not in S.

Figure 6.22 confirms that the functions HR:A and HR:Rc
operate in an analogous fashion when they analyze

the result set S and the relation r̂elj .

The AfterDatabaseUse(τ, Nr,S,L) payload in Figure 6.24 analyzes result set S in order to updates tree

τ after the execution of the database interaction at node Nr. The input function L(τ) returns the levels

of database interaction granularity at which we represent node Nr’s interaction. Following the convention

established in Chapter 5, we require that L(τ) ⊆ {D,R,A,Rc,Av}. If D ∈ L(τ), then the database-aware

payloads must include nodes to represent the definition and/or use of the database. When Av ∈ L(τ)

these payloads create TCM trees with nodes that represent an interaction at the attribute value level.

AfterDatabaseUse uses GetDatabase to determine which database is subject to interaction at Nr.

Since HR:A and HR:Rc
accept a relation as one of the two inputs, the AfterDatabaseUse payload also uses

the relations(S) operation to determine which relations have records in the specified result set. Figure 6.22

shows that relations(S) = {relj , r̂elj} for the example SQL select statement. The test coverage monitor uses

the Java class java.sql.ResultSetMetaData to implement HR:A, HR:Rc
, attr(S), and relations(S). For ex-

ample, this Java class provides methods such as getTableName and getColumnName. The getTableName(int

l) method returns the relation relj that contains the attribute Al and getColumnName(int l) returns the

fully qualified name for attribute Al. The test coverage monitor determines the output of attr(relj) by

consulting the relational schema for the current database.

Line 1 of Figure 6.24 initializes the variable op to use since the AfterDatabaseUse payload analyzes

a database interaction point that submits a select statement. If D ∈ L(τ), then line 4 creates node

ND = 〈Df , op〉 and line 5 executes Before(τ, ND). If a tester specifies that τ should contain relation nodes

(i.e., R ∈ L(τ)), then line 7 through line 9 iteratively create node NR = 〈relj , op〉 and add it to the TCM

tree for each relation relj ∈ relations(S). Figure 6.19 shows that the test coverage monitor places attribute

nodes below the relation node NR. Thus, AfterDatabaseUse executes line 10 through 14 in order to iteratively

place node NA = 〈Al, op〉 into τ for each attribute Al ∈ HR:A(S, relj). The use of HR:A ensures that the

parent of NA is the node for the relation relj that specifies attribute Al (i.e., node NR).

When Rc ∈ L(τ), line 16 through line 18 call Before(τ, NRc
) in order to place a node NRc

= 〈tk, op〉

into τ for each record tk in the current relation relj . We use the function HR:Rc
in order to guarantee
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Figure 6.22: Example of the Functions that Analyze a Result Set.
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Algorithm BeforeDatabaseUse(τ, Nr)
Input: Test Coverage Monitoring Tree τ ;

Database Interaction Point Nr

Output: Updated Test Coverage Monitoring Tree τ
1. return Before(τ, Nr)

Figure 6.23: The BeforeDatabaseUse Algorithm.

Algorithm AfterDatabaseUse(τ, Nr,S,L)
Input: Test Coverage Monitoring Tree τ ;

Database Interaction Point Nr;
Database Interaction Result Set S;
Levels for Representing a Database Interaction L

Output: Updated Test Coverage Monitoring Tree τ
1. op← use
2. Df ←GetDatabase(Nr )
3. if D ∈ L(τ )
4. then ND ← 〈Df , op〉
5. Before(τ, ND)
6. if R ∈ L(τ )
7. then for relj ∈ relations(S)
8. do NR ← 〈relj , op〉
9. Before(τ, NR)
10. if A ∈ L(τ )
11. then for Al ∈ HR:A(S, relj)
12. do NA ← 〈Al, op〉
13. Before(τ, NA)
14. After(τ )
15. if Rc ∈ L(τ )
16. then for tk ∈ HR:Rc(S, relj)
17. do NRc ← 〈tk, op〉
18. Before(τ, NRc )
19. if Av ∈ L(τ )
20. then for Al ∈ HR:A(S, relj)
21. do NAv ← 〈tk[l], op〉
22. Before(τ, NAv )
23. After(τ )
24. After(τ )
25. After(τ )
26. After(τ )
27. After(τ )
28. return τ

Figure 6.24: The AfterDatabaseUse Algorithm.
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that an edge (NR, RRc
) ∈ Eτ corresponds to the use of a record tk that (i) exists in the relation relj and

(ii) has one or more attribute values tk[l] in the result set S. Line 20 through line 23 of AfterDatabaseUse

invoke Before(τ, NAv
) and After(τ) to insert node NAv

into the TCM tree for each attribute value tk[l] in

the current record. The instrumentation always follows a call to Before(τ, NAv
) with an immediate call to

After(τ) because the attribute value nodes are leaves of the test coverage monitoring tree (i.e., out(NAv
) = 0

for all attribute value nodes NAv
). The AfterDatabaseUse instrumentation orders all of the calls to the Before

and After probes so that the coverage monitoring tree adheres to the structure prescribed by Figure 6.19.

6.4.3.2 Instrumentation to Monitor a Database Definition Figure 6.29’s BeforeDatabaseDefine

algorithm uses the GetRelation(Nr) operation to parse the SQL command that Nr submits to the RDBMS.

The GetDatabase and GetRelation operations use a regular expression-based parser to identify these syntac-

tical elements in the intercepted SQL statement. After GetRelation parses the intercepted SQL statement

and identifies relj as the relation subject to definition, it executes a select to extract relj ’s state. Once

this payload has stored relj , it returns the output of Before(τ, Nr) and passes control back to the program

under test. The AfterDatabaseDefine algorithm in Figure 6.30 extracts the state of the same relation after

the program under test executes a SQL update, insert, or delete command.

We use the symmetric relational difference (SRD) operator
⊗

Rc
to determine the difference between

relation relj (i.e., the relation before the execution of the interaction at Nr) and relj′ (i.e., the rela-

tion after the execution of the defining interaction). If there is a need to discern the difference between

the database record tk in the relations relj and relj′ , then we use the symmetric attribute value differ-

ence (SAVD) operator
⊗

Av
. The TCM component uses the difference operators because they enable the

instrumentation to accurately identify changes in a relation without relying upon RDBMS-specific func-

tions such as triggers. Previously developed data change detection techniques (e.g., [Chawathe et al., 1996,

Chawathe and Garcia-Molina, 1997, Labio and Garcia-Molina, 1996]) do not support test coverage moni-

toring because of their (i) focus on non-relational data or (ii) use of lossy compression algorithms. Since

the change detectors described in [Chawathe et al., 1996, Chawathe and Garcia-Molina, 1997] operate on

rooted trees with node labels, they do not fit our use of the relational data model. We could not use the

relational differencing system developed in [Labio and Garcia-Molina, 1996] because this approach uses lossy

compression to handle database snapshots that do not fit into memory. Since this scheme can overlook a

database modification, it might yield an incorrect coverage report and thus lead to improper test adequacy

measurements. To this end, the test coverage monitoring framework uses a database-aware extension of the

Myers difference algorithm in the implementation of the SRD and SAVD operators [Myers, 1986].

The following Equation (6.1) defines the
⊗

Rc
operator that considers the contents of the records in two

database relations relj and relj′ and returns those records whose contents differ. We use \Rc
to denote the

set difference operator that outputs the records that vary in the two input relations. Equation (6.2) defines

the
⊗

Av
operator that examines two database records tk and tk′ in order to return the attribute values that
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differ. The symbol \Av
stands for the set difference operator that isolates the attribute values that are not the

same in the two input records. The SRD and SAVD operators allow the AfterDatabaseDefine instrumentation

payload to precisely determine how the database interaction changes the state of the database. Table A11

in Appendix A reviews the meaning and purpose of the relational difference operators.

relj
⊗

Rc

relj′ = (relj \Rc
relj′ ) ∪ (relj′ \Rc

relj) (6.1)

tk ∈ relj
⊗

Av

tk′ ∈ relj′ = (tk \Av
tk′) ∪ (tk′ \Av

tk) (6.2)

Figure 6.25 shows the output of the SRD and SAVD operators when an update statement defines the

database. In this example, the update changes the value of t2[2] from 3 to 4. The SRD operator differs

from the traditional symmetric difference operator because it uses \Rc
instead of the set theoretic difference

operator \ (i.e., \Rc
outputs a record tk instead of the contents of the record 〈tk[1], . . . , tk[q]〉). Figure 6.25

reveals that relj \Rc
relj′ returns t2 instead of 〈t2[1], t2[2]〉, as returned by the set difference operator. After

the SRD operator isolates t2 as the modified record, we use
⊗

Av
to find t2[2], the specific attribute value

that was modified by the update statement. Unlike the traditional symmetric difference operator, the SAVD

operator identifies the modified attribute value instead of the different values of tk[l] in the two relations. For

this example, the symmetric difference of tk ∈ relj and tk ∈ relj′ would return {(t2[2], 3), (t2[2], 4)} instead

of determining that t2[2] was the only modified attribute value.

Figure 6.26 explains how the database-aware difference operators determine which record a SQL insert

statement adds to the database. In this example, the SRD operator returns t4 ∈ relj′ because this record

does not exist in relation relj . Since the insert statement places tk into the database, the SAVD operator

must return all of the attribute values within this record. The example in Figure 6.27 demonstrates that the

database-aware difference operators can also identify the record and attribute values that are removed from

relation relj by a SQL delete statement. Finally, Figure 6.28 shows that we can use the SRD and SAVD

operators determine how a SQL statement defines multiple locations within a relation. In this example, a

SQL update changes t1[2] to 22 and t2[1] to 3. The update also modifies both of the attribute values in

record t3. Figure 6.28 reveals that the use of the
⊗

Av
operator for each record tk ∈ relj

⊗
Rc

relj′ finds

each attribute value that the SQL statement defined.

Line 1 of Figure 6.30 initializes the variable op to define since the AfterDatabaseDefine analyzes an

interaction that submits a SQL update, insert, or delete statement. Line 2 determines that Nr interacts

with database Df and line 3 stores the state of the defined relation in relation relj′ . If D ∈ L(τ), then

line 5 creates the node ND = 〈Df , op〉 and line 6 calls Before(τ, ND). If a tester specifies that τ should

contain nodes concerning the definition of relations (i.e., R ∈ L(τ)), then line 8 through line 9 iteratively

construct node Nr = 〈relj , op〉 and place it in the TCM tree (the coverage monitoring framework ensures

that AfterDatabaseDefine has access to the relj that BeforeDatabaseDefine stored). Line 10 initializes the
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set Adef to the empty set. We use this set to store all of the attributes that are subject to definition at node

Nr. AfterDatabaseDefine identifies each Al ∈ Adef through the iterative application of
⊗

Rc
and

⊗
Av

on

line 12 through line 21.

If Rc ∈ L(τ), then line 12 applies the SRD operator to the relations relj and relj′ . Lines 13 and 14 of

Figure 6.30 create node NRc
= 〈tk, op〉 and place it into the tree by calling Before(τ, NRc

). If Av ∈ L(τ),

then AfterDatabaseDefine uses the SAVD operator to determine which attribute values tk[l] were defined by

the SQL statement. Line 17 through line 20 construct the defining node NAv
= 〈tk[l], op〉 and use calls to

Before and After to put this node into τ . These lines of the payload also add Al to Adef for each attribute

value tk[l]. The repeated execution of line 18 for the same attribute Al does not change the contents of Adef

since it is a set. Finally, line 22 through line 26 insert each the attribute definition node NA = 〈Al, op〉 so

that parent(NA) = NR. The AfterDatabaseDefine payload must also execute line 12 through line 21 when

A ∈ L(τ) because the instrumentation can only identify Adef by applying the SRD and SAVD operators. This

is due to the fact that the defined attributes can vary for each record tk ∈ relj
⊗

Rc
relj′ (e.g., Figure 6.28

reveals that attribute A1 is defined in t1 and both attribute A1 and A2 are defined in t2).

6.4.3.3 Worst-Case Time Complexity We characterize the worst-case time complexity of Before-

DatabaseUse, AfterDatabaseUse, BeforeDatabaseDefine, and AfterDatabaseDefine in this chapter and we

empirically evaluate the performance of the coverage monitor in Chapter 7. Table A12 summarizes the

notation that we develop in this section. Since a database-aware instrumentation probe always requires the

execution of Before and After, we consider a call to one of these traditional probes as the basic operation

(we do not incorporate the time complexity of the DCT and CCT creation probes in the complexities that

we develop here). For simplicity, these worst-case time complexities assume a fixed database Df (relaxing

this assumption simply requires that we redefine each time complexity variable as the maximum across all

databases). Our worst-case analysis of each database-aware algorithm also assumes that the TCM tree τ will

represent each database interaction at all levels of granularity (i.e., L(τ) = {D,R,A,Rc,Av}). We classify

the BeforeDatabaseUse algorithm in Figure 6.23 as O(1) because it simply invokes the Before instrumentation

probe that also has a constant worst-case time complexity.

Figure 6.24 shows that the execution time of AfterDatabaseUse depends upon the time overhead of the

relations operation and the HR:A and HR:Rc
functions. Since we implement each of these operations using a

hash table, we assume that their worst-case time complexity is O(1). The AfterDatabaseUse instrumentation

probe is O(Wf×MR:A+Wf×MR:A×MR:Rc
) whereWf stands for the total number of relations in database

Df , as previously defined in Chapter 5.2 The following Equation (6.3) definesMR:A, the maximum number

of attributes in both the relation relj and the result set S. The maximal value ofMR:A occurs when the SQL

select statement requests all of the attributes from a relation in database Df . The time complexity term

Wf ×MR:A corresponds to the iterative execution of line 7 through line 14 in Figure 6.24. The following

2Simplification of this time complexity yields O((Wf ×MR:A) + (1 +MR:Rc)). We do not use this time complexity in our
discussion of AfterDatabaseUse because it does not closely adhere to the probe’s structure.
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Figure 6.25: Example of the Database-Aware Difference Operators for the update Statement.
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Figure 6.26: Example of the Database-Aware Difference Operators for the insert Statement.
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Figure 6.27: Example of the Database-Aware Difference Operators for the delete Statement.

 

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

t1

t2

t3

A1

1

2

3

A2

2

2 3

3 4

relj

 

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

t1

t2

t3

A1

1

3

4

A2

22

33

44

relj′

relj
⊗

Rc

relj′ = (relj \Rc
relj′ ) ∪ (relj′ \Rc

relj)

= {t1, t2, t3} ∪ {t1, t2, t3}

= {t1, t2, t3}

t1 ∈ relj
⊗

Av

t1 ∈ relj′ = {t1[2]}

t2 ∈ relj
⊗

Av

t2 ∈ relj′ = {t2[1]}

t3 ∈ relj
⊗

Av

t3 ∈ relj′ = {t3[1], t3[2]}

Figure 6.28: An Additional Example of the Database-Aware Difference Operators.
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Algorithm BeforeDatabaseDefine(τ, Nr)
Input: Test Coverage Monitoring Tree τ ;

Database Interaction Point Nr

Output: Updated Test Coverage Monitoring Tree τ
1. relj ←GetRelation(Nr)
2. return Before(τ, Nr)

Figure 6.29: The BeforeDatabaseDefine Algorithm.

Algorithm AfterDatabaseDefine(τ, Nr,L)
Input: Test Coverage Monitoring Tree τ ;

Database Interaction Point Nr;
Levels for Representing a Database Interaction L

Output: Updated Test Coverage Monitoring Tree τ
1. op← define
2. Df ←GetDatabase(Nr )
3. relj′ ←GetRelation(Nr)
4. if D ∈ L(τ )
5. then ND ← 〈Df , op〉
6. Before(τ, ND)
7. if R ∈ L(τ )
8. then NR ← 〈relj , op〉
9. Before(τ, NR)
10. Adef ← ∅
11. if Rc ∈ L(τ ) ∨A ∈ L(τ )
12. then for tk ∈ (relj

N

Rc
relj′)

13. do NRc ← 〈tk, op〉
14. Before(τ, NRc)
15. if Av ∈ L(τ ) ∨A ∈ L(τ )
16. then for tk[l] ∈ (tk ∈ relj

N

Av
tk ∈ relj′)

17. do NAv ← 〈tk[l], op〉
18. Adef ← Adef ∪ {Al}
19. Before(τ, NAv )
20. After(τ )
21. After(τ )
22. if A ∈ L(τ )
23. then for Al ∈ Adef

24. do NA ← 〈Al, op〉
25. Before(τ, NA)
26. After(τ )
27. After(τ )
28. After(τ )
29. After(τ )
30. return τ

Figure 6.30: The AfterDatabaseDefine Algorithm.
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Equation (6.4) defines MR:Rc
, the maximum number of records that have an attribute value in both relj

and S. The variable MR:Rc
takes on its greatest value when the select’s where clause predicate matches

every record in the specified relation. The time complexity termWf ×MR:A×MR:Rc
refers to the iterative

execution of line 16 through line 23 for each relj ∈ relation(S).

MR:A = max{ |HR:A(S, relj)| : relj ∈ relations(S) } (6.3)

MR:Rc
= max{ |HR:Rc

(S, relj)| : relj ∈ relations(S) } (6.4)

The BeforeDatabaseDefine instrumentation probe in Figure 6.29 has a worst-case time complexity of

O(tmax) where tmax = max{ |relj | : relj ∈ Df } is the maximum number of records in the database

Df . For the derivation of this time complexity, we take the return of an individual database record as

the basic operation. We characterize BeforeDatabaseDefine in this manner because the instrumentation

calls GetRelation(Nr) in order to extract the state of the relation that is subject to interaction at node

Nr. Figure 6.30 shows that the execution time of AfterDatabaseDefine depends on the time overhead of

the SRD and SAVD operators. Our derivation of the time complexity for
⊗

Rc
and

⊗
Av

leverages the

prior analytical evaluation of the Myers difference algorithm upon which we base our operators [Myers,

1986]. Using the notation that we established in Chapter 5, our analysis assumes that relj = {t1, . . . , tu},

relj′ = {t1, . . . , tu′}, and each tk = 〈tk[1], . . . , tk[q]〉 (i.e., relj and relj′ are respectively of length u and u′

and all of the records in relj and relj′ are of length q). The SRD(j, j ′) term defined in Equation (6.5) is the

worst-case time complexity for the execution of relj
⊗

Rc
relj′ on line 12 of AfterDatabaseDefine. We use the

notation Λ(j, j′) to denote the length of the longest common subsequence (LCS) between relations relj and

relj′ . For more details about the computation of Λ(j, j ′), please refer to [Hirschberg, 1977, Ullman et al.,

1976]. Equation (6.5) reveals that the worst-case time complexity of the SRD operator is a function of the

sum of the lengths of relj and relj′ (i.e., u + u′) and the length of the LCS for the relations (i.e., Λ(j, j ′)).3

SRD(j, j′) = 2× (u + u′)× (u + u′ − Λ(j, j′)) (6.5)

The SAVD(k, j, j′) term defined in Equation (6.6) is the worst-case time complexity of the SAVD operator

that AfterDatabaseDefine executes on line 16 of Figure 6.30. The notation Λ(k, j, j ′) stands for the length

of the LCS between records tk ∈ relj and tk ∈ relj′ . The following Equation (6.6) is not the same as

Equation (6.5) because we (i) apply the SRD operator to relations of different lengths and (ii) always use

the SAVD operator to difference two records of the same length (the records have identical lengths because

they come from the before and after snapshots of the same relation). The worst-case analysis of
⊗

Rc
and

⊗
Av

reveals that these operators will perform well when the (i) input relations and records are small and (ii)

size of the longest common subsequence is large (these performance trends have also been confirmed in prior

empirical studies [Miller and Myers, 1985, Myers, 1986]). We judge that condition (i) will frequently hold for
⊗

Rc
because testers often use small relations during the testing of a database-centric application. Condition

3Since differencing algorithms are not the focus of this chapter, we do not present the derivation of Equation (6.5) and
Equation (6.6). A more thorough treatment of the worst-case time complexity for the Myers difference algorithm is available
in [Myers, 1986].
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Instrumentation Algorithm Worst-Case Time Complexity

Before (DCT) O(1)

After (DCT) O(1)

Before (CCT) O(|children(Na)|+ depth(Na))

After (CCT) O(1)

BeforeDatabaseUse O(1)

AfterDatabaseUse O(Wf ×MR:A +Wf ×MR:A ×MR:Rc
)

BeforeDatabaseDefine O(tmax)

AfterDatabaseDefine O(SRD(j, j ′) + |Amax|+ |
⊗

Rc
| × SAVD(k, j, j′)× |

⊗
Av
|)

Table 6.2: Summary of the Time Complexities for the Instrumentation Probes.

(i) will also hold for
⊗

Av
because many databases have a small to moderate number of attributes per relation.

Since the SQL insert statement only modifies a single record in a relation, this suggests that condition (ii)

is true for both the SRD and SAVD operators. It is possible that an update or delete statement could

remove many of the records from relation relj and yield large values for Λ(j, j ′) and Λ(k, j, j′). However, an

examination of the behavior of our case study applications suggests that most tests cause the program to

update or delete a small number of records.

SAVD(k, j, j′) = 4q × (2q − Λ(k, j, j ′)) (6.6)

We categorize the AfterDatabaseDefine instrumentation as O(SRD(j, j ′) + |Amax| + |
⊗

Rc
| ×

SAVD(k, j, j′) × |
⊗

Av
|) where Equation (6.5) and Equation (6.6) respectively define SRD(j, j ′) and

SAVD(k, j, j′). We use |
⊗

Rc
| to denote the cardinality of the set that results from executing relj

⊗
Rc

relj′

and we define |
⊗

Av
| in a similar manner. This time complexity corresponds to the circumstance when

AfterDatabaseDefine (i) applies the SRD operator to relations relj and relj′ (line 12), (ii) uses the SAVD

operator for each tk ∈ (relj
⊗

Rc
relj′ ) (line 16 through line 20), and (iii) iteratively invokes Before and After

for each Al ∈ Adef (line 23 through line 26). The |Amax| term in the time complexity for AfterDatabaseDe-

fine refers to the iterative execution of line 24 through line 26 for each attribute Al ∈ Adef . We define

Amax as the maximum number of attributes that differ in the relations relj and relj′ . Amax takes on its

greatest value when the SQL statement defines all of the attributes in relation relj . Therefore, the value of

Amax depends upon the structure of the SQL update, insert, or define that Nr submits to the database.

Table 6.2 reviews the worst-case time complexity for each of the instrumentation probes that this chapter

describes. This table suggests that (i) it is more costly to create a CCT than it is to produce a DCT and

(ii) the construction of a DI-CCT will incur a greater time overhead than the creation of a DI-DCT. These

worst-case time complexities also indicate that it is less time consuming to create a traditional TCM than

it is to make a database-aware tree.
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Figure 6.31: (a) Before and (b) After the Introduction of the Database-Aware Instrumentation.

6.4.4 Inserting the Database-Aware Instrumentation

As discussed in Section 6.3.2, our test coverage monitoring component introduces the instrumentation pay-

loads in either a static or a dynamic fashion. Figure 6.31(a) shows a partial control flow graph before we

introduce the instrumentation. In this example, the σ node corresponds to either a method invocation

(e.g., call mk) or a database interaction (e.g., Nr). If σ is a method call, then we insert a call to the

Before(τ, σ) payload for either the DCT or the CCT. We introduce a call to BeforeDatabaseUse(τ, Nr) or

BeforeDatabaseDefine(τ, Nr) when σ corresponds to a database interaction point. If Nr submits a SQL state-

ment that contains a statically detectable operation (e.g., the select operation is specified in the SQL string),

then we add a call to the appropriate database-aware instrumentation. However, if static analysis does not

reveal whether Nr submits a defining or a using SQL statement, then we insert a call to a BeforeDatabase

instrumentation probe that (i) dynamically determines the type of the database interaction point (DIP) and

(ii) uses this DIP type information to invoke either the BeforeDatabaseUse or BeforeDatabaseDefine payload.

For example, if the BeforeDatabase probe determines that Nr submits a SQL delete statement during test-

ing, then the coverage monitor invokes BeforeDatabaseDefine. The use of the intermediate BeforeDatabase

probe ensures that we invoke the correct payload at the expense of increasing the testing time.

For each CFG Gk = 〈Nk, Ek〉, we insert a call to one of the Before payloads by first removing each

edge (Nφ, σ) ∈ Ek for all nodes Nφ ∈ pred(σ). The instrumentor also adds the edge (Nφ,Before(τ, σ)) to

Ek for each predecessor node Nφ. The insertion of the edge (Before(τ, σ), σ) completes the introduction

of the Before payload. If σ corresponds to a method invocation, then the instrumentation component
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Figure 6.32: Connecting the CFGs for Adjacent Test Cases.

places a call to After(τ) in the control flow graph. We introduce the traditional After payload by first

removing the edge (σ, Nφ) ∈ Ek for each node Nφ ∈ succ(σ). Next, we add the edge (σ,After(τ)) and

introduce (After(τ), Nφ) for all nodes Nφ ∈ succ(σ). The instrumentor adds one of the AfterDatabaseUse,

AfterDatabaseDefine, or AfterDatabase instrumentation payloads into the control flow graph when σ is a

database interaction. We place a call to the appropriate After payload when the type of the database

interaction is statically detectable and we use the AfterDatabase instrumentation to dynamically dispatch to

the correct instrumentation otherwise. Figure 6.31(b) shows a control flow graph after the introduction of the

test coverage monitoring instrumentation. Even though this instrumented CFG contains probes to construct

a traditional TCM tree, the replacement of Before(τ, σ) and After(τ) with the equivalent database-aware

probes will support the creation of either a DI-DCT or a DI-CCT.

6.5 CALCULATING TEST ADEQUACY

6.5.1 Representing Database-Aware Test Suites

The test coverage monitor records coverage information so that we can calculate adequacy on either a per-test

or per-test suite basis. A test suite is a collection of test cases that invoke program operations and inspect

the results in order to determine if the methods performed correctly. Definition 7 defines a test suite T that

tests a database-centric application and Table A13 in Appendix A summarizes the notation developed in

this section. The notation ∆i = Ti(∆i−1) means that test case Ti was executed with input test state ∆i−1

and subsequently produced test state ∆i. Intuitively, the state of a database-centric application includes

the values of all of the program’s variables and the state of the databases with which the program interacts

during testing.

Definition 7. A test suite T is a triple 〈∆0, 〈T1, . . . , Tn〉, 〈∆1, . . . , ∆n〉〉, consisting of an initial test state, ∆0,

a test case sequence 〈T1, . . . , Tn〉 for state ∆0, and expected test states 〈∆1, . . . , ∆n〉 where ∆i = Ti(∆i−1)

for i = 1, . . . , n.

124



PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

Id : icfgtestcallsmethod.ladot, v1.32006/07/3118 : 57 : 52gkapfhamExp

Revision : 1.3

enter Ti

. . .

call mk

enter mk

. . .

exit mk

return mk

. . .

exit Ti

enter Ti

enter Ti

. . .

∈ Ei

. . .

call mk

∈ Ei

call mk

enter mk

∈ ET

enter mk

. . .

∈ Ek

. . .

exit mk

∈ Ek

∈ Ek

exit mk
return mk

∈ ET

∈ ET

return mk

. . .

∈ Ei . . .

exit Ti

∈ Ei

∈ Ei

∈ Ei

∈ Ei

exit Ti

Figure 6.33: Connecting a Test Case to a Method Under Test.

In order to calculate adequacy in a per-test and per-test suite manner, we must determine which methods

are tested by each test case. To this end, we describe an interprocedural representation that models the

(i) flow of control within an individual test and (ii) connection between each test case in the test suite.

Definition 8 states the condition under which we classify the two test cases Ti and Tj as adjacent. Ti and

Tj are adjacent if the test case sequence 〈T1, . . . , Tn〉 contains the subsequence 〈Ti, Tj〉 (i.e., Ti = Tj−1).

Definition 9 defines the interprocedural control flow graph representation for a test suite T = 〈T1, . . . , Tn〉

that tests a program P . A control flow graph Gi = 〈Ni, Ei〉 for test Ti contains nodes enter Ti, exit Ti ∈ Ni

that respectively demarcate the unique entry and exit points of the test case. We construct the test suite

ICFG GT so that the method execute T controls the execution of the test suite. The execute T method

runs each test in turn and handles the failure of an individual test case. Figure 6.32 shows that we connect

the control flow graphs Gi ∈ ΓT and Gj ∈ ΓT when the test cases Ti and Tj are adjacent. We also connect

the CFGs Gi ∈ ΓT and Gk ∈ ΓP when a test case Ti executes method mk, as depicted in Figure 6.33.

Definition 8. Test cases Ti and Tj are adjacent if and only if Ti, Tj ∈ 〈T1, . . . , Tn〉 and Ti = Tj−1.

Definition 9. An interprocedural test control flow graph GT = 〈ΓT , ET 〉 consists of the set of intraprocedural

control flow graphs ΓT and the set of edges ET . For each test case Ti ∈ 〈T1, . . . , Tn〉, there exists a Gi ∈ ΓT .

The CFG Gexec = 〈Nexec, Eexec〉 ∈ ΓT represents the test execution method execute T . For any adjacent test

cases Ti and Tj there exists (i) CFGs Gi, Gj ∈ ΓT , (ii) call Ti, return Ti ∈ Nexec, (iii) call Tj , return Tj ∈

Nexec, (iv) enter Ti, exit Ti ∈ Ni, (v) enter Tj , exit Tj ∈ Nj , and (vi) edges that connect these nodes

according to Figure 6.32. For a test case Ti that tests method mk there exists (i) Gi ∈ ΓT and Gk ∈ ΓP ,

(ii) enter Ti, exit Ti, call mk, return mk ∈ Ni, (iii) enter mk, exit mk ∈ Nk, and (iv) edges that connect

these nodes according to Figure 6.33.
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Figure 6.34: A Partial Interprocedural Control Flow Graph for a Test Suite.

Figure 6.34 depicts a partial ICFG for a test suite T = 〈T1, . . . , Tn〉. In an attempt to preserve simplicity,

this schematic uses nodes with the label “. . .” to denote arbitrary ICFG nodes and edges. Figure 6.34

shows that the CFG Gexec contains nodes that transfer control to each of the test cases. For example,

the edge (enter execute T = 〈T1, . . . , Tn〉, call T1) represents a transfer of control to test T1 and the edge

(return Tn, enter execute T = 〈T1, . . . , Tn〉) indicates the completion of both Tn and the termination of the

test execution method. Test case Ti’s CFG Gi = 〈Ni, Ei〉 contains zero or more test oracle execution nodes

Nθ ∈ Ni. The node Nθ corresponds to the execution of an oracle θ that compares the actual test state ∆a

to the expected test state ∆x. If ∆x = ∆a, then the test oracle returns true and the successor node Npass Ti

records the passing outcome of this test. If ∆x 6= ∆a, then the test oracle returns false and the successor

node Nfail Ti registers the failure of Ti. Figure 6.34 shows that the failure of the oracle at Nθ triggers the

termination of test case Ti and then the halt of the entire test suite T . Whenever Nθ returns true, test suite

execution continues until either all of the tests have correctly executed or an oracle failure is encountered.

6.5.2 Calculating Data Flow-Based Adequacy

Since a failing test case suggests that there is a defect in the program under test, we focus on calculating the

adequacy of a passing test case Ti and test suite T . Focusing on the calculation of adequacy for a passing

test suite is prudent because the failure of the program under test might prevent our instrumentation from

capturing all of the covered test requirements. We classify a test case Ti as passing if all oracle nodes Nθ ∈ Ni

return true for a test CFG Gi = 〈Ni, Ei〉. A test suite T = 〈T1, . . . , Tn〉 is passing if all of T ’s test cases are

also passing. The following Equation (6.7) provides the means for calculating adeq(Ti), the adequacy of a
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test case Ti. This equation shows that the adequacy of a test case Ti is the number of covered requirements

divided by the total number of test requirements. This equation uses U(i) to denote the set of methods that

are tested by test case Ti. During the static analysis that enumerates U(i), the test adequacy component

follows the edges between adjacent test cases until it finds the CFG for Ti. For an interprocedural test CFG

GT = 〈ΓT , ET 〉, we know that Gk ∈ U(i) when call mk ∈ Ni for a test case CFG Gi ∈ ΓT . For example,

Figure 6.33 reveals that test case Ti tests method mk. Equation (6.7) uses υ(i, k) to denote the set of test

requirements that Ti covered during the testing of method mk and χ(k) to stand for the complete set of

requirements for mk.

adeq(Ti) =

∑
Gk ∈ U(i) |υ(i, k)|

∑
Gk ∈ U(i) |χ(k)|

(6.7)

We traverse a test coverage monitoring tree in order to identify υ(i, k). For example, suppose that we

test a database-centric application at the relation level (i.e., R ∈ L(τ)) and method mk contains a database

interaction association involving relation relj (i.e., 〈Ndef, Nuse, relj〉 ∈ χ(k)). If Ti tests method mk (i.e.,

Gk ∈ U(i)) and it causes mk to define and use relj , then we mark the database interaction association

〈Ndef, Nuse, relj〉 as covered. We know that the test covers this DIA if testing yields a TCM tree τ that

contains the nodes NR1
= 〈relj ,def〉 and NR2

= 〈relj ,use〉 such that (i) call Ti is an ancestor of call mk

and (ii) call mk is an ancestor of nodes NR1
and NR2

. In the context of data flow testing, we use the

database-aware test adequacy component described in Chapter 5 to enumerate χ(k). For an interprocedural

CFG GP = 〈ΓP , EP 〉, Equation (6.8) defines the adequacy of an entire test suite T as the number of covered

requirements divided by the total number of requirements over all methods Gk ∈ ΓP .

adeq(T ) =

∑
Gk∈ΓP

|υ(k)|∑
Gk∈ΓP

|χ(k)|
(6.8)

6.6 CONCLUSION

This chapter presents a database-aware coverage monitoring technique. We explain why it is challenging to (i)

instrument a database-centric application and (ii) accurately and efficiently store the test coverage monitoring

results. This chapter also introduces the database interaction dynamic call tree (DI-DCT) and the database

interaction calling context tree (DI-CCT) and reveals how we use these trees to calculate the adequacy of a

test suite. In particular, we provide a formal definition of each test coverage monitoring tree and we describe

the instrumentation probes that construct a tree. We show how to insert database-aware instrumentation

probes before and after the execution of both a program method and a database interaction. Finally, we

explain how to use (i) an interprocedural representation of a program’s test suite and (ii) the TCM tree in

order to calculate adequacy on a per-test and per-test suite basis. Chapter 7 describes the implementation

of the database-aware test coverage monitoring component and presents empirical performance results for

this key element of our testing framework. Chapter 8 presents a regression testing technique that leverages

the output of the test coverage monitor.
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7.0 TEST COVERAGE MONITORING COMPONENT

7.1 INTRODUCTION

This chapter describes the test coverage monitoring component that (i) instruments a database-centric

application and (ii) creates and stores a test coverage monitoring tree. We explain how the coverage monitor

uses aspect-oriented programming (AOP) techniques to statically and dynamically instrument the program

and the test suite. This chapter also shows how the monitoring component leverages existing compression

algorithms to reduce the size of the coverage report. The chapter describes the goals and design for an

experiment to measure the performance of our approach to database-aware test coverage monitoring. We

conducted experiments to measure the time required to statically instrument the case study applications.

We also performed experiments to identify the impact that the coverage monitoring instrumentation has

on the static size of each application. Finally, we empirically evaluated how different configurations of the

coverage monitor increase test suite execution time and we characterize the size and structure of the test

coverage monitoring trees. In summary, this chapter includes:

1. A high level overview of the different configurations of the database-aware test coverage monitor (Sec-

tion 7.2).

2. Details about the implementation of the instrumentation technique and the test coverage monitoring

trees (Section 7.3)

3. The design of an experiment to measure the performance of the coverage monitor, an overview of the

experimental results, and a discussion of the steps that we took to control the threats to experiment

validity (Sections 7.4, 7.5, and 7.7).

4. An empirical evaluation of the costs that are associated with instrumenting the program and the test

suite (Section 7.6.1) and monitoring coverage during test suite execution (Section 7.6.2).

5. An identification of the relationship between the size, structure, and compressibility of a TCM tree and

the configuration of the coverage monitoring component (Sections 7.6.3 and 7.6.4)

7.2 OVERVIEW OF THE COVERAGE MONITORING COMPONENT

Figure 7.1 depicts the different ways that we can configure the test coverage monitoring component. This

tree shows that we can introduce the instrumentation probes in either a dynamic or a static fashion, as
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Configuration of the Test Coverage Monitor

Instrumentation Tree Format Tree Type Tree Storage

Static Dynamic

Source Code Bytecode

Binary XML Traditional Database-Aware

CCT DCT Interaction Level DI-DCT DI-CCT

Database Relation Attribute Record Attribute Value
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Figure 7.1: Different Configurations of the Test Coverage Monitoring Component.

discussed in Chapter 6. We use aspect-oriented programming (AOP) techniques and the AspectJ program-

ming language in order to place the TCM probes before and after method calls and database interaction

points [Elrad et al., 2001, Kiczales et al., 2001a]. Figure 7.1 shows that the use of AspectJ enables us to

statically insert the instrumentation into either the source code or the Java bytecode of the case study ap-

plications. The dynamic instrumentation technique always places the coverage monitoring probes into the

bytecode of a Java application. Our monitoring framework records coverage information in a TCM tree and

the component can store this tree in either a binary or an eXtensible Markup Language (XML) format.

Since we implemented the TCM component in the Java programming language, we use Java’s serialization

mechanism to store the trees in a binary format. The coverage monitor supports a binary format because

this representation may result in reduced storage requirements [Geer, 2005].

Our testing framework also maintains the TCM trees in XML because this text-based encoding enables

independence from execution environment factors such as the computer architecture, operating system, and

programming language [Ferragina et al., 2006, Lin et al., 2005]. Since XML uses markup tags to express the

structure of the TCM tree and the markup is repeated for each node, the trees often consume a significant

amount of storage. However, several recently developed compression algorithms can substantially reduce

the size of the trees that we encode in XML [Ferragina et al., 2006, Liefke and Suciu, 2000, Lin et al., 2005,

Ng et al., 2006]. It is also possible to store the XML-based trees in an XML database (e.g., TIMBER

[Jagadish et al., 2002]) and this would enable a tester to issue queries about the state and structure of the

tree during the debugging process [Lin et al., 2005, Shasha et al., 2002]. For example, the tester might wish

to determine which failing test case(s) interact with a certain relation or attribute in a database. Figure 7.1

shows that the coverage monitor can either produce a traditional tree (e.g., DCT or CCT) or a database-aware

tree (e.g., DI-DCT or DI-CCT). If the tree is database-aware, then we must also configure the monitoring

component to record coverage at a certain level of interaction granularity (e.g., relation or attribute value).
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pointcut executeMethod(): chosenClass() && execution(* *(..));

(a)

pointcut chosenClass(): (within(gradebook.*) ||

within(org.hsqldb.sample.*) || within(reminder.*) ||

within(com.runstate.pithy.*) || within(student.*) ||

within(TransactionAgent.*));

(b)

before(): executeMethod() && if(monitorEnabled){ < . . . > }

(c)

Figure 7.2: AspectJ Pointcuts and Advice for the Before Instrumentation Probe.

7.3 IMPLEMENTATION OF THE COVERAGE MONITOR

7.3.1 Instrumentation

The AspectJ language supports the introduction of arbitrary code segments at certain join points within

a Java application. A join point is a well-defined location in the control flow graph of a program. For

example, AspectJ can identify join points related to the execution of (i) a method or a constructor, (ii) an

exception handler, or (iii) a reference to a field of an object. We use AspectJ to define pointcuts that identify

specific join points and the values that are available at these points. For example, Figure 7.2(a) describes

the executeMethod pointcut that is part of the coverage monitoring framework. The execution(* *(..))

portion of this pointcut indicates that we want AspectJ to monitor the execution of all the methods and

constructors that occur within chosenClass(). Figure 7.2(b) shows that we currently define chosenClass()

to include all of the case study applications that we described in Chapter 3. Figure 7.2(c) provides an example

of advice that will be executed when the executeMethod pointcut occurs during test suite execution. The

body of the advice for executeMethod can invoke the Before instrumentation probe that we defined in

Chapter 6. The test coverage monitor contains additional pointcuts and before and after advice that we

use to construct the DCT, CCT, DI-DCT, and DI-CCT. For more details about aspect-oriented programming

and the AspectJ language, please refer to [Elrad et al., 2001, Kiczales et al., 2001a].

A single execution of the static instrumentor can introduce the monitoring probes into one or more

case study applications. We say that the instrumentor operates in batch mode when it inserts TCM probes

into multiple applications during a single run. Since static instrumentation normally increases the size of an

application’s bytecode, the coverage monitoring framework incorporates compression algorithms such as Pack

[Pugh, 1999]. This compression technique is specifically designed to reduce the size of Java bytecodes and it is

now fully integrated into the Java 1.5 libraries and virtual machine. Bytecode compression techniques reduce

the cost of transmitting the statically instrumented application across a network or storing it on a file system.

Figure 7.3 provides an overview of the dynamic instrumentation process. Our goal is to correctly instrument

the program and the test suite with minimal time overhead. The static instrumentation technique places

130



Program and Test Suite Classes
Dynamic Instrumentor

JVMTI or Class Loader

Instrumented 
 Classes

Java Virtual Machine

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

Figure 7.3: Overview of the Dynamic Instrumentation Process.

probes into the all of the classes of the program and the test suite. Currently, we use a load-time technique

to dynamically instrument the program and the tests on a per-class basis. Identifying the appropriate unit of

instrumentation is a trade-off between (i) instrumenting only those program units that are actually executed

during testing and (ii) minimizing the number of calls to the dynamic instrumentation module.

Relying on per-class instrumentation could inefficiently force the insertion of TCM probes into methods

that will never be used during test suite execution. However, our per-class instrumentation scheme is simple

and it greatly minimizes the number of separate invocations of the instrumentor. Per-class instrumentation

is also an efficient approach when the test suite invokes the majority of the methods within the case study

application. We judge that it is likely that the tests will execute most of the program’s methods since method

coverage is often used to measure the adequacy of a test suite [Zhu et al., 1997]. Figure 7.3 shows that the

current prototype uses either the Java Virtual Machine Tool Interface (JVMTI) or a custom Java class loader

to introduce the probes. Prior testing and analysis techniques frequently use one or both of these interfaces

(or, the JVMTI’s precursor, the JVM Profiler Interface) during the instrumentation or observation of a Java

program (e.g., [Binder, 2005, Dufour et al., 2003, Zhuang et al., 2006]). We will investigate the different

granularities at which we can introduce instrumentation in future work, as further discussed in Chapter 9.

We designed the dynamic instrumentor so that it only places probes in the classes that are a part of the

program and the test suite.

7.3.2 Tree Format and Storage

Since the test coverage monitoring trees record the behavior of the program during testing, they must be

stored in order to support debugging and/or automatic fault localization. We performed experiments to

determine how the encoding of a test coverage monitoring tree would impact the size of the trees. Our

preliminary experimental results suggested that the binary encoding was more compact than the text-based

XML representation for the same TCM tree. For example, a dynamic call tree that represents ten method

invocations was 1497 bytes when stored in a binary format and 9762 bytes in XML. For this simple TCM tree,

the XML encoding yields a file size that is 552% greater than the binary representation. The experimental

results in Section 7.6 suggest that the difference between the two representations is even more marked for

larger coverage monitoring trees. However, recent empirical results reveal that XML files often exhibit

better compressibility than binary files [Liefke and Suciu, 2000]. In fact, several of our experiments also

demonstrate that the XML-aware compression techniques yield an XML-based tree that is smaller than the

compressed version of the binary tree. Finally, recent XML compression algorithms create a compressed

format that enables a tester to query the compressed XML file without completely decompressing the tree
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[Lin et al., 2005, Ferragina et al., 2006]. In an attempt to (i) reduce storage requirements and (ii) speed

up the network transmission of the coverage reports, we leverage traditional compression algorithms such

Gzip and Zip [Lelewer and Hirschberg, 1987, Morse, 2005] to compress the binary trees and we use XMill

[Liefke and Suciu, 2000] and XMLPPM [Cheney, 2001] to shrink the XML trees.1

7.4 EXPERIMENT GOALS AND DESIGN

The primary goal of the experiments is to measure the performance of the test coverage monitoring compo-

nent. Section 7.6 formally defines each evaluation metric and then describes the results from applying the

TCM component to each of the case study applications. We implemented the current version of the test

coverage monitor with the Java 1.5 and AspectJ 1.5 programming languages. Even though our implemen-

tation of the TCM component supports dynamic instrumentation with either the JVM tools interface or

a custom class loader, the experiments focus on measuring the performance of the class loading approach.

Since most Java virtual machines (e.g., the Sun JVM and the Jikes RVM) use the same type of class loader

interface, this choice ensures that our experimental results are more likely to generalize to other execution

environments. We also designed the experiment in this manner because our preliminary results revealed

that the “heavy weight” JVMTI introduced significant time overheads, in confirmation of prior results

[Popovici et al., 2002]. In future work we will also evaluate the performance of dynamic instrumentation

with the JVMTI and recent JVM-based techniques that dynamically introduce the instrumentation (e.g.,

[Bockisch et al., 2006, Golbeck and Kiczales, 2007]). We configured the static instrumentation technique to

operate on the bytecode of a case study application. In future research, we will evaluate the performance of

statically instrumenting the (i) Java source code and (ii) different combinations of source code and bytecode.

Since the time overhead metrics varied across each trial, we calculate arithmetic means and standard

deviations for all of these timings (the space overhead and tree characterization metrics did not vary across

trials). The standard deviation measures the amount of dispersion in the recorded data sets and higher

values for this descriptive statistic suggest that the data values are more dispersed. When we plot a bar

chart, we place a standard deviation error bar at the top of the bar and we use a diamond when the standard

deviation is small. We also use a box and whisker plot to visually compare the experiment results from

different configurations of the coverage monitor. Unless specified otherwise, the box spans the distance

between the 25% and 75% quantile and the whiskers extend to cover the non-outlying data points. The qth

quantile is the point at which q% of the recorded data points fall below and 1 − q% fall above a specific

data value. Our box and whisker plots represent data outliers with small square shaped points. We plot an

empirical cumulative distribution function (ECDF) to support further examination of a data set. An ECDF

gives the cumulative percentage of the recorded data set whose values fall below a specific value. For more

details about these statistical analysis and visualization techniques, please refer to [Dowdy et al., 2004].

1XMill and XMLPPM do not directly support the querying of a compressed XML file. We were not able to use the
compression techniques that provide this functionality (e.g., [Lin et al., 2005, Ferragina et al., 2006]) because they were not
freely distributed at the time of writing.
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We performed all of the experiments on a GNU/Linux workstation with kernel 2.6.11-1.1369, a dual

core 3.0 GHz Pentium IV processor, 2 GB of main memory, and 1 MB of L1 processor cache. In order

to improve performance, we implemented portions of the TCM component in a multi-threaded fashion and

we configured the workstation to use the Native POSIX Thread Library (NPTL) version 2.3.5. We always

executed the static instrumentor in ten separate trials for each case study application. For each possible

configuration of the coverage monitor (c.f. Figure 7.1), we ran the test suite ten times. Section 7.6 provides

a definition of each evaluation metric and explains how we measured it during experimentation. Table C2

summarizes each of these metrics and Table A14 explains the additional notation that we use during the

discussion of the experimental results.

7.5 KEY INSIGHTS FROM THE EXPERIMENTS

The experimental results in Section 7.6 complement Chapter 6’s analytical evaluation of the TCM instrumen-

tation probes. Due to the comprehensive nature of our empirical evaluation, we offer the following insights

from the experiments:

1. Static Instrumentation

a. Time Overhead: The static instrumentation technique requires less than six seconds to insert cov-

erage probes into a database-centric application. A batch approach to instrumentation can attach

the probes to six applications in less than nine seconds. Across all applications, the instrumentation

of a program and its test suite requires no more than five seconds.

b. Space Overhead: For all of the studied applications, static instrumentation increases the space

overhead by 420% on average. We judge that this increase is acceptable because it successfully

controls the time overhead of coverage monitoring.

2. Test Suite Execution

a. Type of Instrumentation: The use of statically introduced probes lengthens testing time by 12.5%

while dynamic instrumentation causes a 52% increase in test execution time.

b. Type of Coverage Tree: Calling context trees are less expensive to produce than the dynamic call

tree. Using static instrumentation to create a TCM tree respectively increases testing time by 12.5%

and 26.1% for the CCT and DCT.

c. Interaction Level: Using a CCT to record coverage at the finest level of database interaction gran-

ularity (e.g., attribute value) only increases testing time by 54%.

d. Storing the Coverage Tree: The time required for tree storage ranges from less than 200 milliseconds

for the binary CCT to three seconds for the XML-based DCT.

3. Test Coverage Trees

a. Number of Nodes and Edges: The CCT has node and edge counts that range from 144 at the

program level to 22992 at the level of attribute values. The number of DCT nodes ranges from a

minimum of 433 to a maximum of 87538.
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b. Memory Size: The in-memory size of the TCM trees ranges from 423 KB to almost 24 MB. Small

TCM trees place little, if any, pressure on the memory subsystem of the JVM while the largest trees

require an increase in heap storage space.

c. File System Size: The XML encoding yields TCM trees that are larger than the binary encoding

of the same tree. Yet, XML-aware compression algorithms can considerably reduce the size of the

coverage report.

d. Tree Characterization: The coverage trees are normally “short” and “bushy,” in confirmation of pre-

vious empirical studies [Ammons et al., 1997]. A DI-CCT at the finest level of database interaction

granularity often consumes less space overhead than a traditional DCT.

7.6 ANALYSIS OF THE EXPERIMENTAL RESULTS

7.6.1 Instrumentation

The static instrumentor can insert the coverage monitoring probes into one or more applications. We measure

Tinstr(A), the time required to statically instrument the applications in the set A. For example, if A = {FF},

then the TCM component will introduce the probes into the FindFile case study application. Alternatively,

if A′ = {FF, GB, TM}, then the instrumentation module operates in batch mode and places probes into the

FindFile, GradeBook, and TransactionManager applications. We report the increase and percent increase

in Tinstr when we perform static instrumentation with the application set A′ instead of A and A ⊂ A′.

Equation (7.1) defines the increase in Tinstr when we replace the application set A with A′. Equation (7.2)

defines the percent increase in evaluation metric Tinstr , denoted T %I
instr(A

′,A). We compute the time overhead

metrics Tinstr with the operating system-based timer /usr/bin/time.

T Iinstr(A
′,A) = Tinstr(A

′)− Tinstr(A) (7.1)

T %I
instr(A

′,A) =
T Iinstr(A

′,A)

Tinstr(A)
× 100 (7.2)

We use Ts and As to denote a test suite and an application that were statically instrumented and we say

that Td and Ad are tests and an application that we dynamically instrument. We evaluate S(A) and S(As),

the respective size of an application A before and after static instrumentation. Finally, we report S(A, c)

and S(As, c) the size of applications A and As when compressed with compression technique c. Currently,

our framework can compress Java bytecodes using Zip [Lelewer and Hirschberg, 1987], Gzip [Morse, 2005],

and Pack [Pugh, 1999]. We also compute the increase and percent increase in space overhead associated

with the static instrumentation, respectively denoted SI (As, A) and S%I(As, A) (we use equations similar to

Equations (7.1) and (7.2) in order to calculate these values). Since dynamic instrumentation occurs during

test suite execution, we do not explicitly measure the increase in space overhead that results from inserting

the instrumentation probes.2

2The Sun JVM that we used during experimentation does not include facilities to report the in-memory size of Java bytecode
or the native code that results from just-in-time (JIT) compilation. As discussed in Chapter 9, we will explore the use of the
Jikes RVM and the experiment design developed in [Zhang and Krintz, 2005] in order to measure S(Ad).
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Figure 7.4: Static Instrumentation Time.

7.6.1.1 Instrumentation Time Overhead Figure 7.4 presents the time overhead associated with the

static instrumentation of the case study applications. The results show that Tinstr is never more than

approximately 4.5 seconds and the instrumentation process exhibits little variability. For example, ten

executions of the instrumentor on the ST application yielded a mean instrumentation time of 4.4 seconds

with a standard deviation of .04 seconds. Figure 7.4 also provides the static instrumentation time results for

the larger case study applications (i.e., TM and GB) and a batch execution of the instrumentor. For the box

labeled “All,” we configured the static instrumentation technique to introduce probes into all of the case study

applications. Our experiments reveal that the instrumentation of a larger application (e.g., GB) incurs one

additional second of time overhead when compared to instrumenting a smaller application (e.g., FF). Since

we can instrument all of the case study applications is 9 seconds or less, the results in Figure 7.4 also suggest

that we can efficiently instrument more than one application with a single run of the instrumentor. If we take

A = {ST} andA′ as the set of all applications, then we know that T %I
instr(A

′,A) = 97% for the instrumentation

of six applications instead of one. Across all of the case study applications, static instrumentation takes 4.72

seconds on average. In summary, we judge that our approach to static instrumentation introduces the

instrumentation probes with minimal time overhead.

7.6.1.2 Instrumentation Space Overhead We use As to denote the statically instrumented version of

an application A. As includes additional bytecode instructions at the boundaries of all method invocations

and database interactions. The static instrumentor also outputs an archive that contains the bytecode of

the coverage monitoring probes. In preparation for a call to the Before probe, the instrumentation must (i)

store the contents of the program stack in local variables, (ii) check to ensure that coverage monitoring is

enabled, (iii) load the probe, and (iv) invoke the probe. The instrumentor also adds additional bytecode

instructions to handle any exceptions that might be thrown by a coverage monitoring probe (e.g., we use

exception handlers to manage the problems that occur when the storage of the TCM trees exceeds the space

available for file storage). We disassembled each of the case study applications in order to discern how

many additional instructions were needed to use the test coverage monitoring probes. For example, the
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Compression Technique Before Instr (bytes) After Instr (bytes)

None 29275 887609

Zip 15623 41351

Gzip 10624 35594

Pack 5699 34497

Table 7.1: Average Static Size Across All Instrumented Case Study Applications.

Compression Technique Probe Size (bytes)

None 119205

Zip 40017

Gzip 34982

Pack 35277

Table 7.2: Size of the Test Coverage Monitoring Probes.

constructor for the org.hsqldb.sample.FindFile class contains three bytecode instructions in the initial

version of FindFile and twenty-seven after static instrumentation (Figures B1 and B2 in Appendix B provide

the bytecode for this constructor). A noteworthy design choice of the AspectJ compiler is that it accepts

an increase in static application size for a reduction in execution time by always using additional bytecode

operations instead of Java’s reflection mechanism [Hilsdale and Hugunin, 2004, Kiczales et al., 2001b]. We

attribute the marked increase in the number of bytecode instructions, and thus the S(As) metric, to this

design choice. Section 7.6.2 offers further investigation of this trade-off between time and space overhead.

Figure 7.5 presents the size of each case study application before and after the introduction of the calls to

the instrumentation probes. In these graphs, the bar grouping with the label “ZIP” corresponds to the size

of a traditional Java archive (JAR) file that contains the application’s bytecodes. The “GZIP” and “PACK”

labels refer to the size of A or As after we applied the Gzip and Pack compression algorithms. Since Java

applications are normally distributed in archives, we only report the size of the uncompressed bytecodes in

the summary results of Tables 7.1 and 7.2. The graphs in Figure 7.5 reveal that statically inserting the in-

strumentation probes increases the space overhead of the case study applications. For example, Figure 7.5(f)

shows that S(GBs) = 75782 bytes and S(GB) = 25084 bytes such that S%I (GBs, GB) = 202% when we use the

Zip compression algorithm. Figure 7.5(b) indicates that the FindFile case study application has the small-

est bytecodes since S(FF) = 10748. This graph also shows that the size of FindFile’s bytecode increases to

33304 bytes after we insert the calls to the TCM probes so that S%I(FFs, FF) = 209%.

Table 7.1 shows the average size, across all case study applications, of the bytecodes before and after

the execution of the static instrumentor. These results reveal that the Pack compression algorithm is the

most effective at controlling the increase in the space overhead of an instrumented application. Using Pack
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Figure 7.5: Size of the Statically Instrumented Applications.
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Application T %I
exec(〈Ts, As, τcct〉, 〈T, A〉)

PI 18.45

ST 14.75

TM 15.67

GB 9.9

Table 7.3: Percent Increase in Testing Time when Static Instrumentation Generates a CCT.

compression instead of no compression yields a 96% reduction in the size of the instrumented applications.

We also observe that the Pack compressor reduces the bytecode size of the non-instrumented applications by

80.5%. This result suggest that statically instrumented applications are more compressible than those that

were not instrumented. The difference in these reduction percentages is due to the fact that As repetitively

uses the same bytecode instructions when it invokes the TCM probes.

Table 7.2 gives the size of the compressed archive that contains the test coverage monitoring probes.

Since we do not have to customize the probes for a specific database-centric application, the Java virtual

machine always consults these probes when an application invokes any instrumentation. Our experiment

results demonstrate that the Gzip and Pack algorithms are best suited for reducing the size of the coverage

monitoring probes. Employing either Gzip or Pack instead of no compression leads to a 70% reduction in

the static size of the instrumentation probes. If we consider the use of Zip compression and the overall size

of an instrumented application (i.e., the compressed size of As plus the compressed size of the probes), then

the use of static TCM instrumentation increases space overhead by 420% on average across all applications.

However, the results in Section 7.6.2 suggest that the noticeable increase in space overhead is acceptable

because it supports efficient test coverage monitoring.

7.6.2 Test Suite Execution Time

We conducted experiments to measure Texec(T, A), the time required to test application A with test suite

T . Since Texec(T, A) corresponds to the execution of T and A without any test coverage monitoring instru-

mentation, we use this metric to establish a base line for testing time. Following the notation established in

Chapter 6, we define L ∈ L(τ) as the level of database interaction granularity at which the TCM compo-

nent will record coverage information. We use L(τ) = {P,D,R,A,Rc,Av} and we take P as the coverage

marker that causes the creation of a traditional coverage tree (e.g., a DCT or a CCT). The use of any marker

L ∈ L(τ) \ {P} leads to the construction of a database-aware TCM tree (e.g., a DI-DCT or a DI-CCT).

We measure Texec(Ts, As, τ), the time required to perform testing and generate the TCM tree τ during the

execution of the statically instrumented program and test suite (we define Texec(Td, Ad, τ) in an analogous

fashion). As in Chapter 6, we use τcct and τdct to differentiate between the calling context and dynamic

TCM trees that the coverage monitor generates. We compute Texec with the operating system-based timer

/usr/bin/time.
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Instrumentation Technique Tree Type TCM Time (sec) Percent Increase (%)

Static CCT 7.44 12.5

Static DCT 8.35 26.1

Dynamic CCT 10.17 53.0

Dynamic DCT 11.0 66.0

Normal Average Testing Time: 6.62 sec

Table 7.4: Average Test Coverage Monitoring Time Across All Case Study Applications.

In order to compare the performance of the TCM component when we vary the type of instrumentation

and the TCM tree, we calculate the increase and percent increase when we perform testing with statically

introduced probes instead of no instrumentation. We also report the increase and percent increase in testing

time when we use dynamically inserted probes rather than using no instrumentation. For a fixed instru-

mentation technique, we use equations similar to Equations (7.1) and (7.2) to calculate the increase and

percent increase in test suite execution time when a finer interaction granularity L′ is used instead of L (e.g.,

L′ = Av and L = D). Since the test coverage monitor stores the TCM tree after executing the tests, we

measure Tstore(T, A, τ), the time required to maintain application A’s coverage tree τ .

7.6.2.1 Static and Dynamic Instrumentation Costs For the experiments that measured Texec, we

initially configured the TCM component to generate a traditional TCM tree (e.g., L = P) and we stored

all of the trees in the binary representation. During these experiments we systematically varied the type

of tree (e.g., DCT or CCT) and the type of instrumentation (e.g., static or dynamic). The “Norm” label

in Figure 7.6 refers to the testing time for a case study application when we did not monitor coverage.

The labels “Sta” or “Dyn” respectively refer to the use of static or dynamic instrumentation. Figure 7.6(a)

and Figure 7.6(b) reveal that static test coverage monitoring does not introduce a noticeable time overhead

for the small case study applications like RM and FF. For example, we observe that Texec(T, FF) = 6.41

seconds and Texec(Ts, FFs, τcct) = 6.90 seconds and this represents a percent increase in testing time of only

7.57%. The results in Figure 7.6(a) and Figure 7.6(b) also suggest that there is little difference in the

time overhead required to create a CCT or a DCT. However, the experiments indicate that even the small

applications do demonstrate an increase in testing time when we use dynamic instrumentation instead of

statically introducing the probes. For example, Figure 7.6(a) shows that Texec(Ts, RMs, τcct) = 6.52 seconds

and Texec(Td, RMd, τcct) = 8.96 seconds and this corresponds to a 37.44% increase in test suite execution time.

The experimental results in Figure 7.6 suggest that the larger case study applications (e.g., PI, ST, TM,

and GB) do exhibit a difference in testing time when the statically introduced instrumentation creates a CCT.

However, Table 7.3 shows that the value for T %I
exec(〈Ts, As, τcct〉, 〈T, A〉) ranges between 9% and 19% for these

applications. Figure 7.6 also reveals that the flexibility afforded by dynamic instrumentation increases testing

time of the larger applications from 6 seconds to approximately 12 seconds. For applications such as GB,
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Figure 7.6: Test Coverage Monitoring Time with Static and Dynamic Instrumentation.
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CCT Interaction Level TCM Time (sec) Percent Increase (%)

Program 7.44 12.39

Database 7.51 13.44

Relation 7.56 14.20

Attribute 8.91 34.59

Record 8.90 34.44

Attribute Value 10.14 53.17

Normal Average Testing Time: 6.62 sec

Table 7.5: Average TCM Time Across All Applications when Granularity is Varied.

we observe an acceptable percent increase in testing time since T %I
exec(〈Td, GBd, τcct〉, 〈T, GB〉) = 59.28% and

T %I
exec(〈Td, GBd, τcct〉, 〈Ts, GBs, τcct〉) = 45.34%. We also note that the graphs in Figure 7.6(d) - (f) demonstrate

a “stair step” trend in testing time as the horizontal axis transitions from normal testing to dynamic testing

with the DCT. These results indicate that, for many database-centric applications, normal testing will incur

the least time overhead and dynamic testing that produces a DI-DCT will require the most test execution

time.

Interestingly, Figure 7.6(c) shows that the PI application exhibits higher time overheads for the static

DCT configuration than the dynamic CCT approach to coverage monitoring. We attribute this to the fact

that the PI test suite has tests that repeatedly executed a method (e.g., testMultipleAddIterativeLarge).3

This type of testing behavior causes the TCM component to perform many more updates to τdct than to τcct

and this increases the time that it must devote to node creation and tree maintenance. For the PI case study

application, the time for coverage tree manipulation dominates the time needed to dynamically introduce

the instrumentation probes. This experimental outcome reveals that the use of the CCT to record coverage

information can result in better performance for applications that frequently use iteration during testing.

Even though the majority of our programs do not heavily rely upon recursive methods, we anticipate similar

performance results for this type of database-centric application. Finally, Table 7.4 shows that normal

testing time, across all case study applications, is 6.62 seconds. This table points out that our coverage

monitoring techniques increase testing time by approximately 12% to 66%, depending upon the technique

and tree type used by the TCM component. When L = P, we judge that our approach to test coverage

monitoring demonstrates time overheads that are comparable to other TCM schemes (e.g., [Misurda et al.,

2005, Pavlopoulou and Young, 1999, Tikir and Hollingsworth, 2002]).

7.6.2.2 Varying Database Interaction Granularity We conducted experiments in order to ascertain

how the variation of database interaction granularity would impact the time overhead of testing. For these

3The tests for other case study applications such as ST and TM also use iteration constructs. However, none of these
applications exhibit such a pronounced use of iteration during testing.
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experiments, we always used static instrumentation and we stored all of the trees in the binary representation.

These experiments also focused on the use of the CCT to record coverage information. As shown on the

horizontal axis of the graphs in Figure 7.7, we executed the test coverage monitor for all applications and

all levels of database interaction granularity (e.g., L = P through L = Av). For several applications such

as RM, FF, and GB, we observe that there is only a small increase in test coverage monitoring time when

we vary the database interaction level. For example, the value of T %I
exec(〈Ts, As, τcct,Av〉, 〈Ts, As, τcct,P〉)

is less than 6% for RM, FF, and GB. This is due to the fact that a test case for these applications normally

interacts with a minimal number of entities in the relational database. In light of the fact that GB is the

largest application in terms of non-commented source statements (NCSS), it is clear that we cannot predict

test coverage monitoring time by solely focusing on the static size of the source code.

Figure 7.7(c) and (d) demonstrate that the PI and ST applications exhibit a marked increase in test-

ing time as the database interaction granularity transitions from the program to the attribute value level.

Testing time increases because both PI and ST iteratively interact with a large portion of the relational

database and this type of testing behavior necessitates the insertion of more nodes into the TCM tree. PI

shows a more noticeable increase at the attribute value level than ST because it interacts with a relation

that has three attributes while ST’s relation only contains two attributes (see Figures 3.9 and 3.10 in Sec-

tion 3.5.2 for a description of the relational schema for the databases that PI and ST respectively use).

Even though Texec(Ts, As, τcct,Av) is 13.40 for PI and 10.95 for ST, the coarser levels of database interac-

tion (e.g., database and relation) only introduce minimal testing time overhead. Figure 7.7(e) reveals that

Texec(Ts, TMs, τcct,A) > Texec(Ts, TMs, τcct,Rc) because TM interacts with a relation that normally contains

more attributes that records during test suite execution. Table 7.5 provides the average value of Texec across

all case study applications when we varied the database interaction granularity. These results indicate that

we can efficiently monitor coverage at all levels of interaction if we use static instrumentation to construct

a database-aware calling context tree. For example, coverage monitoring at the relation level only incurs a

14.20% increase in testing time and the TCM component can record coverage at the attribute value level

with a 53.17% increase in time overhead.

7.6.2.3 Storage Time for the TCM Tree Since the TCM component must store the test coverage

tree after the completion of testing, we also performed experiments to measure Tstore(T, A, τ). During these

experiments we always used static instrumentation. Employing either static or dynamic instrumentation

yielded similar results because the TCM component that stores the coverage trees is not subject to in-

strumentation. In an attempt to establish a performance baseline, we configured the TCM component to

produce τ when L = P. We also investigated the variation in tree storage time when the test coverage

monitor generated either a CCT or a DCT in the binary or XML representation. Table 7.6 provides the

average TCM tree storage time across all of the case study applications. The results in this table sug-

gest that the coverage monitor can store the binary tree in less time than the XML tree. For example,

T binstore(T, A, τcct) = 144.9 milliseconds and T xmlstore(T, A, τcct) = 408.17 milliseconds. Figure 7.8 records the

142



P D Rl A Rc Av
Database Interaction Level H RM L

2

4

6

8

10

T
C
M

T
i
m
e

Hsec
L

P D Rl A Rc Av

6.519 6.51 6.515 6.669 6.618 6.774

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

(a)

P D Rl A Rc Av
Database Interaction Level H FF L

2

4

6

8

10

T
C
M

T
i
m
e

Hsec
L

P D Rl A Rc Av

6.895 6.893 6.928 7.14 7.138 7.242

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

(b)

P D Rl A Rc Av
Database Interaction Level H PI L

2

4

6

8

10

12

14

16

T
C
M

T
i
m
e

Hsec
L

P D Rl A Rc Av

7.606 7.619 7.655

8.955
9.317

13.393

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

(c)

P D Rl A Rc Av
Database Interaction Level H ST L

2

4

6

8

10

12

14

T
C
M

T
i
m
e

Hsec
L

P D Rl A Rc Av

7.981 8.1 8.18

9.74 9.941

10.945

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

(d)

P D Rl A Rc Av
Database Interaction Level H TM L

2.5

5

7.5

10

12.5

15

17.5

T
C
M

T
i
m
e

Hsec
L

P D Rl A Rc Av

8.02 8.246 8.406

13.165
12.547

14.437

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

(e)

P D Rl A Rc Av
Database Interaction Level H GB L

2

4

6

8

10

T
C
M

T
i
m
e

Hsec
L

P D Rl A Rc Av

7.626 7.662 7.655 7.817 7.819 8.028

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

(f)

Figure 7.7: Test Coverage Monitoring Time at Different Database Interaction Levels.
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Tree Type Tree Representation Tree Storage Time (msec)

CCT Binary 144.9

DCT Binary 1011.72

CCT XML 408.17

DCT XML 2569.22

Table 7.6: Average TCM Tree Storage Time Across All Case Study Applications.

number of milliseconds that were required to store the TCM tree in the four different configurations (i.e.,

CCT-Bin, DCT-Bin, CCT-XML, and DCT-XML). Figure 7.8(a), (b), and (f) exhibit an increase in Tstore

as we transition from CCT-Bin to DCT-XML on the horizontal axis. This is due to the fact that the test

suites for RM, FF, and GB do not make heavy use of either iteration or recursion and thus the CCT probes do

not enable a significant reduction in either the tree size or Tstore. For this type of case study application,

the chosen representation has a greater impact upon tree storage time than the type of the TCM tree. We

also observe that Tstore is less than one second for RM and FF and below two seconds for GB.

The PI, ST, and TM case study applications use iteration constructs during testing (as discussed in

Section 7.6.2.1, the tests for PI use more iteration than the tests for any other application). When the

TCM component records the coverage with τcct instead of τdct, it coalesces nodes and reduces the overall size

of the tree. This characteristic of the CCT yields binary and XML TCM trees that are significantly smaller

than their DCT counterparts. For example, Figure 7.8(e) demonstrates that T xmlstore(T, TM, τcct) = 577.7

milliseconds while T binstore(T, TM, τcct) = 952 milliseconds. As anticipated, this trend is more pronounced

for the PI application such that T binstore(T, PI, τcct) = 248.3 milliseconds and T xmlstore(T, PI, τdct) = 2917.8

milliseconds. If an application or its tests makes frequent use of iteration and/or recursion, the experiments

reveal that the type of the tree will have a more pronounced influence on storage time than the tree encoding.

7.6.3 Tree Space Overhead

We used the test coverage monitor to create a TCM tree for each case study application and then we

calculated platform-independent and platform-dependent measures of tree space overhead. In support of

measurements that are independent of both the programming language and the execution environment, we

calculate SN (A, τ, L) and SE (A, τ, L), the respective number of nodes and edges in a TCM tree τ when it

represents the database interactions at level L. Since the dynamic call tree does not contain back edges,

we know that SE(A, τdct, L) = |Nτ | − 1. Equations (7.3) and (7.4) show that we calculate SE(A, τcct, L) by

counting the number of nodes and the number of back edges in the CCT. We determine the impact that the

database interaction granularity has on space overhead by reporting the increase and percent increase in the

number of nodes and edges when a marker L is replaced with one of finer granularity, L′ (e.g., L = Rl and

L′ = Rc).

SE (A, τcct, L) = |EF |+ |EB | (7.3)

= |Nτ | − 1 + |EB | (7.4)
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Figure 7.8: Time Required to Store the Test Coverage Monitoring Trees.
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Since the size of the TCM tree can impact the performance of test suite execution (e.g., by increasing

pressure on the memory subsystem [Xian et al., 2006]), we determine the in-memory size of the test coverage

monitoring tree, denoted Smem(A, τ, L). We traverse the tree and use Roubtsov’s sizing technique in order

to calculate Smem [Roubtsov, 2003]. Our tools calculate the in-memory size of a TCM tree under the

assumption that the size of a tree node is the sum of the size of all of its data fields. Furthermore, we

also assume that the overall size of a TCM tree is the sum of the sizes of every individual tree node. Our

approach to in-memory sizing also requires the definition of the size of an instance of java.lang.Object

and each of the primitive data types supported by a Java virtual machine. We assume the use of a standard

32-bit JVM and we specify the size of the data types according to Table C1 in Appendix C. For example, we

adopt the convention that an int and a long respectively consume 4 and 8 bytes of memory. Following the

guidelines established in [Roubtsov, 2003], we ignore any memory alignment issues that only arise in specific

Java virtual machines and computer architectures. We judge that this assumption is reasonable because

these variations in the execution environment normally yield minor changes in the actual data type size.

Recent Java profilers also make the same simplifying assumptions and report the calculation of accurate

object sizes [Pearce et al., 2006].

We measure the size of the trees that the coverage monitor stores because we anticipate that testers will

preserve these trees in order to support debugging. To this end, we calculate Sbin(A, τ, L) and Sxml(A, τ, L),

the respective size of application A’s TCM tree τ when it is encoded in either the binary or the XML format.

We examine how a compression algorithm c can reduce the size of tree τ and we calculate Sbin(A, τ, L, c) and

Sxml(A, τ, L, c). Using Equations (7.5) and (7.6), we compute the reduction and percent reduction in the

evaluation metrics Sbin and Sxml when we apply compression technique c to τ . The TCM component uses

the standard Java serialization primitive to produce the binary tree and it uses the XStream serialization

tool to create the XML-based encoding [Schaible, 2006]. We evaluate the use of Zip [Lelewer and Hirschberg,

1987], Gzip [Morse, 2005], XMill [Liefke and Suciu, 2000] and XMLPPM [Cheney, 2001] to compress the test

coverage monitoring trees. We use the size reported by the file system in order to determine Sbin and Sxml.

SR(A, τ, L, c) = S(A, τ, L) − S(A, τ, L, c) (7.5)

S%R(A, τ, L, c) =
SR(A, τ, L, c)

S(A, τ, L)
× 100 (7.6)

7.6.3.1 Nodes and Edges in the TCM Tree During the experiments to characterize the structure of

the TCM tree, we always used the static instrumentation technique and we encoded the trees in the binary

format. Instead of calculating SN and SE for all levels of database interaction, we focused the experiments

on the program, relation, record, and attribute value levels. We selected these levels because (i) P provides

an appropriate base line for comparison, (ii) R represents a database interaction in a structural fashion, and

(iii) Rc and Av both record an interaction in a manner that incorporates database state. The graphs in

Figure 7.9 confirm the results that we found in the previous experiments. We see that the static size of a case
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Figure 7.9: Number of Nodes in the Test Coverage Monitoring Trees.

study application is not an appropriate predictor for the number of nodes in the TCM tree. For example,

Figure 7.9(c) and Figure 7.9(f) show that SN (PI, τdct,Av) = 87538 while SN (GB, τdct,Av) = 4991. Once

again, this trend is due to the fact that PI’s tests iteratively invoke many more methods than the GB’s tests.

Across all of the applications, the number of nodes in τcct ranges from a minimum of 144 at the program

level (e.g., RM) to a maximum of 22922 at the attribute value level (e.g., PI). The graphs in Figure 7.9 show

that the SN metric for τdct ranges from 433 nodes (e.g., RM) to 87538 nodes (e.g., PI). For the applications

that exhibit moderate to heavy use of either iteration (e.g., PI, ST, and TM) or recursion (e.g., FF), the

experiments reveal that there is a marked increase in the number of nodes when the TCM component

generates a DCT instead of a CCT. Table 7.7 reports the average number of TCM tree nodes across all of

the case study applications. We see that the DI-CCT can represent the database interactions at the finest

level of granularity (e.g., Av) and still use less nodes that a conventional DCT (e.g., P). We also observe

that the attribute value level DI-DCT is one order of magnitude larger than the comparable DI-CCT. When

space overhead must be controlled, these results suggest that a tester should only record coverage with a

dynamic call tree when the additional context is absolutely needed to support debugging.

FindFile is the only case study application that uses recursion during testing. Therefore, Figure 7.10

tracks SN (PI, τcct, L) for the four chosen database interaction levels. A label on the vertical axis of this

graph designates the type of tree (e.g., “C” or “D”) and the level (e.g., “P” or “Av”) and thus the label

“C-P” stands for a CCT at the program level. This figure shows that there is a constant number of back
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Tree Type P R Rc Av

CCT 341 583 1421 6833

DCT 7154 10445 11960 32021

Table 7.7: Average Number of Nodes in the TCM Tree Across All Applications.

edges when we vary the level of database interaction. This is due to the fact that FF’s tests do not cause the

program under test to recursively perform a database interaction. As part of future empirical research, we

will study the number of back edges in the CCT of applications that recursively interact with a database.

7.6.3.2 Memory and Filesystem Size of the TCM Tree Table 7.8 reports the value of Smem for all

of the case study applications and each of the four chosen levels of database interaction. Our measurement

of the actual in-heap size of the TCM trees confirms the results in Section 7.6.3.1. This indicates that

the platform-independent measures of TCM tree size (e.g., SN and SE) are reliable measures of tree space

overhead. Table 7.8 shows that (i) the CCT is normally much smaller than the DCT and (ii) a fixed tree type

is smaller at the P level than at the Av level. Interestingly, FF’s TCM tree only consumes 679385 bytes of

heap space when the coverage monitor uses a DCT to record database interactions at the attribute value level.

This result suggests that it is possible to completely monitor the coverage of small scale database-centric

applications with a reasonable increase in JVM heap consumption.

The RM application yields the smallest DCT at the Av level (e.g., 433593 bytes), while PI creates the

largest attribute value DCT (e.g., 25313633 bytes). We found that TCM trees like the ones produced for RM

and FF placed little pressure on the JVM’s garbage collector and did not noticeably increase testing time.

In contrast, PI’s 24 MB coverage tree did introduce additional memory pressure and require both extra

invocations of the GC subsystem and a larger maximum heap. Chapter 9 explains that our future research

will assess the impact of the test coverage monitoring instrumentation upon the behavior of the garbage

collector. Finally, Table 7.8 shows that the TCM tree consumes an acceptable amount of space overhead

when we use the CCT to record coverage at the program, relation, and record levels. Excluding the Pithy

application, we observe that the record level CCT can represent all database interactions with no more than

697643 bytes.

Figure 7.11 provides the compressed and un-compressed file system sizes of the CCT and the DCT that

record coverage at the program level. We focus our analysis on the RM, ST, and PI case study applications

because Figure 7.9 and Table 7.8 reveal that their TCM trees can be roughly classified as small, medium,

and large in comparison to the other trees (note that this trend only holds for the CCT at the P level).

In future research, we will analyze the value of the Sbin and Sxml metrics for the relation, record, and

attribute value levels. Across these three applications and for both the binary and XML representation,

RM exhibits the smallest tree sizes and ST has the largest. For example, Figure 7.11(a) - (c) demonstrate

that Sbin(RM, τcct,P) = 22.5 KB, Sbin(ST, τcct,P) = 39.1 KB, and Sbin(PI, τcct,P) = 25.8 KB (the XML
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Figure 7.10: Number of Edges in the Test Coverage Monitoring Trees.

representation yields an analogous trend). We attribute this result to the fact that PI invokes a small

number of methods during testing and thus its CCT can coalesce more nodes than the CCT for the ST

application. Since Figure 7.9 and Table 7.8 also evidence this same trend, we conclude that all of our space

overhead metrics (i.e., number of nodes, in-memory size, and file system size) produce corresponding results.

For the binary representation, Figure 7.11 indicates that the Gzip and Zip compression techniques offer a

significant size reduction for the TCM trees of every application. For example, S%R
bin (PI, τcct, Gzip) = 89.5%

and S%R
bin (PI, τdct, Gzip) = 95.2%. The results reveal that S%R

bin (A, τcct, c) is normally less than S%R
bin (A, τdct, c)

since the DCT frequently contains more duplicate node information than the CCT. During experimentation,

we also noted that the compression of τcct and τdct incurred no more than one or two seconds of time

overhead. Figure 7.11(d) - (f) show that the XML encoded TCM trees can be very large without the use of

compression. For example, Figure 7.11(f) illustrates that PI’s τdct consumes 25430 KB of storage when we

encode it in XML. In contrast, the same tree is 1264 KB when the TCM component stored it in a binary

format. We omit a more detailed discussion of the space overhead metrics for FF, TM, and GB because the

investigation of the TCM tree sizes for these case study applications yielded similar trends.

Figure 7.11 shows that the XMill compression technique is the most effective at reducing the size of the

XML-based TCM tree. We observe that XMill reduces the size of ST’s DCT from 9650 KB to 2.36 KB while

Gzip, Zip, and XMLPPM create a compressed tree of approximately 7.0 KB. Even though both types of

TCM trees and tree encodings demonstrate substantial compression ratios, our experiments also identified

an interesting trend concerning the compressibility of the binary and the XML representation. For example,

we note that Sxml(PI, τdct, XMill) = 2.36 KB while Gzip reduces the same XML-based tree to 4.89 KB. More

importantly, Figure 7.11 highlights the fact that Gzip only decreases the binary version of this tree to 3.59

KB. We see that the XML-aware technique yields a smaller TCM tree than the Gzip or Zip compression of

the same binary tree. This is due to the fact that the eXtensible Markup Language reveals information about

the structure of a TCM tree and XMill takes advantage of this meta-data to group similar nodes and improve

compressibility. Even though XMill’s reduction in absolute space overhead comes with a compression time of

four seconds and a decompression time of two seconds, we judge that the compressed XML encoding should

be considered if a tester will store a TCM tree on the file system or transmit it across a network.
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P R Rc Av

CCT 52311 62899 92851 248375

DCT 158635 187881 217825 433593

Reminder

(a)

P R Rc Av

CCT 96115 116425 170119 272517

DCT 348645 428789 498967 679385

FindFile

(b)

P R Rc Av

CCT 60047 75489 2747971 8522835

DCT 4910199 5487383 8159165 25315633

Pithy

(c)

P R Rc Av

CCT 92913 130659 979027 2169569

DCT 3055397 4697137 5543397 8314685

StudentTracker

(d)

P R Rc Av

CCT 241067 449417 697643 2007231

DCT 2522271 4598789 6765835 19427555

TransactionManager

(e)

P R Rc Av

CCT 227611 266267 338743 557871

DCT 1350335 1432771 1509417 1785923

GradeBook

(f)

Table 7.8: Memory Sizes of the Test Coverage Monitoring Trees (bytes).

7.6.4 Detailed Tree Characterization

In order to better explain the results in Section 7.6.3, we took additional steps to characterize the test coverage

monitoring trees. Following [Ammons et al., 1997], we also calculated several metrics that characterize the

structure of the coverage monitoring trees in terms of tree height, node out degree, and node replication.

Equation (7.7) defines outavg(A, τ, L), the average out degree of a tree τ with the set of nodes Nτ . Since

the external nodes in τ can artificially reduce the measurement of the average node out degree, we define

Xτ = {Nφ : out(Nφ) = 0} as the set of external nodes in τ . We use Equation (7.8) to calculate the average

out degree of the internal nodes in the coverage monitoring tree τ . Equations (7.7) and (7.8) both use L to

denote the level at which the TCM tree represents all of the database interactions. We also report outmax,

the maximum out degree of a TCM tree.

outavg(A, τ, L) =

∑
Nφ∈Nτ

out(Nφ)

SN (A, τ, L)
(7.7)

outavg(A, τ,Xτ , L) =

∑
Nφ∈Nτ\Xτ

out(Nφ)

SN (A, τ, L)− |Xτ |
(7.8)

Our tree characterization discussion always uses the depth function that we defined in Chapter 6 (i.e.,

depth(N0) = 0 and depth(Nφ) = 1 + depth(parent(Nφ))). Finally, we report the height(A, τ, L) of a tree

τ as the maximum depth for all of the external nodes Nφ ∈ Xτ . Figure 7.12 provides the Height(τ, Nφ)

algorithm that returns the height of tree τ when we call Height(τ, N0). Height correctly handles the back
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Figure 7.11: Compressed and Uncompressed Size of the TCM Trees.
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edges that can exist in the calling context tree by using the ContainsBackEdgeFrom operation to determine

if edge (Nφ, Nρ) ∈ EB . Since the dynamic call tree does not contain back edges, the ContainsBackEdgeFrom

operation always returns false when τ is a DCT.

A node Nφ in the TCM tree τ always corresponds to a method invocation, database interaction point,

or a relational database entity. The instrumentation probes that build the coverage monitoring trees can

introduce replicated nodes into τ and this increases the space consumption of a tree. For example, if tests Ti

and Tj both test method mk, then the tree node call mk will exist at two different locations within the tree.

Figure 7.13 provides the Replication algorithm that we use to determine the amount of node level replication

within a TCM tree. We call Replication(H, τ, N0) with an empty hash table H in order to determine the

replication count for each unique node in τ . This algorithm uses the hash table H to store key value pairs

of the form (Nφ, r) where Nφ is a unique tree node and r is the replication count for this node. We use

the Replication algorithm to populate H with a replication count for each unique node in τ and then we

calculate the average node replication, ravg , with Equation (7.9). In the analysis of the experimental results,

we use the notation ravg(A, τ, L) to stand for the average level of replication for a specific application A and

an interaction level L. Higher average replication counts offer one explanation for a coverage monitoring tree

that exhibits high values for the evaluation metrics Tstore, Smem, Sbin, and Sxml. Finally, we report rmax,

the maximum node replication count for a TCM tree.

ravg(H) =

∑

(Nφ,r)∈H

r

|H|
(7.9)

7.6.4.1 Height of the TCM Tree Table 7.9 provides the height of the TCM tree for each of the case

study applications. We determined the height of a CCT and a DCT that maintains coverage information at

either the program, relation, record, or attribute value level (as such, each entry in Table 7.9 gives the tree

heights in the level order of P,Rl,Rc,Av). Even though Section 7.6.3 indicates that the testing of the PI

and GB applications yields very different TCM trees, this table shows that the trees have very similar heights.

We also see that the height of the DCT is often the same as the CCT (e.g., RM) or just slightly greater (e.g.,

FF). When the coverage monitor created a TCM tree at the Av level instead of P, this increased the tree

height by three or four additional nodes. For the calling context tree, we see that height(FF, τcct,P) = 5 and

height(FF, τcct,Av) = 9. If we consider the dynamic call tree, Table 7.9 shows that height(FF, τdct,P) = 6

and height(FF, τdct,Av) = 10. Since the TCM trees are so “bushy,” it is clear that the overall size of

a TCM tree is not heavily influenced by its height. Interestingly, this result corroborates the empirical

characterization of the procedural CCT that is reported in [Ammons et al., 1997].

7.6.4.2 Node Out Degree We focused the analysis of a TCM tree’s node out degree by excluding the

external nodes from our analysis. As part of future research, we will include the leaf nodes and identify how

this impacts the measured value of outavg(A, τ, L). Figure 7.14 through Figure 7.16 offer different views of
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Algorithm Height(τ, Nφ)
Input: Test Coverage Monitoring Tree τ ;

Current Tree Node Nφ

Output: Height of the Tree h
1. if out(Nφ) = 0
2. then return 0
3. h← 0
4. for Nρ ∈ children(Nφ)
5. do if ContainsBackEdgeFrom(τ, Nρ, Nφ) = false
6. then h← max(h,Height(τ, Nρ))
7. return 1 + h

Figure 7.12: The Height Algorithm for a Test Coverage Monitoring Tree.

Algorithm Replication(H, τ, Nφ)
Input: Hash Table of Node Replication Counts H;

Test Coverage Monitoring Tree τ ;
Current Tree Node Nφ

1. if H.get(Nφ) = ∅
2. then H.put(Nφ, 1)
3. else
4. r← H.get(Nφ)
5. r← r + 1
6. H.put(Nφ, r)
7. for Nρ ∈ children(Nφ)
8. do if ContainsBackEdgeFrom(τ, Nρ, Nφ) = false
9. then Replication(H, τ, Nρ)

Figure 7.13: The Replication Algorithm for a Test Coverage Monitoring Tree.
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Application CCT Height DCT Height

RM (6, 7, 8, 9) (6, 7, 8, 9)

FF (5, 7, 8, 9) (6, 8, 9, 10)

PI (6, 6, 7, 8) (6, 6, 7, 8)

ST (6, 7, 8, 9) (6, 7, 8, 9)

TM (5, 7, 8, 9) (5, 7, 8, 9)

GB (6, 7, 8, 9) (6, 7, 8, 9)

Data Format: (P,Rl,Rc,Av)

Table 7.9: Height of the Test Coverage Monitoring Trees.

the out(A, τ, L) metric for all of the database-centric applications. In particular, Figure 7.14 provides a box

and whisker plot of the node out degree for the six case study applications. The graphs demonstrate that

the out degree for a single node can be as low as one to five children and as great as 700 children. Across the

majority of the case study applications, many nodes have a substantial number of children and this result

suggests that the outavg(A, τ, L) does impact the size of the TCM tree. For example, the experiments reveal

that outavg(PI, τcct,P) = 3.25 with a standard deviation of 3.19 while outavg(PI, τcct,Av) = 16.01 and a

standard deviation of 34.8. This explains the result in Table 7.8 where PI’s CCT at the attribute value level

consumes 8522835 bytes of heap storage space

Figures 7.14 and 7.15 show that the DCT has a higher average node out degree than the CCT, for the

majority of the applications. Of course, we attribute this result to the fact that the CCT instrumentation

payloads can coalesce more nodes than the DCT probes. For example, we see that outmax(ST, τcct,P) = 6

and outmax(ST, τdct,P) = 25. However, for some applications (e.g., RM) there is little difference in the node

out degree when we compare τcct and τdct. Figure 7.14 also suggests that the CCT does an acceptable job at

controlling node out degree when we monitor coverage at finer levels of database interaction. The empirical

cumulative distribution function (ECDF) in Figure 7.16(a) reveals that almost 90% of the nodes in PI’s Av

level CCT have a node out degree of less than 50. However, the ECDFs in Figure 7.16 demonstrate that the

node out degree of a database-aware TCM tree can be as high as 700 children. Our empirical characterization

of the out(A, τ, L) further explains why testers should use the CCT to record the coverage of most types of

tests for database-centric applications.

7.6.4.3 Node Replication Counts It is desirable to produce a TCM tree that avoids replication in

all circumstances where the coalescing of a node does not destroy testing context. Figure 7.17 through

Figure 7.19 furnish different views of node level replication within the coverage trees for all six case study

applications. Specifically, Figures 7.17 and 7.18 demonstrate that the DCT has much high replication

than the CCT. For example, we see that rmax(FF, τcct,P) = 25 while rmax(FF, τdct,P) = 100 and FF’s

τdct has several outlying nodes with replication counts in the range of 50 to 100 nodes. Figures 7.17 and
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Figure 7.14: Node Out Degree of the CCT Test Coverage Monitoring Trees.
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Figure 7.15: Node Out Degree of the DCT Test Coverage Monitoring Trees.
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Figure 7.16: ECDFs of the Node Out Degree for the Pithy TCM Trees.
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7.18 also demonstrate that rmax(TM, τcct,P) = 25 and rmax(FF, τdct,P) > 200. Our analysis reveals that

ravg(FF, τcct,R) = 5.31 with a standard deviation of 7.37. However, we also found that the use of the

DCT at the same record level yielded ravg(FF, τcct,R) = 20.0 with with a standard deviation of 30.51. In

comparison to the DCT, these results clearly indicate that the CCT does a very good job at controlling the

maximum and average node replication counts.

For most applications, Figures 7.17 and 7.18 demonstrate that the CCT controls node replication well

when we transition from P to Av. Figure 7.17(e) shows that TM’s CCT has a maximum node out degree

of 70 while Figure 7.18(e) reveals that the corresponding DCT has node(s) with a replication count of

over 400. Figure 7.19 offers ECDFs that further characterize the node replication count for PI’s coverage

monitoring trees. The graph in Figure 7.19(a) indicates that 90% of the nodes in the Av-level CCT still

have a replication count less than 50. Yet, this same CCT has a small number of nodes that are replicated in

the tree 350 times. In comparison, the program level CCT for PI never has a replication count higher than

50. Figure 7.19(b) shows that this trend is more pronounced for the DI-DCT. While the majority of PI’s

nodes have a count less than 1000, a small percentage of nodes are replicated in the tree more than 5000

times. Our analysis suggests that it is difficult for either the CCT or the DCT to control replication at the

Av level. If it is desirable to control node replication, then we judge that the tester should rarely monitor

coverage at the level of attribute values. Since Section 7.6.2 indicates that coverage monitoring at Av never

increases testing time by more than six seconds, we judge that the high values for r are acceptable if this

type of information is needed for debugging.

7.7 THREATS TO VALIDITY

The experiments described in this chapter are subject to validity threats and Chapter 3 reveals the steps

that we took to control these threats during all of the experimentation for this dissertation. We also took

additional steps to handle the threats that are specific to experimentation with the coverage monitoring

component. Internal threats to validity are those factors that have the potential to impact the measured

variables defined in Sections 7.4 and 7.6. One internal validity threat is related to defects in the TCM

component. These defects could could compromise the correctness of the test coverage monitoring trees

and the final measurement of test suite adequacy. We controlled this threat by visualizing small TCM trees

and checking them to ensure correctness. We implemented an automated check to guarantee that the tree’s

active node points to the root (e.g., Na = N0) when the TCM component terminates. We automatically

ensure that the tree adheres to the structure described in Figure 6.19 of Chapter 6. We verify that the leaves

of a tree always correspond to either a method invocation or the correct level for the database interactions.

For example, if L = D, then there should be no attribute values in the tree and an external node must

always be either a method call or a database entity. The coverage monitor also ensures that a DCT does

not have any back edges. We judge that threats to construct validity were controlled since Sections 7.4 and

7.6 describe a wide range of evaluation metrics that are useful to both researchers and practitioners.
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Figure 7.17: Node Replication of the CCT Test Coverage Monitoring Trees.
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Figure 7.18: Node Replication of the DCT Test Coverage Monitoring Trees.
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Figure 7.19: ECDFs of the Node Replication Count for the Pithy TCM Trees.
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7.8 CONCLUSION

This chapter describes the design, implementation, and empirical evaluation of a component that performs

database-aware test coverage monitoring. We explain how to use aspect-oriented programming techniques

to introduce the TCM probes in either a static or a dynamic fashion. After discussing the goals and

design for an experiment to measure the performance of our approach to monitoring, we systematically

state each evaluation metric and analyze the experimental results. Since our technique does not use a

customized JVM to produce the reports, we judge that the experimental results establish an upper bound

on the costs associated with database-aware monitoring. We anticipate further reductions in test coverage

monitoring time if we use recently developed JVM-based techniques to introduce the instrumentation (e.g.,

[Bockisch et al., 2006, Golbeck and Kiczales, 2007]). The experiments furnish several key insights into the

fundamental performance trade-offs for the different configurations of the TCM component. For example,

we found that efficient coverage monitoring often requires the use of a static instrumentation technique that

increases the static space overhead of a database-centric application.

The experiment data suggests that a DI-CCT at the finest level of database interaction granularity often

consumes less space overhead than a traditional DCT. The empirical results also indicate that monitoring

coverage at the attribute value level has the potential to increase average node out degree and replication

counts in the TCM trees. We also discovered that the XML-based tree encoding has exceptional compress-

ibility and it often yields very small coverage reports. In general, we find that most configurations of the

TCM component yield acceptable time and space overheads for the chosen applications. Since our coverage

monitoring component builds traditional and database-aware TCM trees, it can also be used to support

regression test suite reduction techniques for normal programs [McMaster and Memon, 2005]. The TCM

trees can also serve as a vehicle for efficient time-aware test suite prioritization because they record coverage

information on a per-test basis [Walcott et al., 2006]. Chapter 8 explains how we use the DI-DCT and

DI-CCT to perform database-aware regression test suite reduction and prioritization.
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8.0 REGRESSION TESTING

8.1 INTRODUCTION

This chapter introduces database-aware techniques for regression testing. It describes an approach to regres-

sion test suite reduction that efficiently identifies a smaller test suite that covers the same test requirements

as the original tests. We also present a method for regression test prioritization that re-orders a test suite so

that it rapidly covers the test requirements. These regression testing algorithms can improve the efficiency

and effectiveness of testing whenever it is possible to precisely determine which requirements are covered by

a test case. This chapter also demonstrates how to use a path in a database-aware coverage tree as a test

requirement that supports reduction and prioritization. We performed experiments to measure the efficiency

of the regression testing techniques and to identify how reduction and prioritization impact both testing

time and effectiveness. In summary, this chapter provides:

1. A high level overview of the regression testing process (Section 8.2).

2. A demonstration of the practical benefits of regression test suite reduction and prioritization (Section 8.3).

3. The algorithms that we use to identify test paths within a database-aware coverage tree and a discussion

of how these paths can be used as test requirements (Section 8.4).

4. The description of database-aware reduction and prioritization techniques that consider both the tests’

overlap in requirement coverage and the time overhead of an individual test (Section 8.5)

5. Metrics for evaluating the effectiveness of reduced and prioritized test suites (Section 8.6).

6. Details about the implementation of the database-aware regression testing component (Section 8.7).

7. The design of an experiment to measure the performance of the regression tester, a summary of the exper-

imental results, and an examination of the steps that we took to control experiment validity (Sections 8.8,

8.9, and 8.11).

8. An empirical evaluation of the costs associated with analyzing the coverage report and identifying a

reduced or prioritized test suite (Sections 8.10.2 and 8.10.3).

9. An experimental examination of the impact that the database-aware regression testing techniques have

on test suite execution time and effectiveness (Sections 8.10.2 and 8.10.3).

159



Begin Coverage Report End

Program or Database Changes

Program

Test Suite 
 Execution

Reduction 
 or Prioritization

Original 
 Test Suite

Modified 
 Test Suite

Testing Results

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

Figure 8.1: Overview of the Database-Aware Regression Testing Process.

8.2 OVERVIEW OF REGRESSION TESTING

Figure 8.1 provides an overview of database-aware regression testing. Database-aware regression testing is

the process of executing a test suite whenever changes are made to the (i) program, (ii) state of the database,

or (iii) relational schema of the database. Regression testing ensures that the introduction of either a bug fix

or a new feature does not impact the correctness of the application. In the general regression testing (GRT)

model, we re-order or reduce the test suite and then use the modified test suite during many subsequent

rounds of regression testing [Rothermel et al., 2001]. The version specific regression testing (VSRT) model

suggests that the test suite should be re-ordered or reduced after each modification to the database-centric

application. Version specific approaches to regression testing are valuable because they always consider the

current state and structure of both the program and the database. However, version specific regression

testing requires efficient implementations of the (i) test requirement enumerator, (ii) test coverage monitor,

(iii) test adequacy calculator, and (iv) reduction and/or prioritization technique. Any regression testing

approach that can efficiently operate in a version specific fashion should also support general regression

testing. Therefore, we focus on version specific regression testing schemes.

Before reducing or prioritizing the test suite, we analyze the coverage report in order to determine how the

tests covered the requirements. Currently, the regression tester examines the database-aware test coverage

trees and uses a path in the tree as a test requirement. Our approach to reduction and prioritization can

properly operate as long as we can determine which requirements are covered by a test case. Therefore, the

regression tester can also reduce and/or prioritize tests with the database interaction associations (DIAs)

that are described in Chapter 4. Yet, the coverage tree paths still reveal how the test cases cause the

program to interact with both the methods under test and the entities in the relational database. This type

of requirement is particularly useful when a database-centric application contains many partially dynamic

and dynamic database interaction points. We judge that the tree-based requirement is ideal for our case

study applications since Chapter 3 reveals that they have few static database interactions and Chapter 7

demonstrates that the coverage monitor can efficiently create these trees during test execution. Using a

coverage tree path as a test requirement also avoids the need to repeatedly execute the data flow analyzer

in order to enumerate the DIAs after a change occurs in any part of the database-centric application. We

judge that the tree-based requirements are well suited for either version specific or general regression testing

and the DIAs are most useful in the GRT model.
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Figure 8.2: Coverage Effectiveness of Regression Test Prioritizations.

The reduction and prioritization techniques analyze the original test suite and the per-test coverage

information in order to create a modified test suite. In the context of reduction, the primary goal is to

identify a subset of the original test cases that covers the same test requirements. Controlling the size of

the test suite in this manner can improve the efficiency of testing without compromising coverage or unduly

decreasing fault detection effectiveness. A prioritization algorithm re-orders a test suite so that it covers

test requirements and reveals faults more effectively than the initial ordering. We describe approaches to

reduction and prioritization that consider the tests’ overlap in coverage and the actual cost associated with

executing each test. Since overlap-aware regression testing requires a heuristic solution to the NP-complete

minimal set cover (MSC) problem [Garey and Johnson, 1979], we also propose reduction and prioritization

algorithms that ignore overlap in an attempt to improve efficiency. However, the overlap-aware reduction

and prioritization techniques employ the greedy approximation algorithm that is provably the best for MSC

[Feige, 1998, Vazirani, 2001] and the experiments also demonstrate that our approach is very efficient. Our

regression testing component differs from the schemes previously developed by [Do et al., 2004, Harrold et al.,

1993, Rothermel et al., 2001] because it (i) considers the actual cost of executing a test and (ii) uses test

requirements that incorporate details about a database interaction.

8.3 THE BENEFITS OF REGRESSION TESTING

Suppose that a test suite T = 〈T1, T2, T3〉 tests program P and covers a total of five test requirements. These

requirements might be (i) coverage tree paths, (ii) def-use and database interaction associations, or (iii) nodes

and edges in a control flow graph. Table 8.1 shows that test T2 takes ten seconds to execute while T1 and

T3 respectively consume five and four seconds during test suite execution. Even though this test suite only
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Test Case Test Execution Time (sec)

T1 5

T2 10

T3 4

Total Testing Time = 19 seconds

Table 8.1: Test Suite Execution Time.

Test Case Requirements

R1 R2 R3 R4 R5

T1 X X

T2 X X X X

T3 X X X

Table 8.2: Test Requirement Coverage for a Test Suite.

Test Ordering Coverage Area Coverage Effectiveness

T1 T2 T3 36 .3798

T1 T3 T2 48 .5053

T2 T1 T3 36 .3798

T2 T3 T1 41 .4316

T3 T1 T2 55 .5789

T3 T2 T1 55 .5789

Ideal Coverage Area = 95

Table 8.3: Test Coverage Effectiveness.
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Figure 8.3: Executing the Database-Aware Test Oracle.

executes for nineteen seconds, the tests for a database-centric application might consume more time if they

interact with large databases. Table 8.2 reveals that none of the test cases cover all of the test requirements.

As is the case for most real world test suites, there is an overlap in how the tests cover the requirements (e.g.,

all of the tests cover requirement R1). In this example, we assume that test T2 covers four requirements and

T3 and T1 cover three and two requirements, respectively. There are 3! = 3× 2× 1 = 6 different orderings

in which we could execute this simple test suite. In order to characterize the coverage effectiveness of a

test suite prioritization, Figure 8.2 plots the cumulative number of covered test requirements during the

execution of T . The shaded area under these coverage curves highlights the effectiveness of a test ordering

(i.e., a large shaded area suggests that an ordering is highly effective).

We construct a coverage function with the assumption that a requirement is marked as covered when

one of its covering test cases terminates. For example, Figure 8.2(a) shows that the execution of T1 leads

to the coverage of two test requirements (i.e., R1 and R2) after five seconds of test suite execution. This

figure also reveals that the cumulative coverage of the test suite increases to four when T2 terminates (i.e.,

T2 covers R3 and R5 after executing for ten seconds). A high coverage area indicates that the test ordering

covers the requirements faster than a test suite order with a low coverage area. Furthermore, an ideal test

suite would immediately cover all of the test requirements. Intuitively, we define the coverage effectiveness

of a prioritized test suite as the ratio between its coverage area and the coverage area of the ideal test suite

(c.f. Section 8.6 for a formal definition of this metric). According to this definition, a coverage effectiveness

value falls inclusively between 0 and 1 with higher values indicating a better test suite. Since high coverage

test cases are more likely to reveal program faults than those with low coverage [Frankl and Weiss, 1993,

Hutchins et al., 1994], it is sensible to re-order test suites in a manner that maximizes coverage effectiveness.
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Figure 8.4: Test Suite Execution Times for Reduced Test Suites.

Figure 8.2 and Table 8.3 demonstrate that not all of T ’s prioritizations have the same coverage effec-

tiveness. In fact, the test suite ordering T = 〈T1, T2, T3〉 yields a coverage area of 36 and an effectiveness

value of only .3798. The results in Figure 8.2 and Table 8.3 also show that different test orderings can lead

to the same effectiveness value. For example, Table 8.3 indicates that the orderings T = 〈T1, T2, T3〉 and

T = 〈T2, T1, T3〉 have the same low coverage effectiveness. Visual inspection of the plots in Figures 8.2(e) and

(f) suggest that the test orderings T = 〈T3, T1, T2〉 and T = 〈T3, T2, T1〉 both cover the requirements faster

than any of the other orderings. Indeed, Table 8.3 shows that these orderings have a coverage effectiveness

of .5789. The high effectiveness of these two orderings is due to the fact that they initially execute test T3

and thus cover three requirements in only four seconds. Furthermore, Figure 8.2(f) exposes the fact that test

case T1 is redundant if it is executed after T3 and T2 (i.e., the coverage curve attains the maximum height of

five after executing for only 15 seconds). This example demonstrates that (i) prioritization can improve the

effectiveness of testing and (ii) a test suite can contain tests that redundantly cover the test requirements.

We conducted an empirical study with a real database-aware test suite in order to measure the practical

benefits of reduction. This test suite contains sixty tests that all perform the same operation. Following

the notation established in Chapter 2, we assume that a test interacts with a relational database that

contains w relations and each relation relj contains q attributes. Each test case is also configured to insert

u records into a relation and then repeatedly execute a database-aware test oracle for all w relations. As

depicted in Figure 8.3, the database-aware oracle compares the actual and expected state of each relation
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Configuration α β R2

(10, 5, 5) 19.55 -12.09 .997

(20, 5, 5) 32.51 -24.97 .999

(10, 10, 10) 24.25 -16.62 .999

(20, 10, 10) 45.05 -37.20 .999

f(%) = α + β × %

Table 8.4: Summary of the Linear Regression Analysis.

relj , returning true when the states are the same and returning false otherwise. After each test case

performs the w× q×u attribute value comparisons, it removes the u records from each of the w relations. A

database-aware test suite of this nature models a testing process that performs many database interactions.

Table C3 in Appendix C provides additional information about this test suite.

We executed the test suite with four different reduction factors % ∈ {0, .25, .5, .75} (i.e., % = .5 corresponds

to a 50% reduction in the number of tests). In this circumstance, a 0% reduction executes all sixty test

cases and a 75% reduction runs fifteen tests. Since we performed this experiment with the sole purpose of

determining how reduction can impact the efficiency of testing, we randomly reduced the test suite to the

designated size. We also configured the database to execute in four different configurations that we describe

with the notation (w, u, q). For this study, we used databases in the configurations (10, 5, 5), (20, 5, 5),

(10, 10, 10), and (20, 10, 10). In these experiments, (10, 5, 5) corresponds to a small database containing

ten relations, each with five records and five attributes. The smallest database requires 250 attribute value

comparisons while the largest database, denoted (20, 10, 10), causes the test oracle to compare 2000 attribute

values. We ran each unique test suite and database configuration five times and we calculated arithmetic

means and standard deviations for testing time. For the bar charts in Figure 8.4, a diamond at the top of a

bar indicates a small standard deviation.

Figure 8.4 reveals that a 75% reduction in the number of test cases reduces testing time by 47 to 62%,

depending upon the size of the database. For example, Figure 8.4(a) shows that the execution of 15 test

cases requires 10 seconds of test execution time while the full test suite does not terminate until almost

twenty seconds have elapsed. Figure 8.4(d) reveals that the 75% reduction decreases testing time by almost

62% when the tests manipulate the (20, 10, 10) database. A test suite that interacts with a large database

benefits from reduction more than a suite for a small database since a single large database test is more

costly to run than a small database test. Moreover, the percent reduction in test suite size will normally be

higher than the percent reduction in testing time because the test suite executor must incur one time costs

associated with tasks such as connecting to the database. Even though the (20, 5, 5) and (10, 10, 10) tests

respectively perform 500 and 1000 comparisons, Figures 8.4(b) and (c) show that (20, 5, 5) exhibits higher

test execution times than (10, 10, 10). This trend is due to the fact it is more costly for the test executor

to load relj ’s actual and expected state than it is for the database-aware test oracle to compare additional

attribute values.
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Figure 8.5: Trends in Testing Time for Reduced Test Suites.

We performed a linear regression analysis in order to confirm the aforementioned trends and to support

the prediction of testing time for percent reductions that we did not explicitly examine. We found a least

squares fit for the function f(%) = α + β × % where % ∈ [0, 1] is the reduction factor and α and β are the

linear coefficients of the model. We evaluated the quality of the linear model by calculating the coefficient of

determination, R2 ∈ [0, 1] (high R2 values suggest that the model is a good predictor for the observed values).

Table 8.4 summarizes the results from the regression analysis and Figure 8.5 plots the trends lines for the

four different database configurations. As anticipated, the trend line for (20, 10, 10) has the sharpest slope

while (10, 5, 5) exhibits the most gradual reduction in testing time. Figure 8.5 also indicates that the tests

require approximately seven seconds to (i) initialize the Java virtual machine and the in-memory database

server and (ii) create a database connection (we anticipate that this value would be lower if the application

connected to a previously started database server). Provided that a reduction technique can preserve the test

suite’s effectiveness, these empirical results suggest that reduction can significantly decrease testing time.

8.4 USING DATABASE-AWARE COVERAGE TREES

A database-aware test coverage monitoring tree τ reveals how the test suite T caused the program to interact

with the databases. As discussed in Section 8.2, we can use the paths in the TCM tree as a test requirement.

Previous approaches to regression testing used the coverage tree paths to reduce the test suites for procedural

C programs and GUI applications [McMaster and Memon, 2005, 2006]. Our techniques are distinguished

from prior work because the regression tester (i) handles paths from both the dynamic call tree (DCT)

and the calling context tree (CCT), (ii) uses coverage trees that represent database interactions, and (iii)

attempts to make reduction or prioritization more efficient by coalescing tree paths. In support of database-

aware regression testing, we denote Π(τ) as the multiset of paths in the coverage tree τ . We define Π(τ) as

a multiset because coverage trees like the DCT can contain the same path more than once. Table A15 in

Appendix A summarizes the notation that we use to describe the path-based test requirements.
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Coverage Tree Path

π1 = 〈call m1, call m2, call m3, use Df 〉
π2 = 〈call m1, call m2, call m3〉
π3 = 〈call m1, call m3, call m4〉
π4 = 〈call m2, call m3, use Df 〉

Table 8.5: Examples of Paths in a Test Coverage Tree.

Following the path notation established in Chapter 4, we define a path π ∈ Π(τ) as a sequence of nodes

such that π = 〈Nρ, . . . , Nφ〉. For a path π ∈ Π(τ), we require (i) Nρ = N0 (i.e., the first node in the path is the

root) and (ii) Nφ ∈ Xτ (i.e., the last node is a member of the external node set Xτ = {Nφ : out(Nφ) = 0}).

When π = 〈Nρ, . . . , Nφ〉 and |π| = m, we use the notation π[0] and π[m−1] to respectively reference nodes Nρ

and Nφ. Table 8.5 provides four concrete examples of simple coverage tree paths that we will use to support

the discussion in this section. In these paths, a node of the form call mk corresponds to the invocation of

method mk during testing and the node use Df represents an interaction point that executes a SQL select

command and thus uses the database Df . For the tree path π1 in Table 8.5, we see that π1[0] = call m1 and

π1[m− 1] = use Df . For any two test paths π and π′, we say that Nρ ∈ π and Nφ ∈ π′ are corresponding

nodes if π[j] = Nρ, π′[j′] = Nφ, and j = j′. For the coverage tree paths π1 and π4 in Table 8.5, we observe

that π1[0] = call m1 and π4[0] = call m2 are corresponding nodes.

Since our focus is on using a coverage tree path as a test requirement, we define Π(τ, Ti) as the multiset

of tree paths for the test case Ti. For a path π ∈ Π(τ, Ti), we require π to be a sequence of nodes such that

Nρ = call Ti and Nφ ∈ Xτ . We present several mechanisms for reducing the size of Π(τ, Ti) because the

worst-case running time of the reduction and prioritization techniques is bound by the number of test cases

and test requirements (c.f. Section 8.5 for the details concerning the time complexities of these algorithms).

To this end, we define Πυ(τ, Ti) ⊆ Π(τ, Ti) as the set of unique test paths for test case Ti. In support of

enumerating Πυ(τ, Ti), Figure 8.6 defines an algorithm for determining path equality. The IsEqual algorithm

always returns false if the two test coverage paths are of a different length. If the two paths are of the same

length and each node in π is equal to the corresponding node in π′, then IsEqual returns true.1 For

example, we see that π1 6= π2 because the paths are of different lengths and π2 6= π3 since π2[1] 6= π3[1] and

π2[2] 6= π3[2].

Even though Πυ(τ, Ti) does not contain more than one element for each equivalent test path, it can still

contain paths that are duplicative from the testing perspective. If path π includes all of the nodes in π ′

and some additional nodes, then we say that π is a super path of π′ and π′ is a sub-path of π. Intuitively, a

super path is stronger than all of its sub-paths because it always exercises the same methods and database

entities as each sub-path. We use = as the super path operator and we write π = π′ to indicate that π is a

1This chapter presents several brute-force path comparison operators that the regression tester uses to identify the test
requirements. Since these path-based operators are clearly related to traditional text processing techniques, it might be ben-
eficial to enhance them by using time saving heuristics (e.g., [Ager et al., 2006, Boyer and Moore, 1977, Knuth et al., 1977,
Salmela et al., 2006, Sunday, 1990]). Since text processing is not the focus of this research and the empirical results suggest
that our path enumeration techniques are efficient, we intend to pursue these enhancements as part of future work.
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Algorithm IsEqual(π, π′)
Input: Coverage Tree Paths π, π′

Output: Boolean Value for Path Equality
1. if |π| 6= |π′|
2. then return false
3. else
4. for Nφ ∈ π
5. do for Nρ ∈ π′

6. do if Nφ 6= Nρ

7. then return false
8. return true

Figure 8.6: The IsEqual Algorithm for the Coverage Tree Paths.

super path of π′. Figure 8.7 provides the IsSuperPath algorithm that returns true when π = π′ and false

when the super path relationship does not hold. Since a super path π always corresponds to a longer call

sequence than a sub-path π′, IsSuperPath returns false if π contains fewer nodes than π′. When |π| > |π′|,

IsSuperPath compares π[0, |π′|−1] to π′ using the IsEquals algorithm defined in Figure 8.6. For the example

paths π1 and π2 in Table 8.5, we observe that π1 = π2. However, IsSuperPath(π2, π1) = false because

|π2| < |π1|. IsSuperPath(π2, π3) also returns false since π2 and π3 correspond to different calling contexts.

Since the CCT instrumentation probes that we defined in Chapter 7 already coalesce the test paths

according to =, the super path operator will not reduce the size of Πυ(τcct, Ti). However, applying = to

Πυ(τdct, Ti) can reduce the number of test requirements and thus make regression testing more efficient.

If path π′ exists within path π, then we say that π is a containing path for π′ and we write π � π′.

Figure 8.8 gives the IsContainingPath algorithm that returns true when π � π′ and false when π 6� π′.

IsContainingPath examines all of the possible locations where π′ could “fit” into π and returns true if

a matching location is found. The algorithm returns false if it does not locate a matching region after

comparing each |π′| length sub-path in π to π′.

Suppose that we execute IsContainingPath(π1, π4) with the paths π1 and π4 from Table 8.5. For these

inputs, we see that j iteratively takes on the value of 0 and 1 since |π1| = 4 and |π4| = 3. The first iteration

of the for loop uses IsEqual in order to determine that π1[0, 2] 6= π4. Since the second iteration reveals that

π1[1, 3] = π4, the IsContainingPath algorithm returns true and thus we know that π1 � π4. Coalescing tree

paths according to the path containment operator should reduce the number of test requirements. However,

decreasing the number of paths with � may compromise the capability of the requirements to capture the

behavior of the program during testing. This is due to the fact that a containing path corresponds to a

different testing context when it exercises the same methods and database entities as the contained path.

For example, both π1 and π4 include an interaction with database Df after the prior execution of m1 and

m2. However, the containing path π1 uses Df in the context of successive calls to m1, m2, and m3 while π4

does not have the initial invocation of m1.

We refer to = and � as path dominance operators and we use a to stand for either of these two operators.

We define Πµ(τ, Ti,a) ⊆ Πυ(τ, Ti) as the set of maximally unique test paths for the test Ti and the dominance

operator a. We say that π ∈ Πµ(τ, Ti,a) is maximally unique because it dominates all of the other unique test

168



paths under the dominance operator a. Figure 8.9 describes the KeepMaximalUnique algorithm that applies

a to Πυ(τ, Ti) in an attempt to reduce the number of test requirements. Intuitively, KeepMaximalUnique

compares each test path π ∈ Πυ(τ, Ti) to all of other test paths π′ that could dominate π according to a.

A test path π is only included in Πµ(τ, Ti) if KeepMaximalUnique demonstrates that it dominates all of

the other test paths. This algorithm uses Πη(τ, Ti) to store each of the test paths that it has previously

examined. For each new test path π ∈ Πυ(τ, Ti), KeepMaximalUnique places π into the set of examined

paths and then compares it to all of the other paths π′ that either have not yet been examined or have

already been proven to be maximally unique. The algorithm assumes that the current π is dominant and

uses a call to IsDominant to prove otherwise. The IsDominant algorithm invokes either the IsSuperPath or

IsContainingPath algorithm, depending upon the chosen dominance operator.

Suppose that a test case Ti covered each of the paths in Table 8.5. In this circumstance, we know that

Πυ(τ, Ti) includes all four of these test paths because each one is unique. However, the set Πµ(τ, Ti, =) =

{π1, π3, π4} does not contain π2 because π1 = π2. The requirement set Πµ(τ, Ti,�) = {π1, π3} does not

contain either π2 or π4 because π1 � π2 and π1 � π4. This example clearly demonstrates that the use of

the KeepMaximalUnique algorithm can reduce the number of test requirements and thus decrease the time

that we must devote to either reduction or prioritization. Yet, there is a trade-off associated with applying

a since the execution of KeepMaximalUnique incurs an additional time overhead that might not yield a

commensurate decrease in the time consumed by the reduction or prioritization algorithm. Section 8.10

empirically investigates this trade-off by measuring the time overhead for enumerating the coverage tree

paths and creating the modified test suite.

Once we have identified Πµ(τ, Ti,a) for each test case Ti, we must apply Equation (8.1) in order to

identify the set of maximally unique test requirements for the entire test suite. If the tester forgoes the use

of KeepMaximalUnique, we can also identify Πυ(τ, T ) with Equation (8.2). The reduction and prioritization

algorithms described in Section 8.5 analyze how the test cases overlap in their coverage of the test paths in

either Πµ(τ, T,a) or Πυ(τ, T ). However, if there is a π ∈ Πµ(τ, Ti,a) and π′ ∈ Πµ(τ, T ′
i ,a) such that π a π′,

the regression tester will not view this as an overlap in requirement coverage. For example, suppose that for

T = 〈Ti, T̂i〉, Ti covers paths π1 and π2 and T̂i covers π3 and π4. Coalescing these test paths according to �

yields Πµ(τ, Ti,�) = {π1}, Πµ(τ, T̂i,�) = {π3, π4}, and Πµ(τ, T,�) = {π1, π3, π4}. Since we did not apply

� to the entire test suite, the regression tester does not recognize that π1 � π4 and this may increase the

time overhead for creating the modified test suite and/or lead to the removal of fewer tests from the initial

suite. In principle, we can extend the KeepMaximalUnique algorithm to operate on the entire test suite. We

reserve the study of this approach for future research.

Πµ(τ, T,a) =

n⋃

i=1

Πµ(τ, Ti,a) (8.1)

Πυ(τ, T ) =

n⋃

i=1

Πυ(τ, Ti) (8.2)
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Algorithm IsSuperPath(π, π′)
Input: Coverage Tree Paths π, π′

Output: Boolean Value for the Super Path Operator =

1. if |π| ≤ |π′|
2. then return false
3. return IsEqual(π[0, |π′| − 1], π′)

Figure 8.7: The IsSuperPath Algorithm for the Coverage Tree Paths.

Algorithm IsContainingPath(π, π′)
Input: Coverage Tree Paths π, π′

Output: Boolean Value for the Containing Path Operator �
1. if |π| ≤ |π′|
2. then return false
3. for j ∈ {0, . . . , |π| − |π′|}
4. do if IsEquals(π[j, j + |π′| − 1], π′) = true
5. then return true
6. return false

Figure 8.8: The IsContainingPath Algorithm for the Coverage Tree Paths.

Algorithm KeepMaximalUnique(Πυ(τ, Ti),a)
Input: Set of Unique Test Paths Πυ(τ, Ti);

Path Dominance Operator a
Output: Set of Maximally Unique Test Paths Πµ(τ, Ti)
1. Πµ(τ, Ti)← ∅
2. Πη(τ, Ti)← ∅
3. for π ∈ Πυ(τ, Ti)
4. do Πη(τ, Ti)← Πη(τ, Ti) ∪ {π}
5. dominant← true
6. for π′ ∈ (Πυ(τ, Ti) \ Πη(τ, Ti)) ∪ Πµ(τ, Ti)
7. do if IsDominant(π′, π,a) = true
8. then dominant← false
9. if dominant = true
10. then Πµ(τ, Ti)← Πµ(τ, Ti) ∪ {π}
11. return Πµ(τ, Ti)

Figure 8.9: The KeepMaximalUnique Algorithm for the Coverage Tree Paths.

170



Reduction or Prioritization Technique

Greedy Reverse Random

Overlap-Aware Not Overlap-Aware

PSfrag replacements

N6

enter computeVelocity

enter computeVelocity

N6

N6

N7

N7

N8

N8

N10

N8

N16

N10

N11

N11

N12

N12

N18

N16

N18

N18

exit computeVelocity

exit computeVelocity

N6

N1

N1

N2

N2

N3

N3

N1

N1

N4

N4

N5

N5

N6

enter P

enter P

call main

call main

enter main

enter main

enter main

. . .

. . .

call inputCardNumber

call inputCardNumber

call inputPin

call inputCardNumber

call handleError

call handleError

call inputCardNumber

call inputPin

call handleError

call handleError

call inputPin

call inputPin

call inputOperation

call inputOperation

call getAccountBalance

call getAccountBalance

call promptAgain

call inputOperation

call lockAccount

call lockAccount

call promptAgain

call promptAgain

call inputOperation

call promptAgain

. . .

call getAccountBalance

enter getAccountBalance

enter getAccountBalance

N3

N3

N4

N4

N5

N5

N6

N6

N7

N7

N10

N10

N12

N12

N15

N10

N15

N15

exit getAccountBalance

exit getAccountBalance

return getAccountBalance

return lockAccount

. . .

return getAccountBalance

call promptAgain

. . .

exit main

exit main

return main

return main

exit P

exit P

. . .

exit main

enter lockAccount

enter lockAccount

. . .

. . .

exit lockAccount

exit lockAccount

return lockAccount

return lockAccount

exit main

Figure 8.10: Classifying our Approaches to Regression Testing.

8.5 DATABASE-AWARE REGRESSION TESTING

Figure 8.10 shows that the regression testing component supports both test suite reduction and prioritization.

In particular, we furnish overlap-aware greedy techniques that are based on the approximation algorithm

for the minimal set cover problem [Feige, 1998, Vazirani, 2001]. Greedy reduction with overlap awareness

iteratively selects the most cost-effective test case for inclusion in the reduced test suite. During every

successive iteration, the overlap-aware greedy algorithm re-calculates the cost-effectiveness for each leftover

test according to how well it covers the remaining test requirements. This reduction technique terminates

when the reduced test suite covers all of the test requirements that the initial tests cover. Since this approach

to reduction leaves the excess tests in the initial test suite, the overlap-aware prioritization scheme identifies

a test re-ordering by repeatedly reducing the residual tests. The prioritizer’s invocation of the overlap-aware

reducer continues until the original suite of tests is empty.

Prioritization that is not overlap-aware re-orders the tests by sorting them according to a cost-effectiveness

metric [Rothermel et al., 2001, Rummel et al., 2005]. When provided with a target size for the reduced test

suite, the regression tester sorts the tests by cost-effectiveness and then selects test cases until the new test

suite reaches the size limit. The overlap-aware reduction and prioritization techniques have the potential

to identify a new test suite that is more effective than the suite that was created by ignoring the overlap

in requirement coverage. However, the algorithms that are based upon the greedy heuristic for minimal set

cover normally require more execution time than the techniques that disregard the overlap. Figure 8.10 also

indicates that the regression testing component reverses the initial tests in order to generate a prioritized

test suite [Walcott et al., 2006]. This scheme may be useful if a tester always adds new, and possibly more

effective, tests to the end of the test suite. Test reduction via reversal selects tests from the reversed test

suite until reaching the provided target size. We also employ random reduction and prioritization as a form

of experimental control [Do et al., 2004, Rothermel et al., 2001, Walcott et al., 2006].

Figure 8.11 provides the GreedyReductionWithOverlap (GRO) algorithm that produces the reduced test

suite Tr after repeatedly analyzing how each remaining test covers the requirements in Π(T ). Following the

notation established in Chapter 5, this algorithm uses ] as the union operator for tuples. GRO initializes Tr
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Algorithm GreedyReductionWithOverlap(T, Π(T ))
Input: Test Suite T = 〈T1, . . . , Tn〉;

Test Coverage Set Π(T )
Output: Reduced Test Suite Tr

1. Tr ← ∅, Π(Tr)← ∅, T̂ ← T
2. while Π(Tr) 6= Π(T )
3. do ϕ←∞
4. Tϕ ← null
5. for Ti ∈ T̂
6. do if Π(Ti) \ Π(Tr) 6= ∅

7. then ϕi ←
time(〈Ti〉)

|Π(Ti)\Π(Tr)|

8. if ϕi < ϕ
9. then Tϕ ← Ti

10. ϕ← ϕi

11. else
12. T̂ ← T̂ \ Ti

13. Tr ← Tr ] Tϕ

14. T̂ ← T̂ \ Tϕ

15. Π(Tr)← Π(Tr) ∪Π(Tϕ)
16. T ← T \ Tr

17. return Tr

Figure 8.11: The GreedyReductionWithOverlap (GRO) Algorithm.

Algorithm GreedyPrioritizationWithOverlap(T, Π(T ))
Input: Test Suite T = 〈T1, . . . , Tn〉;

Test Coverage Set Π(T )
Output: Prioritized Test Suite Tp

1. Tp ← ∅, Π`(T )← Π(T )
2. while T 6= ∅
3. do Tr ← GreedyReductionWithOverlap(T, Π`(T ))
4. Tp ← Tp ] Tr

5. Πl(T )← ∅
6. for Ti ∈ T
7. do Π`(T )← Π`(T ) ∪Π(Ti)
8. return Tp

Figure 8.12: The GreedyPrioritizationWithOverlap (GPO) Algorithm.

Algorithm GreedyReductionWithoutOverlap(T, n∗, ϕ)
Input: Test Suite T = 〈T1, . . . , Tn〉;

Test Suite Target Size n∗;
Test Cost-Effectiveness Metric ϕ

Output: Reduced Test Suite Tr

1. T̂ ← Sort(T, ϕ)
2. Tr ← T̂ [1, n∗]
3. return Tr

Figure 8.13: The GreedyReductionWithoutOverlap (GR) Algorithm.
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to the empty set and iteratively adds the most cost-effective test into the reduced test suite. Equation (8.4)

defines the greedy cost-effectiveness metric ϕi for test case Ti. This equation uses the time(〈Ti〉) function to

calculate the execution time of the singleton test tuple 〈Ti〉. More generally, we require time(〈T1, . . . , Tn〉)

to return the time overhead associated with executing all of the n tests in the input tuple. According to

Equation (8.4), ϕi is the average cost at which test case Ti covers the |Π(Ti) \Π(Tr)| requirements that are

not yet covered by Tr [Vazirani, 2001]. Therefore, each iteration of GRO’s outer while loop finds the test

case with the lowest cost-effectiveness value and places it into Tr.

ϕi =
time(〈Ti〉)

|Π(Ti) \Π(Tr)|
(8.3)

GRO initializes the temporary test suite T̂ to contain all of T ’s tests and then selects test cases from T̂ .

Line 2 of Figure 8.11 shows that GRO terminates when Π(Tr) = Π(T ). Line 5 through line 12 are responsible

for (i) identifying Tϕ, the next test that GRO will add to Tr, and (ii) removing any non-viable test Ti that

does not cover at least one of the un-covered requirements (i.e., Ti is non-viable when Π(Ti) \ Π(Tr) = ∅).

Lines 13 and 14 respectively place Tϕ into Tr and then remove this test from T̂ so that it is not considered

during later executions of GRO’s outer while loop. Finally, line 15 augments Π(Tr) so that this set contains

Π(Tϕ), the set of requirements that Tϕ covers. Since we want GRO to support prioritization via successive

invocations of the reducer, line 16 updates T so that it no longer contains any of the tests in Tr. We know

that GreedyReductionWithOverlap is O(|Π(T )|× |T |) or O(m×n) because the algorithm contains a for loop

nested within a while loop [Rothermel et al., 2001, Vazirani, 2001].

Figure 8.12 contains the GreedyPrioritizationWithOverlap (GPO) algorithm that uses the GRO algo-

rithm to re-order test suite T according to its coverage of the requirements in Π(T ). GPO initializes the

prioritized test suite Tp to the empty set and uses Π`(T ) to store the live test requirements. We say that

a requirement is live as long as it is covered by a test case that remains in T after one or more calls to

GreedyReductionWithOverlap. Each invocation of GRO yields both (i) a new reduced Tr that we place in Tp

and (ii) a smaller number of residual tests in the original T . After each round of reduction, lines 5 through

7 reinitialize Π`(T ) to the empty set and insert all of the live requirements into this set. GPO uses the

newly populated Π`(T ) during the next call to GRO. Line 2 shows that the prioritization process continues

until T = ∅. The worst-case time complexity of GreedyPrioritizationWithOverlap is O(n × (m × n) + n2)

or O(n2 × (1 + m)). The n × (m × n) term in the time complexity stands for GPO’s repeated invocation

of GreedyReductionWithOverlap and the n2 term corresponds to the cost of iteratively populating Π`(T )

during each execution of the outer while loop. Since overlap-aware greedy prioritization must re-order the

entire test suite, it is more expensive than GRO in the worst case.

Figure 8.13 describes the GreedyReductionWithoutOverlap (GR) algorithm that reduces a test suite T

to the target size n∗ ∈ {0, . . . , n − 1}. GR uses the cost-effectiveness metric ϕ when it sorts the tests in

T . For a test case Ti, we use one of the three definitions for ϕi: (i) time(〈Ti〉)
|Π(Ti)|

, the ratio between the test’s

cost and coverage, (ii) time(〈Ti〉), the cost of the test and (iii) |Π(Ti)|, the number of requirements that
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Test Case Test Cost Test Coverage Cost to Coverage Ratio

T1 1 5 1/5

T2 2 5 2/5

T3 2 6 2/6

(a)

Effectiveness Metric Test Case Order

Cost T1, T2, T3

Coverage T3.T1, T2

Ratio T1, T3, T2

(b)

Table 8.6: The Cost and Coverage of a Test Suite.

are covered by the test. When ϕi is either the cost to coverage ratio or the cost of each test, the GR

algorithm sorts T in ascending order. If ϕi is the coverage of a test case, then we sort the test suite in

descending order. Figure 8.13 shows that GR stores the output of Sort(T, ϕ) in T̂ and then creates Tr so

that it contains T̂ ’s first n∗ tests (i.e., we use the notation T̂ [1, n∗] to denote the sub-tuple 〈T1, . . . , Tn∗〉).

Finally, Figure 8.14 demonstrates that GreedyPrioritizationWithoutOverlap (GP) returns the test suite that

results from sorting T according to ϕ. If we assume that the enumeration of T [1, n∗] occurs in linear time,

then GR is O(log2 n + n∗) and GP is O(log2 n). These time complexities both include a log2 n term because

they sort the input test suite T in order to respectively create Tr and Tp. The n∗ term in GR’s worst-case

time complexity corresponds to the execution of line 2 in Figure 8.13 (i.e., Tr ← T [1, n∗]).

Using GR to perform reduction requires the selection of the target size parameter n∗. When provided

with a testing time limit and the average time overhead of a test case, we could pick n∗ so that test execution

roughly fits into the time budget. In order to ensure a fair experimental comparison between GRO and GR,

we set n∗ = |Tr| after using GRO to identify Tr. The choice of ϕ can also change the ordering of the tests

in the modified test suite created by either GR or GP. For example, suppose that GP prioritizes test suite

T = 〈T1, T2, T3〉, as described in Table 8.6(a). Re-ordering T according to cost gives the initial ordering

〈T1, T2, T3〉 since T1 consumes one time unit and T2 and T3 both consume two time units (for this example,

we resolve ties by creating the order 〈Ti, Tk〉 when i < k or 〈Tk, Ti〉 if i > k). Prioritization according to

test requirement coverage yields the ordering 〈T3, T1, T2〉 because T3 covers six requirements and T1 and

T2 both cover five. Table 8.6(b) also shows that prioritization by the cost to coverage ratio creates the

ordering 〈T1, T3, T2〉. In contrast to GRO and GPO, the reduction and prioritization techniques that ignore

test coverage overlap may require the tuning of n∗ (GR) and ϕ (GR and GP) in order to ensure that the

modified test suite is both efficient and effective.

Figures 8.15 and 8.16 furnish the ReverseReduction (RVR) and ReversePrioritization (RVP) algorithms.

RVR and RVP differ from GR and GP in that they use Reverse instead of Sort. Since reversal of the test

tuple T [1, n∗] is O(n∗), we know that RVR is O(2n∗) and RVP is O(n). Figures 8.17 and 8.18 give the

RandomReduction (RAR) and RandomPrioritization (RAP) algorithms. These algorithms are different than
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Algorithm GreedyPrioritizationWithoutOverlap(T, ϕ)
Input: Test Suite T = 〈T1, . . . , Tn〉;

Test Cost-Effectiveness Metric ϕ
Output: Prioritized Test Suite Tp

1. Tp ← Sort(T, ϕ)
2. return Tp

Figure 8.14: The GreedyPrioritizationWithoutOverlap (GP) Algorithm.

Algorithm ReverseReduction(T, n∗)
Input: Test Suite T = 〈T1, . . . , Tn〉;

Test Suite Target Size n∗

Output: Reduced Test Suite Tr

1. T̂ ← T [1, n∗]
2. Tr ← Reverse(T̂ )
3. return Tr

Figure 8.15: The ReverseReduction (RVR) Algorithm.

Algorithm ReversePrioritization(T )
Input: Test Suite T = 〈T1, . . . , Tn〉
Output: Prioritized Test Suite Tp

1. Tp ← Reverse(T )
2. return Tp

Figure 8.16: The ReversePrioritization (RVP) Algorithm.

Algorithm RandomReduction(T, n∗)
Input: Test Suite T = 〈T1, . . . , Tn〉;

Test Suite Target Size n∗

Output: Reduced Test Suite Tr

1. T̂ ← T [1, n∗]
2. Tr ← Shuffle(T̂ )
3. return Tr

Figure 8.17: The RandomReduction (RAR) Algorithm.

Algorithm RandomPrioritization(T )
Input: Test Suite T = 〈T1, . . . , Tn〉
Output: Prioritized Test Suite Tp

1. Tp ← Shuffle(T )
2. return Tp

Figure 8.18: The RandomPrioritization (RAP) Algorithm.
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Regression Testing Algorithm Worst-Case Time Complexity

GreedyReductionWithOverlap (GRO) O(m × n)

GreedyPrioritizationWithOverlap (GRO) O(n2 × (1 + m))

GreedyReductionWithoutOverlap (GR) O(log2 n + n∗)

GreedyPrioritizationWithoutOverlap (GP) O(log2 n)

ReverseReduction (RVR) O(2n∗)

ReversePrioritization (RVP) O(n)

RandomReduction (RAR) O(2n∗)

RandomPrioritization (RAP) O(n)

Table 8.7: Summary of the Worst-Case Time Complexities.

reduction and prioritization by reversal because the invoke Shuffle instead of Reverse. However, RAR and

RAP also have worst-case case time complexities of O(2n∗) and O(n), respectively. This result is due to the

fact that Reverse and Shuffle are both linear time algorithms. Table 8.7 summarizes the worst-case time

complexities of the reduction and prioritization algorithms provided by the regression testing component.

Finally, Table A16 in Appendix A reviews the notation that we develop in this section.

8.6 EVALUATING THE EFFECTIVENESS OF A TEST SUITE

We must evaluate the effectiveness of the modified test suite that was created by the reduction or prior-

itization technique. Most measures of effectiveness can only be calculated after using a mutation testing

tool to seed faults into the program under test. If a mutation tester is not available, then it is possible to

manually seed faults into the source code of a case study application. Upon the completion of fault seeding,

we can evaluate a prioritized test suite by determining how well it exposes the seeded faults. The average

percentage of faults detected (APFD) is the metric that best represents this type of approach to empirically

evaluating a prioritization technique [Rothermel et al., 2001]. Reliance upon manual fault seeding can be

problematic because it is costly, prone to error, and a potential source for experimental bias. Preliminary

empirical results suggest that it may be acceptable to measure a test suite’s fault detection effectiveness by

using a mutation testing tool [Andrews et al., 2005, Do and Rothermel, 2006]. Yet, there are no mutation

testing tools that consider a program’s database interactions. Furthermore, no experiments have been done

to confirm whether or not a mutation tester can guide the evaluation of database-aware test prioritization.

It is important to devise an effectiveness metric for prioritized test suites that does not require fault

seeding. If requirement coverage is stored on a per test case basis and the coverage monitor records the

execution time for each test, then it is possible to calculate our measure of coverage effectiveness. First,

we create a cumulative coverage function that describes how test requirement coverage varies over time.

We construct this coverage function under the assumption that a requirement is marked as covered upon
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Figure 8.19: The Cumulative Coverage of a Test Suite.

the completion of one of its covering tests. Integrating this function yields the coverage area of the test

suite. Intuitively, a large coverage area suggests that a particular re-ordering of a test suite is highly

effective. In support of an approach to comparing different prioritizations of the same test suite, we define

coverage effectiveness (CE) as the ratio between the re-ordered suite’s coverage area and the coverage area

of the ideal test suite. As mentioned in Section 8.3, an ideal test suite immediately covers all of the test

requirements. Since high coverage tests are more likely to reveal program faults than those with low coverage

[Hutchins et al., 1994], CE is an appropriate metric for characterizing a re-ordered test suite. Even though

CE and APFD are similar because they both calculate an area under a curve, CE obviates the need for fault

seeding. Therefore, CE is useful when manual fault seeding is too costly or mutation testing is not feasible.

We envisage the use of CE in conjunction with previously developed metrics such as APFD.

Equation (8.4) defines ξ(T, Tp) ∈ [0, 1], the coverage effectiveness of the prioritized test suite Tp that

was derived from T . Suppose that the regression tester creates Tp and T̂p after applying two different

prioritization techniques to T . If ξ(T, Tp) > ξ(T, T̂p), then we know that Tp is more coverage effective than

T̂p. For this example, we would prefer the first approach to reduction instead of the second. The numerator

of Equation (8.4) is the integral of κ(Tp, t), the requirement coverage for test suite Tp at time t during test

suite execution. Equation (8.4)’s denominator is the integral of κ̄(T, t), the requirement coverage for the

ideal version of T . Calculating ξ(T, Tp) requires the integration of both the κ and κ̄ functions in the closed

interval between 0 and t(n). Equation (8.5) defines t(n′) as the time required to execute the first n′ test

cases in T . For example, t(1) would return the time overhead for test T1 and t(n) calculates the running

time for the entire suite of n test cases. Finally, Equation (8.4) uses t to stand for a specific point in time

during testing.

ξ(T, Tp) =

∫ t(n)

0
κ(Tp, t)∫ t(n)

0 κ̄(T, t)
(8.4)

t(n′) =

n′∑

i=1

time(Ti) (8.5)

177



Since the ideal test suite immediately covers all of the test requirements, Equation (8.6) shows that

κ̄(T, t) is constant across all time inputs t for a specific test suite T . If T covers the requirements in the set

Π(T ), then κ̄(T, t) indicates that an ideal suite would cover all π ∈ Π(T ) right away. Finally, Equation (8.7)

defines the piecewise function κ(T, t) that describes the cumulative coverage of T at time t during testing.

We define κ(T, t) as an (n + 1)-part piecewise function when T = 〈T1, . . . , Tn〉. Equation (8.7) reveals that

κ(T, t) = 0 until the completion of test case T1 (i.e., t < t(1)). In the time period after the execution of

T1 and during the running of T2 (i.e., t ∈ [t(1), t(2))), the value of κ shows that T has covered a total

of |Π(T1)| test requirements. After running the first n − 1 tests, κ’s output indicates that T has covered∣∣∣
⋃n−1
i=1 Π(Ti)

∣∣∣ test requirements until the test executor completes the execution of the final test Tn (i.e.,

t ∈ [t(n − 1), t(n))). We define κ to maintain the maximum height of |Π(T )| for all time points t ≥ t(n).

Figure 8.19 graphically demonstrates how we construct the cumulative coverage function κ. Even though

our definition of ξ and κ leverages the notation for coverage tree paths, it is also possible to calculate

coverage efficiency according to the test suite’s coverage of other types of test requirements such as the

database interaction association. Table A17 in Appendix A reviews the notation that we develop during the

discussion of the coverage effectiveness for a test prioritization.

κ̄(T, t) =

∣∣∣∣∣
n⋃

i=1

Π(Ti)

∣∣∣∣∣ (8.6)

κ(T, t) =





0 t < t(1)

|Π(T1)| t ∈ [t(1), t(2))

...
...∣∣∣

⋃n−1
i=1 Π(Ti)

∣∣∣ t ∈ [t(n− 1), t(n))

|Π(T )| t ≥ t(n)

(8.7)

We can only use the previous formulation of coverage effectiveness when we evaluate the prioritization

of a test suite. This is due to the fact that different reduction techniques frequently create test suites that

vary in their reduction of the (i) number of tests, (ii) overall test suite execution time, and (iii) coverage of

the test requirements. To this end, we present two metrics for evaluating the efficiency of a reduced test

suite. Equation (8.8) defines %n(T, Tr) ∈ [0, 1], the reduction factor for test size (RFS) of the original test

suite T and reduced test suite Tr. Furthermore, Equation (8.9) defines %t(T, Tr) ∈ [0, 1], the reduction factor

for testing time (RFT). High values for RFS and RFT suggest that a reduced test suite is very efficient.

Suppose that the regression tester analyzes test suite T and creates two reduced test suites called Tr and

T̂r. If %n(T, Tr) > %n(T, T̂r) and %t(T, Tr) > %t(T, T̂r), then we know that Tr is more efficient than T̂r.

%n(T, Tr) =
|T | − |Tr|

|T |
(8.8)

%t(T, Tr) =
time(T )− time(Tr)

time(T )
(8.9)
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νr ν̂r Comparison

〈.4, .5, .8〉 〈.4, .5, .9〉 ν̂r � νr

〈.4, .5, 1〉 〈.4, .55, 1〉 ν̂r � νr

〈.6, .5, 1〉 〈.4, .5, 1〉 νr � ν̂r

〈.4, .5, 1〉 〈.55, .75, .9〉 νr ∼ ν̂r

Table 8.8: Comparing Test Suite Reductions.

We must also evaluate the effectiveness of a reduced test suite. The majority of prior empirical research

calculates the decrease in fault detection effectiveness for a reduced test suite after seeding faults into the

program under test (e.g., [Jones and Harrold, 2003, McMaster and Memon, 2005]). We judge that it is

important to devise a measure of effectiveness that can be used instead of or in conjunction with a fault-

based measurement. To this end, Equation (8.10) defines the reduction factor for test requirements (RFR) as

%π(T, Tr) ∈ [0, 1]. Unlike the RFS and RFT metrics, we prefer low values for %π(T, Tr) because this indicates

that a reduced test suite Tr covers the majority of the requirements that the initial tests cover. To avoid

confusion during the empirical comparison of different reduction techniques, we define the preservation factor

for test requirements (PFR) as νπ(T, Tr) = 1− %π(T, Tr) such that νπ(T, Tr) ∈ [0, 1]. If a reduced test suite

has a high PFR factor, then we know that it covers most of the requirements that the original tests cover.

The overlap-aware greedy reduction algorithm that we defined in Section 8.5 (i.e., GRO) always creates a Tr

that covers all of the test requirements and thus νπ(T, Tr) = 1. However, the other reduction techniques (i.e.,

GR, RVR, and RAR) are not guaranteed to construct a test suite that covers all π ∈ Π(T ) and thus they

may yield values for νπ that are less than one. Even though we defined %π and νπ in the context of coverage

tree paths, we can also use these coverage effectiveness metrics in conjunction with reduction techniques that

use other types of test requirements (e.g., the database interaction associations).

%π(T, Tr) =
|Π(T )| − |Π(Tr)|

|Π(T )|
(8.10)

In order to facilitate the comparison between different approaches to reduction, we employ νr = 〈%n, %t, νπ〉

to organize the evaluation metrics for test suite Tr. Table 8.8 summarizes the four different evaluation tu-

ples that we use to explain the process of comparing different reduction algorithms. Suppose that two

different reduction techniques create Tr and T̂r that are respectively characterized by the evaluation tuples

νr = 〈.4, .5, .8〉 and ν̂r = 〈.4, .5, .9〉. In this example, we would prefer the ν̂r configuration because it (i) has

the same values for %n and %t (i.e., the reduction factors for the number of tests and the overall testing time)

and (ii) preserves the coverage of more test requirements since ν̂π > νπ. If νr = 〈.4, .5, 1〉 and ν̂r = 〈.4, .55, 1〉,

then we would prefer the reduced suite with ν̂r because it fully preserves requirement coverage while yielding

a larger value for %t (i.e., .55 > .5). Next, suppose that νr = 〈.6, .5, 1〉 and ν̂r = 〈.4, .5, 1〉. In this situation,

we would favor νr’s reduction algorithm since it yields the smallest test suite (i.e., %n > %̂n since .6 > .4).

This choice is sensible because it will control test execution time if there is an increase in the startup and

shutdown costs associated with running a test.
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Figure 8.20: Different Configurations of the Regression Testing Component.

During the evaluation of reduction algorithms, it may not always be clear which technique is the most

appropriate for a given database-centric application and its test suite. For example, assume that νr =

〈.4, .5, 1〉 and ν̂r = 〈.55, .75, .9〉, as provided by Table 8.8. In this example, ν̂r shows that T̂r is (i) better

at reducing testing time and (ii) worse at preserving requirement coverage when we compare it to Tr. In

this circumstance, we must choose the reduction technique that best fits the current regression testing

process. For example, it may be prudent to select ν̂r when the test suite is executed in a time constrained

environment (e.g., [Kapfhammer et al., 2005, Walcott et al., 2006]) or the tests are repeatedly run during

continuous testing (e.g., [Saff and Ernst, 2004]). If the correctness of the application is the highest priority,

then it is advisable to use the reduction technique that leads to Tr and νr. For the reduced test suites Tr

and T̂r and their respective evaluation tuples νr and ν̂r, we write νr � ν̂r when the logical predicate in

Equation (8.11) holds (i.e., we prefer Tr to T̂r). If νr � ν̂r, then we know that Tr is as good as T̂r for all

three evaluation metrics and better than T̂r for at least one metric.2 If Equation (8.11) does not hold for

test suites Tr and T̂r that were produced by two different reduction techniques (i.e., νr 6� ν̂r and ν̂r 6� νr),

then we write νr ∼ ν̂r (i.e., Tr and T̂r are similar). Since we have no preference between Tr and T̂r when

νr ∼ ν̂r, we must use the constraints inherent in the testing process to inform the selection of the best

reduction technique. Table A18 in Appendix A reviews the notation that we use to describe the evaluation

of a reduced test suite.

∀ν ∈ νr, ν̂ ∈ ν̂r : (ν ≥ ν̂) ∧ ∃ν ∈ νr, ν̂ ∈ ν̂r : (ν > ν̂) (8.11)

2Our definition of the � operator is based on the concept of pareto efficiency that is employed in the fields of economics
and multi-objective optimization (please refer to [Zitzler and Thiele, 1999] for more details about these areas).
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8.7 IMPLEMENTATION OF THE REGRESSION TESTING COMPONENT

Figure 8.20 describes the different configurations of the regression testing component. Section 8.4 provides

a detailed discussion of the “Requirements” subtree and Section 8.5 examines the “Technique” subtree. We

implemented the regression testing component in the Java 1.5.0 programming language. For simplicity, we

convert a coverage tree path into a java.lang.String and we use the startsWith and contains methods

in the implementation of the path dominance operators. For example, the regression tester transforms the

tree paths π and π′ into strings s and s′. If we have π = π′ (i.e., π is a super path for π′), then we know

that s.startsWith(s′) returns true. Furthermore, if π � π′ holds (i.e., π is a containing path for π′), then

we know that s.contains(s′) returns true.

Even though the empirical results in Section 8.10 suggest that the use of java.lang.String exhibits

acceptable performance, we intend to use more efficient string implementations (e.g., [Boldi and Vigna,

2005]) and text processing algorithms (e.g., [Sunday, 1990]) to further reduce the time overhead of test path

enumeration. Since the default JUnit and DBUnit test executors do not support reduction or prioritization,

we enhanced these tools to read external configurations. When prioritization is enabled, the test executor

ignores the default ordering of the tests and re-orders them before testing starts. If reduction is chosen,

then the test suite execution engine only runs a test if it is specified in the external configuration file. Even

though each configuration file is automatically generated by the regression testing component, the tester

may manually modify these configurations when necessary. Since our regression testing tools incorporate a

test’s actual running time, we enhanced the coverage monitor so that it (i) uses instrumentation probes to

time the execution of a test and (ii) stores this data in the coverage report.

8.8 EXPERIMENT GOALS AND DESIGN

We conducted experiments to measure the performance of the algorithms that (i) enumerate the tree-based

test requirements and (ii) reduce or prioritize the test suite. We also investigate how reduction and pri-

oritization impact the efficiency and effectiveness of regression testing (c.f. Section 8.6 for a discussion of

the primary evaluation metrics). We characterize each case study application in order to explain why the

efficiency and effectiveness of the algorithms vary across the different applications. Since the existence of

many long running test cases may limit the opportunities for reduction and/or prioritization [Elbaum et al.,

2001], we calculate the running time for each test case in a test suite. Furthermore, we measure how many

tests cover each individual test requirement because a test suite with a high overlap in requirement coverage

is more amenable to reduction. If a test suite is composed of many tests that create numerous tree paths

and there is a small number of test requirements, then it is likely that this suite is fit for reduction. Thus,

we count the number of tree paths that are created by each test case. Finally, we report how many unique

tree paths are covered by the entire test suite because the worst-case time complexity of GRO and GPO is

bound by both the number of test cases (i.e., |T | or n) and the number of requirements (i.e., |Π(T )| or m).
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Figure 8.21: ECDFs for Test Case Execution Time.

Figure 8.20 shows that the regression tester can reduce or re-order the test suite by incorporating either

the unit cost or the actual cost of running a test. Under the unit cost assumption, a regression testing

algorithm supposes that all of the test cases execute for the same amount of time. With the exception

of [Elbaum et al., 2001, Walcott et al., 2006], the majority of regression testing tools operate under the

unit cost assumption (e.g., [Jeffrey and Gupta, 2007, Harrold et al., 1993, McMaster and Memon, 2005,

Tallam and Gupta, 2005]). However, it is not advisable to make this assumption during the regression

testing of a database-centric application. When a test suite mixes database-aware test cases with those that

do not perform database interactions, the time overhead of the tests can vary by one or more orders of

magnitude. Figure 8.21 presents an empirical cumulative distribution function (ECDF) of test execution

time for the test suite of each case study application. As noted in Chapter 7, an ECDF gives the cumulative

percentage of the recorded data set whose values fall below a specific value. In these graphs, a sharply rising

ECDF indicates that most test cases are very fast. An ECDF curve that rises more gradually would suggest

that the test suite has a greater concentration of long running tests.

For brevity, our discussion of test case execution time focuses on the FF application (the other case

study applications demonstrate similar testing patterns). FindFile’s ECDF in Figure 8.21(b) reveals that

almost 90% of the test cases have execution times below 500 milliseconds and over 60% of tests run in under

200 milliseconds. We also observe that a small percentage of the tests run for almost six seconds. After

investigating the source code of FindFile’s test suite, we noted that the fast test cases perform few, if

any, database interactions. The more costly test cases execute many database-aware test oracles and often

interact with more than one of the database’s relations. Generally, the most expensive tests incur a high

time overhead because they ensure the correctness of the database server’s startup and shutdown routines
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by starting and stopping the server. We anticipate that these costs would be much higher if FindFile

restarted a stand-alone RDBMS (e.g., MySQL [Yarger et al., 1999] or PostreSQL [Monjian, 2000]) instead

of the in-memory HSQLDB database management system. The graphs in Figure 8.21 demonstrate that all

of the test suites contain many tests that execute very quickly (i.e., in less than 100 milliseconds) and a few

tests that run for approximately five or six seconds. This evidence clearly suggests that there is a substantial

difference in the time overhead for the tests and thus motivates the use of the actual test execution time.

Since our test coverage monitor records the time overhead for running each test case, all of the experiments

use the actual test execution cost. In future work, we will examine how the unit cost assumption impacts

database-aware regression testing.

It is important to perform reduction and prioritization for our case study applications even though

Table 8.9 shows that all of the test suites execute in less than ten seconds. A testing time of ten seconds may

be too costly in certain software development processes, such as extreme programming, that promote a short

implementation and testing cycle and the frequent execution of very fast tests [Poole and Huisman, 2001]. If

a test suite is executed in a time sensitive environment (e.g., [Walcott et al., 2006]), the tests are run during

continuous testing (e.g., [Saff and Ernst, 2004]), or testing occurs in a resource constrained environment

(e.g., [Kapfhammer et al., 2005]), then it also may be too expensive to run all of the tests. Furthermore,

recent research suggests that the test executor should restart the RDBMS server after the execution of every

test case [Haftmann et al., 2005a]. This approach is useful because it is often difficult for a tester to ensure

that all of the tests restore the database state that they modified. For example, test execution may have

side effects if a test case modifies the state of the database and the RDBMS subsequently changes one or

more relations when it enforces integrity constraints or executes triggers.

We judge that it is not absolutely necessary to restart the server upon the completion of a test because

each of our test suites executes in an independent fashion. However, in light of the recommendations made

by [Haftmann et al., 2005a], we estimated the execution time of each test suite under the assumption that

the tests are non-independent and the executor repeatedly performs server restarts in order to purge the

database’s state. After studying the testing behavior of each case study application, we concluded that a

restart of the HSQLDB server takes approximately five seconds. Table 8.9 reveals that the execution of

a test suite with server restarts will consume between 32 and 43 seconds of testing time. Therefore, it is

important to perform reduction and/or prioritization if the (i) testing process dictates that tests must run

in a rapid fashion, (ii) testing occurs in an environment with time or resource constraints, and/or (iii) test

executor always restarts the RDBMS because the tests do not properly cleanse the database.

Figure 8.20 shows that the regression testing component can analyze both traditional and database-aware

DCTs and CCTs. The experiments use coverage trees that record database interactions at the relation,

attribute, record, and attribute value levels (e.g., Rl, A, Rc, and Av). We selected the Rl and A levels

since they focus on the structure of the database. Furthermore, we included the Rc and Av levels because

they represent a program’s interaction with the database’s state. We observe that the program and database

183



Application Without Restarts (sec) With Restarts (sec)

Reminder 6.164 32.053

FindFile 6.966 36.379

Pithy 8.243 52.864

StudentTracker 6.686 34.767

TransactionManager 8.211 42.697

GradeBook 7.576 39.395

Table 8.9: Test Suite Execution Time With and Without Database Server Restarts.

levels (e.g., P and D) yield equivalent coverage trees in our experiments. This is due to the fact that all of

the applications interact with one database. Since a database interaction point will only lead to a higher

number of test requirements if it interacts with more than one database entity, the P-level and D-level trees

always yield the same number of test requirements. For example, suppose that the database interaction point

Ir submits the SQL command select ∗ from relj . If node Nφ precedes Ir , then the P-level and D-level

coverage trees will respectively contain the path Nφ → Ir and Nφ → Ir → use(Df ).

For all of the applications except TM and GB, the D-level and Rl-level trees will always render the same

number of tree paths. This is due to the fact that all of the other case study applications use a database

that only contains one relation. In the context of the previous SQL statement, an Rl-level tree would still

lead to the single test path Nφ → Ir → use(Df ) → use(relj). However, assume that the database contains

relations relj and r̂elj and Ir executes the command select ∗ from relj where relj .Al = r̂elj .Âl. In

this circumstance, the Rl-level tree contains the two test paths Nφ → Ir → use(Df ) → use(relj) and

Nφ → Ir → use(Df ) → use(r̂elj). Since only TM and GB contain interaction patterns like the second SQL

statement, we omit both the P and D levels from the empirical study (i.e., for the other four applications, the

D and Rl levels would lead to the same experimental outcomes). For completeness, Table C4 in Appendix C

furnishes the results from enumerating the P-level test requirements for TM and GB.

We configured the test coverage monitor to create an XML-based coverage tree and we traverse this

tree during requirement enumeration. Since XML parsing is often the limiting factor in the performance of

an application [Nicola and John, 2003], we judge that this choice ensures that we characterize the worst-

case performance of our technique for enumerating the test paths. In fact, preliminary experiments suggest

that the use of a binary coverage tree may halve test path enumeration time when we analyze the largest

coverage trees. The experiments also focused on using the database-aware calling context tree (i.e., the DI-

CCT) instead of the DI-DCT because previous empirical studies (e.g., [McMaster and Memon, 2005, 2006])

used the traditional version of the CCT. Since the CCT instrumentation probes already coalesce tree paths

according to the super path operator, we time the enumeration of the set Πµ(τcct, T, =). We also apply the

containing path operator in order to measure the time consumed during the enumeration of Πµ(τcct, T,�)

(c.f. Section 8.4 for a discussion of the enumeration algorithms and the path dominance operators).

Even though the case study applications are written in a fashion that allows the tests to start their own

instance of the HSQLDB server, we assume that every database-centric application connects to a previously
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started database management system. We set up the reduction and prioritization algorithms so that they

analyze the coverage information in the set Πµ(τcct, Ti,a) for each test case Ti. In addition to using all of the

prioritization techniques that are listed in Table 8.7, we also report the effectiveness of the initial ordering

of the test suite. Since the GR, RVR, and RAR reduction techniques require a target size, we executed the

GRO algorithm first and then use the size of the resulting test suite as input to the other algorithms. As

an experimental control, we generated fifty randomly reduced and prioritized test suites. We calculate the

average value of each evaluation metric across all fifty of the test suites. In order to ensure a fair comparison,

we employed a uniformly distributed pseudo-random number generator to create fifty seeds. Throughout

the entire experimentation process, we used the first seed to initialize the pseudo-random number generator

that governs the creation of the first randomly reduced or re-ordered test suite (the second seed is used for

the second test suite and so forth). We judge that this design improves the repeatability of the experiments.

As part of future research, we intend to employ Walcott et al.’s approach to randomly generating a large

number of test suite orderings and reductions [Walcott et al., 2006].

Finally, we executed the (i) test requirement enumerator and (ii) reduction or prioritization algorithm in

five separate trials. Since the time overhead metrics varied across each trial, we calculate arithmetic means

and standard deviations for all of these timings (the metrics that characterize a case study application did not

vary across trials). As in Chapter 7, we use box and whisker plots and bar charts to visualize the empirical

results (c.f. Section 7.4 for a discussion of these approaches to data visualization). When we visualize a

time overhead, we create a bar chart so that the height of the bar corresponds to the arithmetic mean of the

measurements. We do not include error bars in the bar charts in Figure 8.22 because the standard deviations

were very small. We performed all of the experiments on a GNU/Linux workstation with kernel 2.6.11-1.1369,

Native POSIX Thread Library (NPTL) version 2.3.5, a dual core 3.0 GHz Pentium IV processor, 2 GB of

main memory, and 1 MB of L1 processor cache.

8.9 KEYS INSIGHTS FROM THE EXPERIMENTS

The experimental results in Section 8.10 complement the analytical evaluation of the regression testing

algorithms in Sections 8.4 and 8.5. Due to the comprehensive nature of the empirical analysis, we furnish

the following insights from the experiments:

1. Test Path Enumeration: It is often possible to enumerate the tree-based test paths in less than one

second. The enumeration process is the most expensive when we identify the paths in a coverage tree

that represents a database interaction at the attribute value level. In the majority of circumstances,

we can identify the tree paths in the Av-level DI-CCT in less than six seconds. We conclude that the

tree-based test requirement is suitable for both version specific and general regression testing.

2. Test Suite Reduction:

a. Effectiveness: The reduced test suites are between 30 and 80% smaller than the original test suite.

Across all of the case study applications, the GreedyReductionWithOverlap (GRO) algorithm yields
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a test suite that contains 51% fewer test cases. The use of GRO leads to test suites that always

cover the same requirements as the original tests while decreasing testing time by between 7 and

78%. Even though the other approaches to reduction (i.e., GR, RVR, and RAR) may lead to a

substantial decrease in testing time, these techniques often compromise the coverage preservation

of the modified test suite.

b. Efficiency: All configurations of the reduction component can execute in under one second. We find

that the execution of the GRO algorithm normally consumes less than 500 milliseconds, while the

GR, RVR, and RAR techniques only run for three to five milliseconds. We judge that the reduction

tool is suitable for use in either the general or version specific approach to regression testing.

3. Test Suite Prioritization:

a. Effectiveness: In comparison to the original ordering of GB’s test suite, the GreedyPrioritization-

WithOverlap (GPO) causes the coverage effectiveness (CE) value to increase from .22 to .94. For

the other case study applications, we find that the GPO technique creates test orderings that attain

higher CE values than either the randomly prioritized or the original test suite.

b. Efficiency: Extensive study of the performance of the prioritization component suggests that it is

also very efficient. Paralleling the results from using the reduction algorithms, we find that GPO

always runs in less than 1.5 seconds. Furthermore, the GP, RVP, and RAP techniques can identify

a re-ordered test suite in less than 5 milliseconds.

8.10 ANALYSIS OF THE EXPERIMENTAL RESULTS

8.10.1 Coverage Information

We conducted experiments to measure TΠ(A, τ, L,a), the time required to analyze application A’s coverage

tree τ and enumerate the test paths in Πµ(τ, T,a). For example, TΠ(FF, τcct,Rl,�) is the time overhead

associated with identifying the test paths in FindFile’s relation level CCT when we use the containing path

operator. The following Equation (8.12) defines the number of paths that are created by the individual test

cases, denoted CΣ
Π(A, τ, L,a). As stated in the following Equation (8.13), S∪Π(A, τ, L,a) is the number of

unique paths that are created by the entire test suite. The CΣ
Π evaluation metric helps us to understand the

time overhead associated with path enumeration because we must traverse τcct in order to identify every

π ∈ Πµ(τcct, Ti,a) for each test case Ti. A low value for S∪Π suggests that reduction or prioritization is likely

to be efficient while a high number foreshadows a more time consuming run of the regression tester.

CΣ
Π(A, τ, L,a) =

n∑

i=1

|Πµ(τ, Ti,a)| (8.12)

S∪Π(A, τ, L,a) =

∣∣∣∣∣
n⋃

i=1

Πµ(τ, Ti,a)

∣∣∣∣∣ = |Πµ(τ, T,a)| (8.13)
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Figure 8.22: Test Path Enumeration Time.

Figure 8.22 provides the measurements of the time overhead associated with enumerating the test paths.

In many circumstances, it is possible to identify all of the paths in less than 100 milliseconds (e.g., when

we apply the super path operator to either the record or attribute level CCT for both FF and ST). In the

context of RM, FF, and GB, we complete the enumeration of the paths at any level of interaction in less

than one second. Across all of the case study applications, it is more costly to apply the containing path

operator than it is to just enumerate the super paths. This result is due to the fact that IsContainingPath

iteratively invokes IsEquals while IsSuperPath only calls IsEquals once. We identify two main trends in the

measurements for TΠ as we transition from Rl to Av: (i) the time overhead increases monotonically (e.g.,

FF, PI, and ST) or (ii) enumeration time varies in a “zig-zag” fashion (e.g., RM, TM, and GB). We attribute

the first trend to test suites that insert many records into the database during test execution. For example,

both FF and ST repeatedly add records to relations that only contain two attributes (i.e., FF interacts with

the Files relation and ST modifies the Student table). In contrast, the second empirical trend is due to the

fact that the tests place few records into the database and thus the number of paths is greater at the A level

than the Rc level. For example, many of RM’s test cases only place a few records into a Reminder relation

that contains seven attributes. Across all of the applications, we note that the values for TΠ are very often

similar at the levels of Rl, A, and Rc.

Some experiments reveal moderately high enumeration times when we applied the path containment

operator at the levels of record and attribute value (e.g., ST and TM). The results in Figure 8.22 also demon-

strate that the value of TΠ is always the highest for the Av-level coverage tree. Even though PI exhibits
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Figure 8.23: Number of Test Requirements.
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enumeration times of less than one second at the A and Rc levels, TΠ is almost six seconds at the Av level

when we enumerate Πµ(Tcct, T, =). After profiling the path enumeration process, we determined that the

majority of this time was spent parsing and validating the 38 megabyte XML file that stored the coverage

results. However, applying the containing path operator to PI’s Av-level coverage tree caused TΠ to increase

to over one minute. In this configuration, the execution profiles of the path enumerator show that most of its

time was spent performing garbage collection and executing the IsContainingPath and IsEquals algorithms.

This result highlights the only circumstance in which the use of a naive text processing algorithm does

not support the efficient identification of the test requirements. Yet, the experimental results support the

conclusion that we can use the coverage tree path during both the general and version specific regression

testing of a database-centric application.

We also counted the number of test requirements that were enumerated for each application, as depicted

in Figure 8.23. Each pair of graphs shows the number of test requirements that we identified after applying

the super path (i.e., the top graph) and the containing path (i.e., the bottom graph) operators. In a single

graph, a bar group with the “Suite” label corresponds to the measurement of S∪
Π. We use the “Case”

label for the evaluation metric CΣ
Π . As discussed in Section 8.4, the containing path operator may reduce

the total number of test requirements if the test suite often performs the same series of operations in a

different context. The results in Figure 8.23 demonstrate that the containing path operator does not reduce

the number of test requirements for the RM and TM applications. The empirical results show that � does

decrease the value of S∪Π for PI, ST, and GB. In fact, GB’s number of suite level test requirements dropped by

thirteen after we applied the � operator. Section 8.10.2 investigates whether or not decreasing the number

of requirements shortens the time needed to reduce or prioritize GB’s test suite.

Classifying the case study applications according to the SΠ and CΠ metrics leads to three distinct groups

of applications with (i) less than one thousand (e.g., RM, FF, and GB), (ii) less than five thousand (e.g., ST

and TM), and (iii) greater than five thousand (e.g., PI) test requirements. This result suggests that reduction

and prioritization is likely to be the (i) most time consuming for PI and (ii) most efficient for RM, FF, and

GB. Across all of the applications, Figure 8.23(d) reveals that ST has the fewest requirements (i.e., fifteen

at the Rl level) and Figure 8.23(c) demonstrates that PI has the most (i.e., 16470 at the Av level). As

anticipated, an Av-level coverage tree yields more test paths than the corresponding Rl-level tree. We also

find that the value of S∪Π is normally much smaller than the corresponding value for CΣ
Π . For example,

S∪Π(FF, τcct,Av, =) = 240 while CΣ
Π(FF, τcct,Av, =) = 684. The decrease is even more dramatic for the TM

application: out of the 4932 test paths at the test case level, only 989 of these paths are unique. This

experimental trend indicates that there is a substantial overlap in the tests’ coverage of the requirements.

Thus, we judge that all of these test suites may be amenable to reduction. Section 8.10.2 studies whether

this overlap leads to a reduced test suite that exhibits a noticeable decrease in testing time.

As discussed in Section 8.4, Π(τ, Ti,a) is the set of test requirements that test Ti covers. For a test

suite T , we calculate the value of |Π(τ, Ti,a)| for all of the tests in order to characterize how they cover
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Figure 8.24: Coverage Relationships.
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Figure 8.25: ECDFs for Pithy’s Coverage Relationships.
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the requirements in Π(τ, T,a). A high average value for |Π(τ, Ti,a)| suggests that most tests cover many

requirements and thus there is a greater potential for an overlap in coverage. If there are many requirements

and the majority of the test cases cover a small number of requirements, then it is unlikely that the test

suite is fit for reduction. Equation (8.14) defines the set of test cases that cover the requirement π, denoted

T (τ, π,a). If a test suite has a high average value for |T (τ, π,a)|, then this indicates that a requirement is

often covered by many test cases. In this circumstance, the test suite may be a good candidate for reduction.

However, we observe that |Π(τ, Ti,a)| and |T (τ, π,a)| are only rough indicators for the (i) performance of

the reduction and prioritization algorithms and (ii) efficiency and effectiveness of the modified test suite (i.e.,

these evaluation metrics do not characterize the exact overlap in requirement coverage).

T (τ, π,a) = {Ti : π ∈ Π(τ, Ti,a)} (8.14)

Figure 8.24 depicts the coverage relationships that are evident in the test suite of every case study

application. Each pair of graphs shows the number of tests that cover a requirement (i.e., the top graph)

and the number of requirements that are covered by a test (i.e., the bottom graph). We organize the

horizontal axis of these graphs by an increase in the database interaction granularity. For these box and

whisker plots, the label “R→ T” corresponds to the |T (τ, π,a)|metric and “T → R” labels the measurements

for |Π(τ, Ti,a)|. Since the bar charts in Figure 8.23 only furnish summary results for the number of test

requirements (i.e., SΠ and CΠ), we judge that Figure 8.24’s “T → R” plots offer additional insight into a

test suite’s coverage relationships. In this study, we focus on the use of the super path operator (preliminary

results from applying the containing path operator suggest that the trends are similar). The PI, ST, and TM

applications all exhibit a sharp decrease in the average value of |T (τ, π,a)| as we transition from the Rl-level

to the Av-level coverage tree. However, the RM and FF applications display a gradual decrease in the same

evaluation metric. We attribute this dichotomy to the fact that the tests for RM and FF perform a variety of

modifications to the same small collection of data records. On the contrary, PI, ST, and TM have a test suite

that places a greater variety of records into the relational database.

We studied how these two different testing strategies impact the coverage relationships for a database-

centric application. For brevity, we focus our analysis on the Pithy case study application. The empirical

cumulative distribution function in Figure 8.25(a) reveals that recording coverage at the attribute level leads

to 60% of the tests requirements being covered by at least ten tests. Yet, Figures 8.25(b) and (c) demonstrate

that the record and attribute value trees result in approximately 75% of the requirements being covered by no

more than two tests. This trend clearly suggests that there is a trade-off associated with collecting coverage

information at a fine level of database interaction granularity. On one hand, this type of coverage report

more accurately captures the behavior of the program under test and may be more useful during testing and

debugging. However, the Av-level coverage tree drives down the value of |T (τ, π,a)| and thus it could limit

the potential for reduction. Nevertheless, if the tests for a database-centric application frequently insert

records that only differ in a few locations, the Av-level requirements may lead to a better reduction factor

than coverage tree paths at the Rc-level (c.f. Section 8.10.2.2 for a detailed explanation of this phenomenon).
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The box and whisker plots in Figure 8.24 also reveal that an increase in database interaction granularity

causes the average value of |Π(τ, Ti,a)| to (i) stay the same (e.g., FF and GB), (ii) moderately increase (e.g.,

RM, ST, and TM), or (iii) grow sharply (e.g., PI). For applications in the first two categories, we anticipate

that reduction or prioritization with Av-level requirements will not consume significantly more time than

regression testing with the Rl-level coverage tree. Once again, the bottom plot in Figure 8.24(c) attests

to the fact that it may be expensive use the Av-level requirements to reduce or re-order Pithy’s test suite

(i.e., many of PI’s tests create numerous test paths and this leads to a total of 16470 unique requirements).

Finally, the top plot in Figure 8.24(f) reveals that GB’s average value for |T (τ, π,a)| is very low at all levels

of database interaction. Since this trend is not evident for the other case study applications, it affirms the

fact that GradeBook is likely to exhibit a smaller value for RFS than the other applications.

8.10.2 Test Reduction

8.10.2.1 Efficiency Extensive experimentation with the reduction tool demonstrates that efficient test

suite reduction is possible for all case study applications at all levels of database interaction. We find that

every configuration of the reduction component can identify the redundant test cases in less than one second.

In most circumstances, the GreedyReductionWithOverlap (GRO) technique can reduce the most challenging

test suites (i.e., those with the most tests and requirements) in less than 500 milliseconds. We observe that

reduction only requires one second of time overhead when we handle the Pithy case study application at

the attribute value level. This is a noteworthy result because PI has over 16000 Av-based test requirements,

as shown in Figure 8.23(c) in Section 8.10.1. The other approaches to test suite reduction (i.e., GR, RVR,

and RAR) always reduce the test suite in less than five milliseconds. These empirical trends indicate that

it is not necessary to apply the containing path operator in an attempt to (i) reduce the number of test

requirements and (ii) make reduction more efficient. We anticipate that the containing path operator may

be more useful during the regression testing of larger database-centric applications. Finally, we found that

each reduction technique exhibits little performance variability since the standard deviation across trials

was normally less than a few milliseconds. In light of these results, we anticipate that the performance of

the reduction component will favorably scale when we apply it to larger case study applications. These

experimental outcomes also suggest that the reduction algorithms are appropriate for use in the context of

both version specific and general regression testing.

8.10.2.2 Test Suite Size Table 8.10 provides the values of %n, the reduction factor for the size of the

test suite. We derived the values in this table by applying the GRO algorithm to the test suite for each

application. We use the notation %n(A, L) to denote the RFS value for the application A at database

interaction level L. If all of the test cases execute for a uniform time period, then %n roughly corresponds

to the reduction in testing time, denoted %t. However, Section 8.10.2.3 demonstrates that the value of %t

may be higher or lower than %n, depending upon the characteristics of the application and the tests. High
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Application Relation Attribute Record Attribute Value All

RM (13) (7, .462) (7, .462) (10, .300) (9, .308) (8.25, .365)

FF (16) (7, .563) (7, .563) (11, .313) (11, .313) (9, .438)

PI (15) (6, .600) (6, .600) (8, .700) (7, .533) (6.75, .550)

ST (25) (5, .800) (5, .760) (11, .560) (10, .600) (7.75, .690)

TM (27) (14, .481) (14, .481) (15, .449) (14, .481) (14.25, .472)

GB (51) (33, .352) (33, .352) (33, .352) (32, .373) (32.75, .358)

All (24.5) (12, .510) (12.17, .503) (14.667, .401) (13.83, .435)

Data Format: (|Tr|, %n)

Table 8.10: Reduction Factors for the Size of a Test Suite.

values for %n serve to control testing time when the test executor must regularly restart the database server

in order to enforce test case independence. Overall, we observe that ST exhibits the best reduction factor

and GB has the worst, as generally predicted by our analysis in Section 8.10.1. That is, across all of the levels

of database interaction, Table 8.10 shows that ST has an average reduction factor of .69 and GB’s average

value for RFS is .3578. Across all of the applications, the average value of %n was .51 at the relation level

and .4354 at the attribute value level. In summary, we see that it is possible to decrease the size of the test

suite with the GRO technique.

The results in Table 8.10 reveal that the value of RFS is normally the highest at the relation level and

the lowest at the record level. The value of %n(A,Rl) is greater than %n at the other database interaction

levels because most applications only interact with a small number of relations. For example, ST uses the

Student relation and TM only stores data in UserInfo and Account. If testing occurs at the Rl level, then

there is a high overlap in requirement coverage and this leads to substantial reduction factors. Since GB has

the most relations, it exhibits the smallest value for %(A,Rl). It may be advisable to perform reduction at

the A level instead of the Rl level because the (i) reduction algorithms are efficient at both of these levels,

(ii) value of %n is comparable at the Rl and A levels, and (iii) attribute level coverage tree is normally better

at differentiating the behavior of the test cases.

Further analysis of the data in Table 8.10 also demonstrates a marked decreased in %n when we transition

from the attribute to the record level. Across all of the applications, we see that %n drops from .503 to .401

when GRO analyzes the Rc-level coverage tree instead of the A-level coverage report. This result suggests

the potential for reduction is limited if (i) the test cases often place different records into the database and

(ii) reduction is performed at the Rc level. Interestingly, the reduction factor increases when we perform the

analysis at the Av level rather than the Rc level. For example, Table 8.10 shows that the average value of

%n increases to .4354 when the reduction component analyzes the attribute value DI-CCT. We ascribe this
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Abbreviation Meaning

GRC GreedyReductionWithoutOverlap - Cost

GRV GreedyReductionWithoutOverlap - Coverage

GRR GreedyReductionWithoutOverlap - Ratio

Table 8.11: Summary of the Abbreviations Used to Describe the Reduction Techniques.

empirical trend to the fact that the tests often insert records that only differ by a small number of attribute

values. The RFS value increases at the Av level because it is now possible to identify the commonalities

in the behavior of the tests as they interact with the state of the database. Since the reduction process is

efficient at both the levels of record and attribute value, it is sensible to perform reduction with the Av-level

requirements instead of the Rc-based tree paths.

8.10.2.3 Reductions in Testing Time Figures 8.26 and 8.27 present the values for the reduction factor

in testing time, denoted %t(A, L). We organized the bar charts so that Figure 8.26 provides the results for

the structure-based interaction levels (i.e., Rl and A) and Figure 8.27 furnishes the outcomes associated

with using the state-based levels (i.e., Rc and Av). Table 8.11 summarizes the abbreviations that we use in

the legends for all of the remaining bar charts in this chapter (c.f. Table 8.7 for a review of the abbreviations

that we previously defined). For example, GRC stand for the use of GreedyReductionWithoutOverlap in

combination with the cost-based ordering criterion. We also use the abbreviation GR to stand for any of

the greedy techniques listed in Table 8.11. The most notable trend in these empirical results is that GRO

consistently exhibits the worst value for %t across all of the applications. We see that GRO’s value for RFT

varies from a low of %t(RM,Rl) = .07 to a high of %t(GB,Av) = .78.

Interestingly, the empirical study demonstrates that GRO can substantially reduce testing time for GB

even though the %n values for this application never exceed .38. This result suggests that it is not sufficient

to evaluate a test suite reduction technique by only measuring how many tests are removed from the original

suite (yet, most empirical studies of reduction algorithms focus on the RFS metric [Jeffrey and Gupta, 2007,

Harrold et al., 1993, McMaster and Memon, 2005]). Furthermore, this outcome demonstrates the importance

of using the execution time of a test case during regression testing process. We also find that many of the

other reduction techniques (e.g., GR and RVR) frequently yield test suites with values for %t that range from

.8 to .98. Furthermore, we see that random reduction often leads to better reduction factors than GRO.

These results are due to the fact that GRO must continue to select test cases until all of the requirements

have been covered. In the context of applications like RM, this frequently compels GRO to select one or more

of the slow test cases. Since the other reduction schemes (e.g., GR and RVR) do not guarantee complete

coverage of the test requirements, they are not always forced to include slow tests in the modified suite.

However, Section 8.10.2.4 shows that GR’s higher value for %t is often accompanied by a poor preservation of

test suite coverage and thus these reduction techniques are likely to compromise fault detection effectiveness.
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Figure 8.26: Reduction Factor for Test Suite Execution Time (Relation and Attribute).
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Figure 8.27: Reduction Factor for Test Suite Execution Time (Record and Attribute Value).
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The experiments also reveal that the value of %t (i) decreases when we use GRV instead of GRC and (ii)

subsequently increases back to near-GRC levels when we employ GRR. Since the cost-based technique sorts

the tests according to their execution times, it makes sense that GRC will lead to high values for %t. For many

applications (e.g., PI in Figure 8.26(c) and TM in Figure 8.27(e)), we observe that GRV’s focus on the highest

coverage tests causes a noticeable decrease in %t when we employ GRV instead of GRC. As an additional

example, Figure 8.26(b) shows that FindFile’s test suite causes the reduction factor to drop from .95 to

.85 when we use GRV rather than GRC. This trend suggests that a myopic focus on the test requirements

may cause GRV to select slow tests that attain high coverage. With the exception of the StudentTracker

application, the GRR scheme normally increases the RFT value and thus leads to test suites that execute

almost as efficiently as those that were produced by GRC. For the GradeBook application, GRV creates a

test suite whose reduction factor is only .06. We attribute this to the fact that the GRV reduction algorithm

still selects some of GB’s tests even though they have both a high coverage and a high time overhead.

Across all of the applications, the GR algorithms normally exhibit the highest RFT values. In many

cases, the RVR technique creates a reversed test suite whose value for %t is greater than GRO’s value and

yet still less than the corresponding %t value for GRC and GRR. For the TM application, Figures 8.26(e) and

8.27(e) demonstrate that RVR leads to a value for %t that is much worse than RAR’s value. We find a similar

trend for the ST application, as evidenced by the results in Figure 8.27(d). Interestingly, RVR only leads to

poor RFT values for ST when we operate at the Rc and Av. This phenomenon occurs because GRO creates

test suites for ST that respectively contain 15 and 14 tests at the Rc and Av levels. When the target size

is high the RVR algorithm selects more tests from the reversal of the original test suite and this leads to a

lower value for %t. In summary, these result shows that the RVR technique should not be used if slow tests

have been recently placed at the end of the original test suite (in this circumstance, Section 8.10.2.4 reveals

that RVR may also compromise the preservation of requirement coverage). If the time overhead of each test

case is unknown and it is likely that the tests exhibit considerable variability in execution time, then we do

not recommend the use of RVR during the regression testing of a database-centric application.

8.10.2.4 Coverage Preservation Figures 8.28 and 8.29 present the values of the preservation factor for

test requirements, denoted νπ(A, L). A high PFR value is ideal because it ensures that the reduced test suite

is likely to detect faults as well as the original suite. As anticipated, GRO yields a perfect score for νπ across

all applications and every level of database interaction. However, we find that the other reduction schemes

preserve coverage with varying levels of success. A noteworthy trend is that the GRC scheme exhibits erratic

preservation of test requirements. For the PI and ST applications, Figures 8.29(c) and (d) demonstrate that

GRC’s value for νπ is significantly lower than the value for random reduction. Yet, Figures 8.28(c) and (d)

reveal that this pattern is less pronounced when we employ the structure-based test requirements. Overall,

these examples demonstrate that GRC’s shortsighted focus on the cost of a test case causes it to select fast

tests that cover few of the requirements. We attribute these results to the fact that the database-aware tests
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Figure 8.28: Preservation Factor for Test Suite Coverage (Relation and Attribute).
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Figure 8.29: Preservation Factor for Test Suite Coverage (Record and Attribute Value).
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Abbreviation Meaning

GPC GreedyPrioritizationWithoutOverlap - Cost

GPV GreedyPrioritizationWithoutOverlap - Coverage

GPR GreedyPrioritizationWithoutOverlap - Ratio

ORP OriginalPrioritization

Table 8.12: Summary of the Abbreviations Used to Describe the Prioritization Techniques.

create most of the coverage tree paths when we record coverage at the Rc or Av levels. Therefore, GRC

includes the low coverage tests that do not interact with the database when it picks the fast test cases. In

general, we observe that GRC is not well suited to reducing database-aware test suites because there is often

an inverse relationship between testing time and requirement coverage.

The empirical study also suggests that it may also be misleading to exclusively focus on the coverage of

the test requirements. For example, Figure 8.28(c) shows that GRV creates a reduced test suite for Pithy

that has a lower PFR value than GRC, GRR, and RVR. For example, we see that νπ drops from .93 to .6

when we use GRV instead of GRC. Further study of the reduced test suite reveals that the highest coverage

tests have longer running times. The inclusion of these tests in the reduced test suite eventually prevents

GRV from including other tests that cumulatively cover more requirements in less time. For PI, we observe

that the use of GRR increases the value of νπ to near-GRO levels. However, Figure 8.28(e) demonstrates

that using GRR may still lead to a decrease in PFR that severely compromises coverage. In fact, the use

of the Rl-level requirements for TM leads to preservation factors that are worse than those that we see for

random reduction. Therefore, ratio-based sorting of the test cases is not guaranteed to preserve coverage

better than the other greedy techniques that ignore overlap.

In conclusion, we often find that one or more of GRC, GRV, GRR, or RVR exhibit coverage preservation

values that are worse than the corresponding values for the randomly reduced test suite. For example,

Figure 8.29(b) indicates that three reduction techniques lead to νπ values that are worse than random. In

particular, the use of GRC, GRR, or RVR to reduce FF’s test suite leads to νπ = .58 even though random

reduction exhibits a νπ value of .83. If small to moderate reductions are acceptable and coverage preservation

is important, then we recommend the use of GreedyReductionWithOverlap. We advocate the use of GRO

because the empirical results demonstrate that ignoring the overlap in the tests’ coverage may cause the GR

algorithms to improvidently include tests within the reduced suite. Even though GRO may lead to reduction

factors that are smaller than GR and RVR, we judge that it is an appropriate choice if variations in coverage

preservation are not desirable.

If we adopt the notion of preference under the � operator, as defined in Section 8.6, then it is clear that

there are few configurations of the reduction component that regularly identify reduced test suites that are

both efficient and effective. For brevity, we focus on a specific example to illustrate the main point. If we

consider the reduced test suites for ST at the Rc level, then GRO and GRC are respectively described by the

evaluation tuples νr = 〈.56, .13, 1.0〉 and ν̂r = 〈.56, .99, .04〉. Following the definition of� in Equation (8.11),
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Figure 8.30: Coverage Effectiveness for the StudentTracker Application.

we see that νr 6� ν̂r and ν̂r 6� νr and thus νr ∼ ν̂r (i.e., νr and ν̂r describe approaches to reduction that

are similar according to the evaluation metrics stated in Section 8.6). In this circumstance, the correct choice

for the regression testing of ST is dictated by the testing process. Severe time constraints would suggest the

use of GRC, while the overlap-aware GRO technique would be preferred when coverage preservation is more

important. As part of future work, we intend to exhaustively compare the different reductions with the �

operator.

8.10.3 Test Prioritization

We also conducted an empirical study in order to determine how prioritization impacts the coverage effec-

tiveness (CE) of a test suite (c.f. Section 8.6 for a definition of the CE metric). Paralleling the results in

Section 8.10.2.1, the experiments reveal that the prioritization component is also efficient for the chosen ap-

plications. We selected the StudentTracker and GradeBook applications for further analysis because these

case studies (i) respectively represent the best and the worst values for %n and (ii) support a discussion of

the most relevant experimental trends. Table 8.12 summarizes the abbreviations that we use to describe the

different approaches to prioritization (c.f. Table 8.7 for a review of the abbreviations that were previously

defined). For example, GPR stands for the use of GreedyPrioritizationWithoutOverlap in conjunction with

the ratio-based ordering criterion.

Figure 8.30 presents the coverage effectiveness value, denoted ξ, for the ST application. Since ST exhibits

high values for %n, it is evident that there are many redundant tests in the original test suite. Therefore,

we anticipate that many of the prioritization techniques should yield high CE values. Indeed, Figure 8.30

reveals that all of the greedy techniques create test suites with ξ values greater than .85. For this application,

we see that GPC and GPR have CE values of .98 and GPO has a CE value of .94. Furthermore, Figure 8.30

demonstrates that most of the prioritization algorithms, with the exception of RVP at the Rc and Av levels,

perform much better than random prioritization. Since ST’s tests have a substantial amount of overlap,
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Figure 8.31: Coverage Effectiveness for the GradeBook Application.

we also notice that the original ordering of the test suite attains high values for ξ (e.g., ξ = .93 when we

represent the database interactions at the Rc and Av levels).

Figure 8.31 provides the CE values for the GradeBook case study application. GB’s low values for %n attest

to the fact that the test suite for this application does not include many tests that redundantly cover the

requirements. The bottom box and whisker plot in Figure 8.24(f) also reveals that there is a wide variation

in how many requirements are covered by a single test case. Therefore, we judge that it is more difficult to

identify a prioritization that will rapidly cover GB’s test requirements. In contrast to the empirical outcomes

associated with prioritizing ST’s test suite, we observe that applying GPO to GB’s test suite always leads to

the highest value of ξ. At the Rc and Av levels, Figure 8.31(b) shows that GPO creates test suites with

ξ = .94. In comparison, we notice that the GP generated test orderings have CE values that are less than

GPO’s corresponding CE value by between .01 and .07 units. Since higher CE values suggest that the tests

are more likely to reveal faults earlier in the testing process, we recommend the use of GPO during the

prioritization of tests for a database-centric application that exhibits coverage patterns similar to the ones

found in GB’s test suite.

The results in Figure 8.31 also point out that random prioritization attains CE values that are much better

than the original ordering of the test suite. Furthermore, we also find that the CE value for GPO is much

higher than the corresponding CE value for ORP. In an attempt to better understand these experimental

outcomes, Figure 8.32 furnishes a plot of κ for the GPO and ORP techniques (c.f. Section 8.6 for a detailed

discussion of κ). For the ST application, Figures 8.32(a) and (b) show that both GPO and ORP have a κ

function that grows very rapidly. For GB, Figures 8.32(c) and (d) reveal that there is a distinct difference

between the κ function for GPO and ORP. Interestingly, this result corroborates a recent discovery concerning

the ways in which the re-ordering of a traditional test suite may impact the value of the average percentage

of faults detected (APFD) metric [Do et al., 2004].
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Figure 8.32: Visualizing the Cumulative Coverage of Student and GradeBook.

Following the commentary of Do et al., we postulate that this trend is due to the fact that testers regularly

place the newest tests at the end of the test suite. Since the new tests often cover (i) many portions of the

database that were not covered by the previous tests and (ii) some database regions that were touched by

the earlier test cases, it may be advantageous to use random prioritization in an attempt to spread the high

coverage tests throughout the entire suite. If the test cases exhibit a relatively minor overlap in coverage

and/or there is significant variation in the total number of requirements covered by a test, then it is always

advisable to use one of the prioritization algorithms. That is, it would be better to use random prioritization

than it would be to simply execute the tests in their original ordering. Yet, since the performance study

shows that GPO is efficient for the chosen applications, we advocate the use of the overlap-aware greedy

algorithm if it is important to achieve the highest possible value for the coverage effectiveness metric.

8.11 THREATS TO VALIDITY

The experiments that we describe in this chapter are subject to validity threats. Chapter 3 discusses the

steps that we took to control these threats throughout the experimentation process. We also took additional

steps to handle the threats that are specific to experimentation with the regression testing component.

Internal threats to validity are those factors that have the potential to impact the measured variables

defined in Sections 8.6 and 8.10. The primary threat to internal validity is the existence of a defect in

the regression testing tool. We controlled this threat by performing an extensive series of correctness tests
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for the techniques that (i) enumerate the test paths and (ii) reduce or prioritize the test suite. During

the testing of the path enumerator, we generated the set of test requirements for small DCTs and CCTs

that were both traditional and database-aware. After enumeration, we verified that each set contained the

proper test paths. We confirmed that the reduction and prioritization algorithms were properly working

by applying them to small instances of the minimal set cover problem. During this process, we tracked the

number of algorithm iterations and we ensured that this count never exceeded the known worst-case. Finally,

we manually added redundant test cases to the test suite for each case study application. After applying

the reduction algorithm, we verified that the reduced test suite did not contain the unnecessary tests. We

judge that threats to construct validity were controlled since Sections 8.6 and 8.10 present a wide range of

evaluation metrics that are useful to both researchers and practitioners.

8.12 CONCLUSION

This chapter describes the design, implementation, and empirical evaluation of our approach to database-

aware regression testing. We provide a high level overview of the regression testing process and we develop

examples to demonstrate the practical benefits of reducing or re-ordering the test suite. This chapter also

introduces the algorithms that (i) enumerate the coverage tree-based test requirements and (ii) perform

database-aware reduction and prioritization. We present approaches to regression testing that consider both

the tests’ overlap in coverage and the time overhead to execute a test case. This chapter also explains how

to evaluate a reduced or prioritized test suite without resorting to the use of a fault seeding mechanism.

In particular, we introduce the notion of coverage effectiveness and we show how to construct a cumulative

coverage function for a test suite. Finally, we discuss the relevant details associated with the implementation

of the regression testing component.

After discussing the goals and design for an experiment to measure the performance of our regression

testing techniques, we systematically state each evaluation metric and analyze the experimental results. The

enumeration of coverage tree paths is efficient enough to support the identification of this type of requirement

in a version specific approach to regression testing. In the context of the largest case study application (i.e.,

GradeBook), we can enumerate the test paths at any level of database interaction in less than 300 milliseconds.

In general, we find that some case study applications yield less than one thousand path-based requirements

while others create more than ten thousand requirements. The empirical results suggest that most test

suites exhibit a moderate overlap in requirement coverage. Yet, for several applications (e.g., Pithy), we

also observe that many Av-level test requirements are only covered by one or two test cases. Considerable

experimentation with the reduction and prioritization components indicates that it is possible to efficiently

create a modified test suite for each of the selected case study applications. Across all of the applications,

we also discover that GreedyReductionWithOverlap (GRO) identifies test suites that are 51% smaller than

the original test suite. Finally, the empirical study reveals that GreedyPrioritizationWithOverlap (GPO) can

re-order the test suite in a manner that improves coverage effectiveness.
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9.0 CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions of this research. We also review the key insights from the

experimental results. It suggests future work that includes enhancing the presented database-aware testing

techniques. We propose several new approaches to testing database-centric applications that leverage the

current framework. This chapter reveals other ways that we can use the research’s conceptual foundation in

order to test a program’s interaction with additional environmental factors such as an eXtensible markup

language (XML) database or a distributed system middleware. We also discuss ways to use the database-

aware tools and techniques in order to test and analyze conventional software applications. In summary, this

chapter provides:

1. A review of the contributions of this dissertation (Section 9.1).

2. A high level summary of the empirical results (Section 9.2).

3. A detailed discussion of future work that leverages the concepts, techniques, and tools developed by this

research (Section 9.3).

9.1 SUMMARY OF THE CONTRIBUTIONS

The database is a ubiquitous technology that many academic institutions, corporations, and individuals use to

manage data. However, a database is only useful for storing information if users can correctly and efficiently

(i) query, update, and remove existing data and (ii) insert new data. To this end, software developers

often implement database-centric applications that interact with one or more relational databases. Indeed,

Silberschatz et al. observe that “practically all use of databases occurs from within application programs”

[Silberschatz et al., 2006, pg. 311]. A database-centric application is very different from a traditional software

system because it interacts with a database that has a complex state and structure. To the best of our

knowledge, this dissertation formulates the first comprehensive framework to address the challenges that are

associated with the efficient and effective testing of database-centric applications. The main contribution of

this research is the description, design, implementation, and evaluation of a collection of testing techniques

called DIATOMS, for Database-centrIc Application Testing tOol ModuleS. We developed tools to fully

support each technique within the comprehensive framework for testing database-centric applications. The

contributions of this research include:
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1. Fault Model: The database-aware fault model explains how a program’s database interactions could

violate the integrity of a relational database. We focus on program interactions that could negatively

impact the validity and completeness of the database [Motro, 1989]. The type (1-c) and (2-v) defects

involve the incorrect use of the SQL delete statement. If a program contains a type (1-v) or (2-c) defect,

then it submits an incorrect SQL update or insert statement to the database. We further classify

database interaction faults as either commission or omission defects. A fault of commission corresponds

to an incorrect executable statement in the program. A programmer introduces an omission fault when

he/she forgets to include important executable code segments in the program. The database-aware

testing framework supports the identification of all type (1-c) and (1-v) defects and type (2-c) and (2-v)

commission faults.

2. Database-Aware Representations:

a. Control Flow Graphs: Many database-centric applications use the Java Database Connectivity

(JDBC) interface to submit structured query language (SQL) statements to a relational database.

Even though a traditional control flow graph (CFG) contains a node for each database interaction in

a program, it does not statically model what takes place during the execution of the SQL command.

The database interaction interprocedural control flow graph (DI-ICFG) contain nodes and edges

that characterize how the program defines and uses the state and structure of the database.

b. Finite State Machines: The test adequacy component automatically generates a database interaction

finite state machine (DI-FSM) to model each program location that submits a SQL command to the

database. We use the DI-FSMs to model the SQL select, update, insert, and delete statements

that are constructed by the program during testing. We consult the DI-FSMs in order to (i)

determine which database entities are subject to interaction at a given CFG node and (ii) create a

DI-CFG from a conventional CFG.

c. Call Trees: The traditional dynamic call tree (DCT) and calling context tree (CCT) represent the

sequence of method invocations that occur during testing. We describe coverage trees that reveal

how the program interacts with the database during testing (e.g., the DI-DCT and DI-CCT). A

database-aware tree supports both the calculation of coverage and the process of regression testing.

3. Data Flow-Based Test Adequacy Criteria:

a. Comprehensive Family: The conventional def-use association is the foundation for data flow-based

testing because it models a program’s definition and use of variables. This research presents the

database interaction association (DIA) that reveals how the program defines and uses a relational

database entity. We describe a family of database-aware test adequacy criteria that include the

structure-based all-relation-DUs and the state-based all-attribute-value-DUs. For example, the all-

relation-DUs criterion requires a test suite to cover all of the DIAs in the program that involve the

definition and use of the relations in one of the databases.
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b. Subsumption Hierarchy: This research furnishes a subsumption hierarchy to organize the database-

aware test adequacy criteria according to their strength. The hierarchy shows that all-attribute-

value-DUs is the most difficult adequacy criterion for a test suite to fulfill. We also demonstrate

that all-database-DUs is the weakest criterion. The hierarchy reveals that there is no subsumption

relationship between all-attribute-DUs and all-record-DUs.

4. Test Coverage Monitoring: In order to record a database interaction in the appropriate execution

context, we use the DI-DCT and the DI-CCT. We formally describe these database-aware trees and we

explain how to automatically insert probes that can produce a tree-based coverage report during test

execution. The instrumentation probes intercept the SQL statement that performs a database interaction.

After analyzing the SQL command, these probes efficiently inspect the relevant portions of a database’s

state and structure. Finally, the instrumentation inserts nodes and edges into the DI-DCT and DI-CCT in

order to record all of the pertinent information about a database interaction. The coverage monitor uses

either static or dynamic instrumentation to transparently construct these coverage trees during testing.

5. Regression Testing: The database-aware regression tester minimizes or re-orders a test suite by using

reduction and prioritization techniques. We describe regression testing algorithms that are applicable

whenever it is possible to accurately determine which test requirements are covered by a test case. Our

regression tester can consider both the tests’ overlap in requirement coverage and the time overhead

for an individual test. We also furnish algorithms that improve the efficiency of regression testing by

ignoring the overlap in requirement coverage. Even though the regression tester currently uses a path

in the database-aware coverage tree as a test requirement, we can also configure it to use the database

interaction association. Finally, we describe several new approaches to evaluating the efficiency and

effectiveness of either a prioritized or a reduced test suite.

6. Comprehensive Evaluation:

a. Worst-Case Time Complexity: We characterize the worst-case complexity of the key algorithms in

the comprehensive testing framework. For example, we analyze the algorithms that (i) construct

the database-aware representation, (ii) record coverage information, and (iii) prioritize and reduce a

test suite. We provide formal statements of each algorithm in order to support the time complexity

analysis.

b. Case Study Applications: During the empirical evaluation of the testing techniques, we primarily

use six database-centric applications that were written in Java. We offer a detailed characteri-

zation of each application by examining the size and structure of both the source code and the

relational database. The applications range in size from 548 to 1455 non-commented source state-

ments (NCSS). The database for each application contains between one and nine relations. The

applications use various techniques to submit a wide variety of SQL select, update, insert, and

delete statements. Each case study application has a test suite with test cases that employ many

different testing strategies.
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c. Tool Implementation Details: We implemented and tested each component in the database-aware

testing framework. We provide pertinent implementation details about the components that calcu-

late test requirements, monitor coverage, and perform regression testing. For example, we explain

how to use aspect-oriented programming (AOP) and the AspectJ language in order to implement

a coverage monitor. These details about the tools demonstrate the practicality of our testing tech-

niques and ensure that other researchers can reproduce our experimental results.

d. Experiment Design: We fully detail the execution environment and the tool versions that we used

during experimentation. We also describe the internal, external, and construct threats that could

compromise experiment validity and we explain how we addressed these threats. The chapters

employ several visualization techniques in order to explain the empirical results. Finally, we furnish

one page summaries that highlight the important insights from each experiment.

9.2 KEY INSIGHTS FROM THE EXPERIMENTS

In order to complement and confirm our analytical evaluation of algorithm performance, we conducted exper-

iments to measure the efficiency and effectiveness of each database-aware testing technique. We calculated

different types of time and space overheads in order to evaluate efficiency. The measurements of effectiveness

were different for each of the testing components. Noteworthy insights from the experimental results include:

1. Data Flow-Based Test Adequacy:

a. Effectiveness: The data flow-based test requirements for a database-centric application include

both the def-use and database interaction associations. The experiments show that the database-

aware test requirements constitute between 10 and 20% of the total number of requirements. This

result suggests that the database-aware test adequacy criteria call for test suites to cover additional

requirements that conventional test criteria ignore.

b. Efficiency: For small and moderate size applications, our data flow analysis algorithm normally

enumerates the database-aware test requirements in less than one minute. The experiments also

show that the inclusion of database interactions in a program’s control flow graph never incurs more

than a 25% increase in the number of nodes and edges.

2. Coverage Monitoring:

a. Effectiveness: Manual and automated inspections of the coverage reports indicate that the coverage

monitor correctly records information concerning program behavior and database interaction. A

comparison of the test suite’s output before and after the insertion of coverage instrumentation

shows that our techniques preserve the syntax and semantics of the program and the tests.

b. Efficiency

i. Instrumentation: Our static instrumentation technique requires less than six seconds to insert

coverage probes into a database-centric application. The batch approach to instrumentation
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attaches the probes to all six of the applications in less than nine seconds. The dynamic

instrumentation scheme incurs moderate overheads (e.g., a 50% increase in testing time) when

it introduces the instrumentation during test suite execution. The experiments reveal that the

use of static instrumentation increases space overhead by 420% on average. We judge that this

is acceptable because it supports efficient coverage monitoring.

ii. Test Suite Execution: Using static instrumentation to record coverage at coarse levels of

database interaction granularity (e.g., the database and relation levels) increases the testing

time by less than 15% across all applications. On average, coverage monitoring at the finest

level of granularity (e.g., the attribute value level) leads to a 54% increase in testing time

overhead.

iii. Coverage Reports: The size of the in-memory representation of the coverage results range

from 400 kilobytes to almost 25 megabytes. The size of this tree-based coverage report ranges

from 400 to 88000 nodes, depending upon the static structure and dynamic behavior of the

application under test. Even though these reports are large, on average they can be stored

in less than three seconds. We found that efficient compression algorithms successfully reduce

the size of a coverage report by at least one order of magnitude. The results also show that

a DI-CCT at the finest level of database interaction granularity consumes less space overhead

than a traditional dynamic call tree.

3. Regression Testing:

a. Characterizing the Test Suites: The test suites contain many tests that rapidly execute and a few

tests that execute for several seconds. Tests consume a significant amount of execution time if they

(i) interact with many portions of the database and/or (ii) restart the database server.

b. Test Path Enumeration: It is often possible to enumerate the tree-based test paths in less than one

second. Test path enumeration is the most expensive when we identify the paths in a coverage tree

that represents a database interaction at the attribute value level. We conclude that the tree-based

test requirement is suitable for both version specific and general regression testing.

c. Test Suite Reduction:

i. Effectiveness: The reduced test suites are between 30 and 80% smaller than the original test

suite. Across all of the case study applications, the GreedyReductionWithOverlap (GRO) algo-

rithm yields a test suite that contains 51% fewer test cases. The use of GRO leads to test suites

that always cover the same requirements as the original tests while decreasing test execution

time by between 7 and 78%. These results indicate that the reduction component can identify

a modified test suite that is more streamlined that the original suite.

ii. Efficiency: All configurations of the regression testing component can execute in under one

second. We find that the execution of the GRO algorithm normally consumes less than 500

milliseconds, while the GR, RVR, and RAR techniques only run for three to five milliseconds.
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The experimental results suggest that the reduction technique should scale favorably when it is

applied to larger case study applications. We conclude that the reduction component is ideal

for use in either a version specific or a general regression testing model.

d. Test Suite Prioritization:

i. Effectiveness: In comparison to the original ordering of GB’s test suite, the GreedyPrioritiza-

tionWithOverlap (GPO) causes the coverage effectiveness (CE) value to increase from .22 to .94.

For the other case study applications, we find that the GPO technique creates test orderings

that attain higher CE values than a randomly prioritized suite.

ii. Efficiency: Extensive study of the performance of the prioritization component suggests that

it is very efficient. Paralleling the results from using the reduction algorithms, we find that

GPO always runs in less than 1.5 seconds. Furthermore, the GP, RVP, and RAP techniques

can identify a re-ordered test suite in less than 5 milliseconds.

9.3 FUTURE WORK

This section suggests several areas for future research. It is possible to enhance the testing techniques so

that they handle other types of database interactions. We can also employ the comprehensive framework

during the development of new database-aware testing techniques. For example, we could use the coverage

trees during automatic fault localization and the simplification of a database state that is failure-inducing. A

tree-based coverage report supports this type of debugging because it can record the (i) execution context of

a faulty interaction and (ii) state of the database that existed before the program’s failure. The experiments

also suggest several new avenues for research that empirically investigates the trade-offs in the efficiency

and effectiveness of testing. The database-aware testing techniques provide a foundation for new tools that

test a program’s interaction with other environmental factors. Finally, this research reveals several ways to

improve traditional testing schemes.

9.3.1 Enhancing the Techniques

1. Fault Model: Some database-centric applications use programmer defined transactions so that con-

current database interactions operate correctly. However, our fault model is not tailored for multi-

threaded applications that use transactions. Future work should extend the fault model to include the

three canonical concurrency control problems known as lost update, inconsistent read, and dirty read

[Weikum and Vossen, 2002].

2. Test Adequacy: Extending the fault model to incorporate concurrency necessitates the improvement

of the test adequacy criteria. Future research should also explore new approaches to enumerating

the database interaction associations. Currently, the adequacy component identifies intraprocedural

test requirements. Further research could explore the use of interprocedural data flow analysis (e.g.,

[Harrold and Soffa, 1994]).
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Figure 9.1: The Enhanced Test Coverage Monitoring Tree.

3. Test Coverage Monitoring

a. Enhanced Coverage Trees: The dynamic call tree incurs high space overhead because it provides full

test execution context. The calling context tree decreases space overhead by coalescing tree nodes

and thus offering a partial context. Future research should investigate a hybrid call tree (HCT)

that balances the strengths and weaknesses of the DCT and the CCT. This HCT could contain a

mixture of CCT and DCT subtrees. If test histories are available, then the HCT could use a DCT

to represent the coverage for the tests that execute any of the methods that previously failed. The

instrumentation probes for the HCT could create CCT subtrees for all of the tests that execute non-

failing methods. As shown in Figure 9.1, the HCT could selectively provide additional execution

context for those tests that are most likely to reveal faults and thus lead to better support for

the debugging process. In principle, the HCT is similar to the incremental call tree described by

[Bernat and Miller, 2006]. However, we intend to use the HCT to test and debug database-centric

and object-oriented applications and their approach is primarily designed for profiling procedural C

programs.

b. Alternative Forms of Interaction: The test coverage monitor (TCM) currently records any database

interaction that occurs through the standard JDBC interface. Recent JDBC drivers include new

functionality that allows the program to update the database through the result set. Some RDBMS

also allow the definition of views that combine the pre-defined relations in order to create a virtual

relation. However, using the SQL create view statement to define a virtual relation forces the

RDBMS to maintain the view when either (i) the underlying relations change or (ii) the state of the

view is directly updated. Many RDBMS support the definition of referential integrity constraints

that create a referencing relationship between two relations. The use of the SQL references keyword

compels the RDBMS to update the state of the referencing relation when the referenced one changes.

Finally, most RDBMS allow the specification of a trigger that executes when a certain event occurs.

Upon the satisfaction of the trigger’s event condition, the database executes a list of actions that

may change the state or structure of the relations. Even though our case study applications do
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Figure 9.2: (a) Conflicting Test Cases and (b) a Test Conflict Graph.

not use these features of JDBC and SQL, future research should enhance the coverage monitor to

efficiently capture all of these database interactions. Improving the TCM component in this manner

will result in more accurate coverage reports and better support for any testing technique that uses

coverage information (e.g., regression test suite reduction or prioritization).

c. New Instrumentation Granularities: Currently, we perform static instrumentation on all of the

loaded classes in the program and the test suite. If static instrumentation occurs frequently and

we can preserve information about source code modification, then it would be possible to selectively

instrument only those methods that were last changed. The coverage monitor dynamically inserts

instrumentation on a per-class basis. However, this approach might be inefficient for classes that

contain methods that are rarely used during testing. To this end, future work should enhance the

dynamic instrumentor so that it inserts probes on a per-method basis. Improving the static and

dynamic instrumentation techniques in these ways will reduce the cost of inserting the coverage

probes and ensure that coverage monitoring is scalable for larger database-centric applications.

d. Optimizing the Instrumentation: We currently rely upon the Java virtual machine (JVM) to dy-

namically optimize the instrumented programs and we do not perform any static optimization.

However, recent research has empirically demonstrated that it can be beneficial to statically and

dynamically optimize an instrumented program [Luk et al., 2005, Yang et al., 2006]. Future work

can use the Soot program analysis framework [Vallée-Rai et al., 1999, 2000] in order to apply static

optimizations such as method inlining, constant propagation, and the removal of partially redun-

dant expressions. Further research should also examine whether or not the adaptive optimizations

provided by the Jikes RVM [Alpern et al., 2005] can further reduce testing time.

4. Regression Testing:

a. Avoiding RDBMS Restarts: Sometimes the tests for a database-centric application are not indepen-

dent (i.e., one or more tests do not clear the database state that they created during execution).

In this circumstance, test independence must be imposed by clearing out the state of the database

and/or restarting the entire database management system. Forcing test independence in this fashion

normally leads to a significant increase in testing time. Recent prioritization schemes use heuristics

that re-order a test suite in a fashion that avoids some RDBMS restarts [Haftmann et al., 2005a].
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We can reduce testing time by using the static and dynamic details about a database interaction

as generated by the adequacy and coverage monitoring components. Information about how the

tests define and use the database can be leveraged to create a test conflict graph. As depicted in

Figure 9.2(a), two test cases would conflict if they define and use the same part of the database.

Future research could identify new prioritization(s) by applying topological sorting algorithms (e.g.,

[Cormen et al., 2001]) to a test conflict graph like the one in Figure 9.2(b). If we monitor how test

conflicts change during regression testing, we can also use more efficient online topological sorting

algorithms (e.g., [Pearce and Kelly, 2006]) that create test prioritizations without re-analyzing the

entire conflict graph. We will investigate how these re-orderings improve the efficiency of testing by

avoiding RDBMS restarts.

b. Time-Aware Testing: Testing database-centric applications is often time consuming because a

database interaction normally involves costly remote method invocations and data transfers. Time-

aware regression testing techniques (e.g., [Elbaum et al., 2001, Walcott et al., 2006]) are applicable

in this domain since many database-aware test suites should terminate after a pre-defined time

interval [Haftmann et al., 2005a]. Future research must leverage database-aware test requirements

during the generation of a time sensitive prioritization. Since it is often expensive to produce a

time-aware re-ordering or reduction of the tests [Walcott et al., 2006], future work must investigate

efficient approaches that heuristically solve the underlying NP-complete problems. For example, we

can investigate the use of efficient solvers for the 0/1 knapsack problem (e.g., dynamic program-

ming, branch and bound, and the core algorithm [Kellerer et al., 2004]) when we perform time-aware

reduction. In circumstances when regression testing must be timely but a specific time limit is un-

known (or, undesirable), we will use multi-objective optimization techniques [Zitzler and Thiele,

1999]. This approach will find the test suite re-ordering(s) and/or reduction(s) that are the most

effective at minimizing the test execution time and maximizing the coverage of the test requirements.

c. Alternative Techniques for Regression Testing: There are several other approaches to reduction and

prioritization that focus on modifying the test suite for a traditional program. For example, the

HGS reduction scheme analyzes the test coverage information and initially selects all of the tests

that cover a single requirement [Harrold et al., 1993]. In the next iteration, HGS examines all of the

requirements that are covered by two tests and it selects the test case with the greatest coverage. The

HGS reduction procedure continues to select test cases until it obtains a minimized suite that covers

all of the requirements. An alternative approach reduces a test suite by analyzing a concept lattice

that represents the coverage information [Tallam and Gupta, 2005]. The lattice-based approach

exploits information concerning the (i) requirements that a test case covers and (ii) tests that cover

a specific requirement. A recently developed reduction method retains a test case if it is redundant

according to a primary adequacy criteria and yet still relevant with regard to secondary and tertiary

criteria [Jeffrey and Gupta, 2007]. Finally, [Rothermel et al., 2002] suggest that it may be possible
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to reduce testing time by joining together test cases that interact with similar regions of the program.

We intend to enhance these regression testing algorithms so that they use test requirements such as

the (i) paths in the database-aware coverage tree and (ii) database interaction association.

9.3.2 New Database-Aware Testing Techniques

1. Automated Debugging: Traditional approaches to automatic fault localization identify the source

code location that is most likely to contain a program defect [Jones and Harrold, 2005]. Future work

should develop fault localizers that use test execution histories (e.g., information about the passing and

failing test cases) in order to find defective database interactions. These techniques should also discover

which syntactic elements of a SQL command have the highest probability of containing the fault. A

comprehensive approach to database-aware automatic debugging must also consider how the state of

the database causes a program failure. To this end, future work must devise database-aware delta

debuggers [Zeller and Hildebrandt, 2002], that can simplify the failure-inducing database state. Our

research suggests that it is often valuable to view a database interaction at different levels of granularity

(e.g., the structure-based relation level or the state-based record level). Hierarchical delta debuggers

(e.g., [Misherghi and Su, 2006]) hold particular promise for efficiently simplifying database state because

we can customize them to intelligently view the database at different granularity levels.

2. Mutation Testing: A mutation adequacy criterion ensures that a test suite can reveal the types of

defects that are normally inserted into a program by competent programmers [DeMillo et al., 1988].

This type of testing technique uses mutation operators that make small modifications to the source code

of the program under test. The majority of approaches to mutation testing exclusively focus on control

structures, program variables, and object-oriented features (e.g., [Ma et al., 2002, Offutt et al., 2001]).

A recently developed tool mutates a SQL statement that is statically specified outside the context of an

executable program [Tuya et al., 2007]. Future research should leverage the static and dynamic analysis

techniques provided by the test adequacy and coverage monitoring components. We can use the current

framework in order to identify the SQL statements that the program submits during testing. After

mutating all of the recorded SQL commands using the technique from [Tuya et al., 2007], we can execute

the program with a mutant database interaction (we say that the tests kill a mutant if they differentiate

the faulty interaction from the original SQL statement). Finally, we can calculate mutation coverage as

the ratio between the number of killed mutants and the total number of mutants [Zhu et al., 1997].

3. Reverse Engineering: Database designers can define relationships among the attributes in a database

by specifying integrity constraints in the relational schema. Since software engineers often cannot change

the relational schema of a large database, new integrity constraints are frequently encoded in the pro-

gram’s methods. However, a database-centric applications becomes difficult to test, maintain, and un-

derstand if the constraints are dispersed throughout the schema and the source code. Future work should

develop reverse engineering techniques that observe the database state before and after an interaction in
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order to detect implicit constraints that are not expressed in the schema. A reverse engineered constraint

could be included in a new version of the schema after it was verified by a database administrator. Dy-

namic invariant detection techniques (e.g., [Ernst et al., 2001, 2006]) can analyze the database state that

was extracted from the coverage report in order to identify the program enforced integrity constraints.

4. Performance Testing and Analysis: The primary focus of our testing framework is to establish a

confidence in the correctness of a program’s database interactions. Even though the majority of tra-

ditional testing techniques do not consider performance [Vokolos and Weyuker, 1998], future research

should investigate the creation of approaches to database-aware performance testing. Performance test-

ing tools will assist software developers in designing high performance queries and selecting the most

efficient database configuration in the context of a specific database-centric application. We will ex-

tend the test execution component to support the encoding of test oracles about the response time of a

database interaction. For example, a performance oracle might specify that a test case fails whenever

one or more database interactions exceed a specified time threshold. Future work must enhance the test

coverage monitoring trees so that they can record information about the performance of each database

interaction. A performance-aware regression tester could re-order a test suite so that it is better at

finding performance defects earlier in the testing process. A performance-aware prioritization would first

execute those test cases that cover the performance sensitive methods (e.g., those methods that contain

database interactions, file system calls, or the invocation of remote procedures).

5. Other Testing and Analysis Techniques: This research reports the cyclomatic complexity of each

case study application. Prior research proposed various complexity metrics that only apply to traditional

software applications [Cherniavsky and Smith, 1991, Weyuker, 1988]. Future work should extend these

criteria to include details about the relational schema (e.g., the number of relations and the average

number of attributes per relation) and the state of the database (e.g., the average number of records per

relation). Other previous research scans the source code of a program in an attempt to find locations that

match pre-defined bug patterns [Hovemeyer and Pugh, 2004, Reimer et al., 2004]. New fault detectors

could verify that a database interaction point never submits a SQL statement that references entities

that are not inside of the database. Future research can also use static analyzers to verify that all SQL

operators and keywords are spelled correctly. These tools could ensure that the program does not attempt

to submit a SQL select with the executeUpdate method or one of the update, insert, and delete

statements with executeQuery. Finally, we will develop automated test data generation algorithms that

create values for both the (i) parameters to the method under test and (ii) entities within the relational

database.

9.3.3 Further Empirical Evaluation

Future work must empirically evaluate each of the new testing techniques that were described in Section 9.3.2.

Yet, it is also valuable to pursue further empirical studies with the current version of the testing framework.
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1. Additional Case Study Applications: We intend to evaluate the testing techniques with new case

study applications. Future experiments should vary the size of the database in an attempt to more

accurately characterize the scalability of each testing tool. We will use applications like FindFile to

conduct the scalability experiments since it is easy to modify the size of the database for this type of

program. None of the current case study applications come with historical details about defects, revisions,

or testing outcomes. We plan on creating a publicly accessible repository of database-centric applications

that other researchers can use during the evaluation of their database-aware testing techniques. This

repository will contain the source code of the tests and the application, details about the relational

schema, sample instances of the database, and additional versioning information.

2. Performance of the Instrumentation: Many previous empirical studies have measured how in-

strumentation increases the time overhead of testing and program execution (e.g., [Luk et al., 2005,

Misurda et al., 2005]). To the best of our knowledge, no prior research has investigated the impact

that the instrumentation has on the (i) behavior of the memory subsystem and (ii) memory footprint

of the program and the tests. This type of empirical study is particularly important in the context of

instrumentation for database-centric applications because the probes must allocate and de-allocate por-

tions of the database. An experiment of this nature will also clarify whether it is possible to perform

database-aware test coverage monitoring in memory constrained environments such as those discussed

in [Kapfhammer et al., 2005]. We intend to use recently developed memory profilers (e.g., [Pearce et al.,

2006, Rojemo and Runciman, 1996]) in order to characterize the behavior of the JVM’s garbage col-

lector and determine how instrumentation impacts space overhead. Using the scheme developed by

[Camesi et al., 2006], future work will also examine how the instrumentation changes the CPU consump-

tion of a database-centric application. We plan to conduct similar empirical studies so that we can

measure the performance of instrumentation for traditional programs.

3. Effectiveness of Regression Testing: The empirical evaluation of the database-aware regression tester

primarily focused on measuring the (i) efficiency of the technique itself, (ii) coverage effectiveness of the

prioritized test suite, and (iii) reduction in testing time. Even though the value of regression testing

has been extensively studied for traditional programs (e.g., [Do et al., 2004, Rothermel et al., 2001, 2002,

Rummel et al., 2005]), future research must determine how reduction and prioritization impact the fault

detection effectiveness of regression testing for database-centric applications. Since there is preliminary

evidence that mutation testing techniques can be used to create seeded faults (e.g., [Andrews et al., 2005,

Do and Rothermel, 2006]), we will use our proposed database-aware mutation tester to enumerate faulty

database interactions. After seeding these faults into the case study applications, we will determine how

reduction and prioritization impact the test suite’s ability to detect defects. This empirical study will

also attempt to identify the trade-offs that are associated with the efficiency and effectiveness of the

database-aware regression testing techniques.
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Figure 9.3: Example of a Tuple Space-Based Application.

4. Assessing Database-Aware Test Oracles: A test oracle compares the actual and anticipated states

of the database in order to determine whether or not the method under test is correct. Some oracles

are expensive to execute because they inspect a large portion of the database. Test oracles that examine

smaller regions of the database normally incur less execution overhead. Furthermore, a test can execute

one or more oracles at arbitrary locations within its control flow graph. Recent research suggests that

the type of graphical user interface (GUI) test oracle has a significant impact upon the fault detection

effectiveness of a test case [Xie and Memon, 2007]. We intend to conduct experiments to ascertain how

the database-aware test oracle impacts the efficiency and effectiveness of testing. We will enhance the test

suite execution component to record timings for all of the test oracles and then measure oracle execution

time. After using the mutation testing tool to seed database interaction faults, we will also determine how

different types of test oracles impact the rate of fault detection. The results from these experiments will

yield insight into the characteristics of good test oracles and potentially suggest automated techniques

for improving and/or creating database-aware oracles.

9.3.4 Additional Environmental Factors

This research demonstrates the importance of testing a program’s interaction with the components in the

execution environment. Even though we designed the comprehensive framework to test programs that

interact with relational databases, we judge that it can be extended to handle other data management

systems such as eXtensible Markup Language (XML) databases (e.g., [Fiebig et al., 2002, Jagadish et al.,

2002, Meier, 2003]). It is important to develop testing techniques for XML-based applications since XML is

the de-facto language for data interchange and it is now directly integrated into Java [Eisenberg and Melton,

2002, Harren et al., 2005, Li and Agrawal, 2005]. We intend to implement and evaluate XML-aware testing

techniques that ensure a program correctly submits XML queries and transformations to the XML data

store. If the program under test represents the XML document as a tree (e.g., [Moro et al., 2005, Wang et al.,

2003]), then the adequacy criteria will ensure that the tests cause the program to properly define and use
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the nodes in the tree. We will enhanced event-based test adequacy criteria that were developed for graphical

user interfaces (e.g., [Memon et al., 2001]) in order to test XML programs that process XML parsing events

(e.g., [Megginson, 2001]).

Future research should also enhance the testing framework to handle distributed applications that interact

with data repositories such as distributed hash tables (DHTs) (e.g., [Rhea et al., 2005]) and tuple spaces

(e.g., [Arnold et al., 2002, Murphy et al., 2006]). A DHT furnishes a hash table-like interface with put

and get methods that remotely transfer data in a distributed system. As depicted in Figure 9.3, a tuple

space is another type of distributed system middleware that supports data storage and transfer through

methods such as write, take, and read. It is important to test programs that interact with DHTs and

tuple spaces because these components are widely used to implement peer-to-peer and distributed systems

that support scientific and ubiquitous computing (e.g., [Chawathe et al., 2005, Noble and Zlateva, 2001,

Rhea et al., 2005, Zorman et al., 2002]). Since the DHT and the tuple space both provide an interface that

focuses on the definition and use of remote data, it is possible to adapt our data flow-based testing techniques

to handle this new domain. Future research can extend previous test adequacy criteria for parallel shared

memory programs (e.g., [Yang et al., 1998]) in order to support coverage monitoring and regression testing

for programs that interact with DHTs and tuple spaces.

9.3.5 Improving Traditional Software Testing and Analysis

Even though our framework focuses on testing database-centric applications, it can also be used to test

conventional software systems. This type of future research is feasible because our testing framework correctly

operates in both database-aware and traditional configurations. For example, our test coverage monitor

constructs traditional CCTs and DCTs and the regression testing techniques reduce and/or re-order any

test suite for which coverage results are known. Furthermore, our testing techniques support the full range

of features in Java and they interoperate with popular testing tools such as JUnit. Prior work in regression

testing focused on using call stacks to reduce the test suite for either a procedural program written in C or a

GUI program written in Java [McMaster and Memon, 2005, 2006]. We intend to use the coverage monitoring

and regression testing components to perform traditional call stack-based reduction and prioritization for

object-oriented Java programs. These empirical studies will use the conventional Java programs and JUnit

test suites in the software-artifact infrastructure repository (SIR) [Do et al., 2005].

The calling context tree was initially proposed and empirically evaluated in the context of procedural

programs [Ammons et al., 1997]. In future research, we will use our framework to characterize the dynamic

call tree and the calling context tree for a wide variety of object-oriented programs. We plan to focus our

empirical studies on determining how long it takes to create and store the DCT and CCT for object-oriented

programs. These studies will calculate the size of the DCT and CCT in order to determine the space overhead

associated with storing the trees for testing and fault localization purposes. We can also compare the size and

structure of object-oriented control flow graphs and dynamic call trees. A comprehensive empirical study

218



of object-oriented call trees is relevant to traditional software engineering because the CCT and the DCT

are a central component of several profilers and debuggers (e.g., [Dmitriev, 2004]). The tool support and

the experiment results are also useful for improving dynamic optimization since many JVMs use context-

sensitive information about methods calls in order to guide inlining decisions [Hazelwood and Grove, 2003,

Zhuang et al., 2006]. To the best of our knowledge, these proposed future research ideas represent the first

attempt to investigate call tree-based approaches to the testing and analysis of object-oriented programs.
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APPENDIX A

SUMMARY OF THE NOTATION

Variable Name Meaning

rel1, . . . , relw Relations within the database

relj Arbitrary relation

A1, . . . , Aq Attributes within an arbitrary relation

Al Arbitrary attribute

M1, . . . , Mq Domains of the attributes within an arbitrary relation

v1, . . . , vq Values that are placed within the database by an insert

Q Logical predicate within a select, update, or delete statement

Vφ Any one of the valid attributes within an arbitrary relation

Vψ Any valid attribute, string, pattern, or select result

Table A1: Relational Databases.
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Variable Name Meaning

G Control flow graph for a method

N Set of control flow graph nodes

E Set of control flow graph edges

Nρ, Nτ Arbitrary nodes within a control flow graph

〈Nρ, . . . , Nτ 〉 Arbitrary path within a control flow graph

succ(Nρ) Successor of node Nρ

pred(Nτ ) Predecessor of node Nτ

Table A2: Traditional Program Representation.

Variable Name Meaning

Gk Control flow graph for method mk

Nk Set of control flow graph nodes

Ek Set of control flow graph edges

Bk Set of non-executable nodes with a method’s CFG

v(Gk) Cyclomatic complexity number for a CFG Gk

Table A3: Characterizing a Database-Centric Application.

Set Name Meaning

GDI(k) Database interaction CFG for method mk

D(GDI(k)) Set of database interactions

R(GDI(k)) Set of relation interactions

A(GDI(k)) Set of attribute interactions

Rc(GDI(k)) Set of record interactions

Av(GDI(k)) Set of attribute value interactions

Table A4: Database Entity Sets.
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Variable Name Meaning

〈Ndef , Nuse, var〉 Def-use association for program variable var

πvar Complete path that covers a def-use association

GDI(k) Database interaction control flow graph for a method

NDI(k) Set of DI-CFG nodes

EDI(k) Set of DI-CFG edges

〈Ndef , Nuse, varDB〉 Database interaction association for database entity varDB

Cα, Cβ Arbitrary test adequacy criteria

Table A5: Database-Aware Test Adequacy Criteria.

Variable Name Meaning

A A database-centric application

P Program component of a database-centric application

m Method within the program component

D1, . . . , De Relational databases of a database-centric application

Df Arbitrary relational database

tk Record within a database relation

tk Record within a database relation

tk[l] Attribute value within a specific record

S1, . . . , Se Schemas of the relational databases

Sf Arbitrary relational schema

GP Interprocedural control flow graph for program P

ΓP Set of control flow graphs in GP

EP Set of control flow graphs edges in GP

Gj Intraprocedural control flow graph for program method mj

Table A6: Database-Centric Applications.
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Variable Name Meaning

C Database-aware context stack

name(Df ) Unique database name

name(C, relj) Unique relation name

name(C, Al) Unique attribute name

name(C, tk) Unique record name

name(C, tk[l]) Unique attribute value name

Table A7: Enumerating the Sets of Database Entities.

Variable Name Meaning

Nr Control flow graph node that interacts with a database

Fr DI-FSM that models a database interaction at node Nr

Q Non-empty set of internal states in the DI-FSM Fr

Qf Set of final states in the DI-FSM Fr

q0 Initial state in the DI-FSM Fr

δ Transition funtion for the DI-FSM Fr

Σ Input alphabet for the DI-FSM Fr

µ Unknown input symbol for a transition in the DI-FSM Fr

GEND, . . . , GENAv
Generation functions for database entities

λ Generation function limit

Table A8: The Database-Aware Test Adequacy Component.
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Variable Name Meaning

Nr CFG node that performs a databse interaction

in(Nρ) In degree of a CFG node

out(Nρ) Out degree of a CFG node

τ Test coverage monitoring tree

τdct Dynamic test coverage monitoring tree

τcct Calling context test coverage monitoring tree

Nτ Set of TCM tree nodes

Eτ Set of TCM tree edges

Na Active node in a TCM tree

N0 Root node in a TCM tree

EF Set of forward edges in a CCT

EB Set of back edges in a CCT

NB Set of nodes that receive a back edge in a CCT

Bφ Active back edge stack for a CCT node Nφ

σ Program or database entity to place into a TCM tree

Table A9: Database-Aware Test Coverage Monitoring Trees.

Variable Name Meaning

HR:A Function that maps relations to attributes

HR:Rc
Function that maps relations to attributes

Al and Âl Attributes in a relation

relj and r̂elj Relations in a database

S Result set that arises from a SQL select

attr(S) The set of attributes associated with result set S

relations(S) The set of relations associated with result set S

attr(relj) The set of attributes associated with relation relj

L(τ) Levels of database interaction for a TCM tree

Table A10: Instrumentation to Create the Database-Aware TCM Trees.
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Operator Name Meaning

⊗
Rc

Symmetric relational difference operator

⊗
Av

Symmetric attribute value difference operator

\Rc
Relational difference operator at the record level

\Av
Relational difference operator at the attribute value level

Table A11: Relational Difference Operators.

Variable Name Meaning

Wf Total number of relations in database Df

tmax Maximum number of records in the database Df

MR:A Maximum number of attributes in both relj and S

MR:Rc
Maximum number of records that have an attribute value in both relj and S

Λ(j, j′) Length of the longest common subsequence (LCS) between relj and relj′

Amax Maximum number of attributes that differ in relj and relj′

Table A12: Worst-Case Complexity of the Database-Aware Instrumentation.

Variable Name Meaning

T Test suite for a database-centric application

Ti Arbitrary test case within T

∆0 Initial test state

∆i Test state produced by test Ti

GT Interprocedural control flow graph for test suite T

ΓT Set of control flow graphs in GT

ET Set of control flow graphs edges in GT

Nθ Node that executes test oracle θ

∆x Expected test state for test oracle θ

∆a Actual test state for test oracle θ

Table A13: Database-Aware Test Suites.
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Variable Name Meaning

A,A′ Sets of applications to statically instrument

Ts, As Statically instrumented test suite and application

Td, Ad Dynamically instrumentated test suite and application

L Database interaction level during test coverage monitoring

c Arbitrary compression technique for a program or a TCM tree

Xτ Set of external nodes in a TCM tree

H Hash table that stores the replication counts for a TCM tree

Table A14: Describing the Test Coverage Monitor.

Variable Name Meaning

Π(τ) Multiset of paths in the coverage tree τ

π, π′ Arbitrary paths in the coverage tree τ

Π(τ, Ti) Multiset of tree paths for test case Ti

Πυ(τ, Ti) Set of unique tree paths for test case Ti

= Super path operator for coverage tree paths

� Containing path operator for coverage tree paths

a Containing path operator for coverage tree paths

Πµ(τ, Ti,a) Set of maximally unique tree paths for test case Ti

Πη(τ, Ti) Set of previously examined coverage tree paths for Ti

Πυ(τ, T ) Set of unique tree paths for test suite T

Πµ(τ, T,a) Set of maximally unique tree paths for test suite T

Table A15: Paths in the Test Coverage Monitoring Tree.
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Variable Name Meaning

T, T̂ Original test suites

Tr Reduced test suite

Tp Prioritized test suite

ϕi Cost-effectiveness metric for test case Ti

time(〈Ti〉) Time required to executed test Ti

n∗ Target size for the reduced test suite

Table A16: Database-Aware Regression Testing.

Variable Name Meaning

ξ(T, Tp) Coverage effectiveness of the Tp derived from T

κ(T, t) Cummulative coverage of test suite T at time t

κ̄(T, t) Cummulative coverage of the ideal test suite T at time t

t(n′) The running time for the first n′ tests in T

Table A17: Evaluating a Test Suite Prioritization.

Variable Name Meaning

%n(T, Tr) Reduction factor for the size of a test suite

%t(T, Tr) Reduction factor for the time to run a test suite

%π(T, Tr) Reduction factor for the number of covered test requirements

νπ(T, Tr) Preservation factor for the number of covered test requirements

νr Tuple that contains the evaluation metrics for Tr

ν Specific value for an evaluation metric in νr

Table A18: Evaluating a Test Suite Reduction.
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APPENDIX B

CASE STUDY APPLICATIONS

Number NCSS Methods Classes Javadocs Class

1 91 15 0 15 reminder.ReminderCreator

2 22 0 0 1 reminder.ReminderConstants

3 31 6 0 6 reminder.TestBeforeAllTests

4 5 2 0 1 reminder.ReminderDataException

5 23 4 0 5 reminder.TestReminderCreator

6 62 7 0 8 reminder.Reminder

7 223 15 0 15 reminder.TestReminder

8 18 2 0 0 reminder.AllTests

9 14 4 0 1 reminder.DatabaseDescription

Table B1: Reminder (RM) Case Study Application.

Number NCSS Methods Classes Javadocs Class

1 8 1 0 0 org.hsqldb.sample.FindFileDatabaseCreator

2 10 1 0 1 org.hsqldb.sample.DatabaseExport

3 330 25 0 23 org.hsqldb.sample.TestFindFile

4 14 4 0 1 org.hsqldb.sample.DatabaseDescription

5 161 18 0 16 org.hsqldb.sample.FindFile

Table B2: FindFile (FF) Case Study Application.
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Number NCSS Methods Classes Javadocs Class

1 80 12 0 13 com.runstate.pithy.PithyCreator

2 31 6 0 6 com.runstate.pithy.TestBeforeAllTests

3 23 4 0 5 com.runstate.pithy.TestPithyCreator

4 84 10 0 0 com.runstate.pithy.PithyDBHSQLDB

5 20 7 0 0 com.runstate.pithy.Pith

6 95 4 0 1 com.runstate.pithy.PithyCommand

7 6 5 0 0 com.runstate.pithy.PithyDB

8 18 2 0 0 com.runstate.pithy.AllTests

9 14 4 0 1 com.runstate.pithy.DatabaseDescription

10 131 18 0 11 com.runstate.pithy.TestPithy

11 5 1 0 1 com.runstate.pithy.Pithy

Table B3: Pithy (PI) Case Study Application.

Number NCSS Methods Classes Javadocs Class

1 31 6 0 6 student.TestBeforeAllTests

2 37 6 0 7 student.TestStudentCreator

3 5 2 0 1 student.StudentDataException

4 91 15 0 15 student.StudentCreator

5 69 11 0 11 student.Student

6 18 2 0 0 student.AllTests

7 14 4 0 1 student.DatabaseDescription

8 17 0 0 1 student.StudentConstants

9 279 26 0 7 student.TestStudent

Table B4: StudentTracker (ST) Case Study Application.
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Number NCSS Methods Classes Javadocs Class

1 337 33 0 10 TransactionAgent.TestMySQLDatabaseAgent

2 263 27 0 22 TransactionAgent.MySQLDatabaseAgent

3 11 10 0 1 TransactionAgent.DatabaseAgent

4 78 11 0 12 TransactionAgent.TransactionAgentCreator

5 18 2 0 0 TransactionAgent.AllTests

6 14 4 0 1 TransactionAgent.DatabaseDescription

Table B5: TransactionManager (TM) Case Study Application.

Number NCSS Methods Classes Javadocs Class

1 197 40 0 41 gradebook.GradeBookCreator

2 34 6 0 6 gradebook.TestBeforeAllTests

3 602 39 0 37 gradebook.TestGradeBook

4 329 29 0 30 gradebook.GradeBook

5 22 4 0 5 gradebook.TestGradeBookCreator

6 19 2 0 0 gradebook.AllTests

7 5 2 0 1 gradebook.GradeBookDataException

8 14 4 0 1 gradebook.DatabaseDescription

9 114 21 0 22 gradebook.TestGradeBookCreatorWithFullDataSet

10 51 0 0 1 gradebook.GradeBookConstants

Table B6: GradeBook (GB) Case Study Application.
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Location Name

TestBeforeAllTests.java testDatabaseServerIsRunning()

TestBeforeAllTests.java testDoesNotStartServerAgain()

TestReminderCreator.java testMakeDatabaseConnection()

TestReminder.java testGetEmptyEvents()

TestReminder.java testAddReminderOneReminder()

TestReminder.java testAddReminderOneReminderNewNamesAndDate()

TestReminder.java testAddReminderMultipleReminders()

TestReminder.java testAddReminderMultipleRemindersCriitcalMonths()

TestReminder.java testAddReminderMultipleRemindersCriticalDays()

TestReminder.java testAddReminderMultipleRemindersGetEventInfo()

TestReminder.java testAddReminderMultipleRemindersDeleteEvent()

TestReminder.java testAddReminderMultipleRemindersFullEventList()

Table B7: Test Suite for Reminder.

Location Name

TestFindFile.java testDatabaseServerIsRunning()

TestFindFile.java testDoesNotStartServerAgain()

TestFindFile.java testMakeDatabaseConnection()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFiles()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFilesRemove15()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFilesRemove234()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFilesUpdate1()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFilesUpdate2()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFilesUpdate345()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFiles1()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFiles2()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFiles3()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFiles4()

TestFindFile.java testFindFilePopulateWithLocalDirectoryFiveFiles5()

TestFindFile.java testFindFilePopulateWithLocalDirectoryTenFiles()

TestFindFile.java testFindFilePopulateWithLocalEmptyDirectory()

Table B8: Test Suite for FindFile.
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Location Name

TestBeforeAllTests.java testDatabaseServerIsRunning()

TestBeforeAllTests.java testDoesNotStartServerAgain()

TestPithyCreator.java testMakeDatabaseConnection()

TestPithy.java testNoInitialPithyRemarks()

TestPithy.java testAddOnePithyRemark()

TestPithy.java testAddManyPithyRemarks()

TestPithy.java testAddManyPithyRemarksCheckCategory()

TestPithy.java testAdd()

TestPithy.java testAddIterativeSmallValue()

TestPithy.java testAddIterativeMediumValue()

TestPithy.java testAddIterativeLargeValue()

TestPithy.java testMultipleAdd()

TestPithy.java testMultipleAddIterativeSmall()

TestPithy.java testMultipleAddIterativeMedium()

TestPithy.java testMultipleAddIterativeLarge()

Table B9: Test Suite for Pithy.
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Location Name

TestBeforeAllTests.java testDatabaseServerIsRunning()

TestBeforeAllTests.java testDoesNotStartServerAgain()

TestStudentCreator.java testMakeDatabaseConnectionSmall()

TestStudentCreator.java testMakeDatabaseConnectionMedium()

TestStudentCreator.java testMakeDatabaseConnectionLarge()

TestStudent.java testInsertSingleStudent()

TestStudent.java testInsertSingleStudentIterativeSmall()

TestStudent.java testInsertAndRemoveStudent()

TestStudent.java testInsertAndRemoveStudentIterativeSmall()

TestStudent.java testInsertAndRemoveStudentIterativeMedium()

TestStudent.java testInsertAndRemoveStudentIterativeLarge()

TestStudent.java testInsertAndRemoveMultipleStudents()

TestStudent.java testInsertAndRemoveMultipleStudentsDoNotRemove()

TestStudent.java testInsertAndUpdateStudentExampleTwoTimes()

TestStudent.java testInsertAndUpdateStudentExampleSmall()

TestStudent.java testInsertAndUpdateStudentExampleMedium()

TestStudent.java testInsertAndUpdateStudentExampleLarge()

TestStudent.java testRemoveStudentFromEmptyDatabase()

TestStudent.java testRemoveStudentFromEmptyDatabaseCheckIndividualStudents()

TestStudent.java testInsertSingleStudentGetSingleStudent()

TestStudent.java testInsertSingleStudentGetSingleStudentPerformRepeatedly10()

TestStudent.java testInsertSingleStudentGetSingleStudentPerformRepeatedly50()

TestStudent.java testInsertSingleStudentGetSingleStudentPerformRepeatedly100()

TestStudent.java testInsertMultipleStudentGetMultipleStudentsDirectly()

TestStudent.java testInsertAndUpdateExampleDirectRemove()

Table B10: Test Suite for StudentTracker.
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Location Name

TestMySQLDatabaseAgent.java testDatabaseServerIsRunning()

TestMySQLDatabaseAgent.java testDoesNotStartServerAgain()

TestMySQLDatabaseAgent.java testMakeDatabaseConnection()

TestMySQLDatabaseAgent.java testBasicTestFramework()

TestMySQLDatabaseAgent.java testMakeDatabaseConnectionRepeatedly10()

TestMySQLDatabaseAgent.java testCreateDefaultBankState()

TestMySQLDatabaseAgent.java testRemoveAccountNotPossibleInitialState()

TestMySQLDatabaseAgent.java testRemoveAccountTwiceDoesNotWorkCorrectly()

TestMySQLDatabaseAgent.java testRemoveDifferentAccountNumberTwice()

TestMySQLDatabaseAgent.java testRemoveASingleUser()

TestMySQLDatabaseAgent.java testVerifySingleUser()

TestMySQLDatabaseAgent.java testVerifySingleUserRepeatedlyTenTimes()

TestMySQLDatabaseAgent.java testAccountExistsSingleAccount()

TestMySQLDatabaseAgent.java testAccountExistsSingleAccountRepeatedly()

TestMySQLDatabaseAgent.java testGetAccountBalance()

TestMySQLDatabaseAgent.java testGetAccountBalanceRepeatedly()

TestMySQLDatabaseAgent.java testGetAccountBalanceAndThenWithdraw()

TestMySQLDatabaseAgent.java testGetAccountBalanceWithdrawRepeatedly()

TestMySQLDatabaseAgent.java testDepositForSingleUser()

TestMySQLDatabaseAgent.java testAccountTransfer()

TestMySQLDatabaseAgent.java testAccountTransferMultipleTimes()

TestMySQLDatabaseAgent.java testLockTwoAccounts()

TestMySQLDatabaseAgent.java testLockUnlockLockTwoAcctsRepeatedlySmall()

TestMySQLDatabaseAgent.java testDeleteAccounts()

TestMySQLDatabaseAgent.java testDeleteAccountsRepeatedSmall()

TestMySQLDatabaseAgent.java testDeleteAccountsRepeatedMedium()

TestMySQLDatabaseAgent.java testDeleteAccountsRepeatedLarge()

Table B11: Test Suite for TransactionManager.

234



Location Name

TestBeforeAllTests.java testDatabaseServerIsRunning()
TestBeforeAllTests.java testDoesNotStartServerAgain()

TestGradeBookCreator.java testMakeDatabaseConnection()
TestGradeBookCreatorWithFullDataSet.java testCreateMasterTable()
TestGradeBookCreatorWithFullDataSet.java testDropMasterNotPossible()
TestGradeBookCreatorWithFullDataSet.java testCreateStudentTable()
TestGradeBookCreatorWithFullDataSet.java testDropStudentNotPossible()
TestGradeBookCreatorWithFullDataSet.java testCreateExamMasterTable()
TestGradeBookCreatorWithFullDataSet.java testDropExamMasterNotPossible()
TestGradeBookCreatorWithFullDataSet.java testCreateExamScoresTable()
TestGradeBookCreatorWithFullDataSet.java testDropExamScoresNotPossible()
TestGradeBookCreatorWithFullDataSet.java testCreateLabMasterTable()
TestGradeBookCreatorWithFullDataSet.java testDropLabMasterNotPossible()
TestGradeBookCreatorWithFullDataSet.java testCreateLabScoresTable()
TestGradeBookCreatorWithFullDataSet.java testDropLabScoresNotPossible()
TestGradeBookCreatorWithFullDataSet.java testCreateHomeworkMasterTable()
TestGradeBookCreatorWithFullDataSet.java testDropHomeworkMasterNotPossible()
TestGradeBookCreatorWithFullDataSet.java testCreateHomeworkScoresTable()
TestGradeBookCreatorWithFullDataSet.java testDropHomeworkScoresNotPossible()
TestGradeBookCreatorWithFullDataSet.java testCreateFinalProjectScoresTable()
TestGradeBookCreatorWithFullDataSet.java testDropFinalProjScoresNotPoss()

TestGradeBook.java testDatabaseServerIsRunning()
TestGradeBook.java testDoesNotStartServerAgain()
TestGradeBook.java testPopulateMasterTableWrongPercentages()
TestGradeBook.java testPopulateMasterTable()
TestGradeBook.java testAddNullStudentNotPossible()
TestGradeBook.java testAddEmptyStringStudentNotPossible()
TestGradeBook.java testAddStudent()
TestGradeBook.java testAddExamNegativeNotPossible()
TestGradeBook.java testAddExamNullNotPossible()
TestGradeBook.java testAddExamsToExamMasterTable()
TestGradeBook.java testAddExamsToExamMasterTableIncludeCurves()
TestGradeBook.java testAddExamScoreSecondNegativeNotPossible()
TestGradeBook.java testAddExamScoreFirstNegativeNotPossible()
TestGradeBook.java testAddExamScoresToExamScoresTable()
TestGradeBook.java testCorrectAverageExamScores()
TestGradeBook.java testAddLabScoreSecondNegativeNotPossible()
TestGradeBook.java testAddLabScoreFirstNegativeNotPossible()
TestGradeBook.java testAddLabScoresToLabScoresTable()
TestGradeBook.java testCorrectAverageLabScores()
TestGradeBook.java testAddHomeworkScoreSecondNegativeNotPossible()
TestGradeBook.java testAddHomeworkScoreFirstNegativeNotPossible()
TestGradeBook.java testAddHomeworkScoresToHomeworkScoresTable()
TestGradeBook.java testAddFinalProjectScoreSecondNegativeNotPossible()
TestGradeBook.java testAddFinalProjectScoreFirstNegativeNotPossible()
TestGradeBook.java testAddFinalProjectScoresToLabScoresTable()
TestGradeBook.java testCalculateFinalGrade()
TestGradeBook.java testGetExamIdsAndExamFinalGrade()
TestGradeBook.java testCalculateLaboratoryFinalGrade()
TestGradeBook.java testCalculateHomeworkFinalGrade()
TestGradeBook.java testCalculateFinalProjectFinalGrade()

Table B12: Test Suite for GradeBook.
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public org.hsqldb.sample.FindFile();

Code:

0: aload_0

1: invokespecial #1; //Method java/lang/Object."<init>":()V

4: return

Figure B1: Bytecode of the FindFile Constructor Before Instrumentation.
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public org.hsqldb.sample.FindFile();

Code:

0: aload_0

1: invokespecial #59; //Method java/lang/Object."<init>":()V

// Method diatoms/monitor/TraceMonitorTestCoverage.ajc$if_0:()Z

4: invokestatic #385;

7: ifeq 25

// Method diatoms/monitor/TraceMonitorTestCoverage.ajc$if_1:()Z

10: invokestatic #382;

13: ifne 25

// Method diatoms/monitor/TraceMonitorTestCoverage.aspectOf:()

// Ldiatoms/monitor/TraceMonitorTestCoverage;

16: invokestatic #373;

// Field ajc$tjp_0:Lorg/aspectj/lang/JoinPoint$StaticPart;

19: getstatic #375;

// Method diatoms/monitor/TraceMonitorTestCoverage.ajc$

// before$diatoms_monitor_TraceMonitorTestCoverage$1$5a83f1be:

// (Lorg/aspectj/lang/JoinPoint$StaticPart;)V

22: invokevirtual #379;

25: goto 52

28: astore_1

// Method diatoms/monitor/TraceMonitorTestCoverage.ajc$if_2:()Z

29: invokestatic #394;

32: ifeq 50

// Method diatoms/monitor/TraceMonitorTestCoverage.ajc$if_3:()Z

35: invokestatic #391;

38: ifne 50

// Method diatoms/monitor/TraceMonitorTestCoverage.aspectOf:()

// Ldiatoms/monitor/TraceMonitorTestCoverage;

41: invokestatic #373;

// Field ajc$tjp_0:Lorg/aspectj/lang/JoinPoint$StaticPart;

44: getstatic #375;

// Method diatoms/monitor/TraceMonitorTestCoverage.ajc$after$

// diatoms_monitor_TraceMonitorTestCoverage$2$5a83f1be:

// (Lorg/aspectj/lang/JoinPoint$StaticPart;)V

47: invokevirtual #388;

50: aload_1

51: athrow

// Method diatoms/monitor/TraceMonitorTestCoverage.ajc$if_2:()Z

52: invokestatic #394;

55: ifeq 73

// Method diatoms/monitor/TraceMonitorTestCoverage.ajc$if_3:()Z

58: invokestatic #391;

61: ifne 73

// Method diatoms/monitor/TraceMonitorTestCoverage.aspectOf:()

// Ldiatoms/monitor/TraceMonitorTestCoverage;

64: invokestatic #373;

// Field ajc$tjp_0:Lorg/aspectj/lang/JoinPoint$StaticPart;

67: getstatic #375;

// Method diatoms/monitor/TraceMonitorTestCoverage.ajc$after$

// diatoms_monitor_TraceMonitorTestCoverage$2$5a83f1be:

// (Lorg/aspectj/lang/JoinPoint$StaticPart;)V

70: invokevirtual #388;

73: return

Figure B2: Bytecode of the FindFile Constructor After Instrumentation.
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1 public void testAddHomeworkScoresToHomeworkScoresTable ( )
2 {
3 try

4 {
5 // add the three standard exams with t h e i r
6 // standard point t o t a l s
7 testGradeBook . addHomework( ”HomeworkOne” , 1 0 ) ;
8 testGradeBook . addHomework( ”HomeworkTwo” , 2 0 ) ;
9 testGradeBook . addHomework( ”HomeworkThree” , 3 0 ) ;

10 // create the expected Exam MASTER from the XML
11 IDataSet expectedDatabaseStateFir s t = getDataSet ( ) ;
12 ITable expectedHomeworkMasterTable =
13 expectedDatabaseStateFir s t .
14 getTable ( GradeBookConstants .HOMEWORKMASTER) ;
15 // create the actua l Scores Table from the database
16 IDataSet ac tua lDataba s eS tat eF ir s t =
17 getConnection ( ) . c reateDataSet ( ) ;
18 ITable actualHomeworkMasterTable =
19 ac tua lDataba s eS ta t eFi r s t .
20 getTable ( GradeBookConstants .HOMEWORKMASTER) ;
21 // expected should be equa l to actua l in terms
22 // of both the number of rows and the data
23 As s e r t i on . a s s e r tEqua l s ( expectedHomeworkMasterTable ,
24 actualHomeworkMasterTable ) ;
25 }
26 // in order to preserve s imp l i c i t y , the except ion handling
27 // code was removed
28 }

Figure B3: An Example of a Database-Aware Test Case and Oracle.
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APPENDIX C

EXPERIMENT DETAILS

Data Type Size of the Type (bytes)

long 8

int 4

double 8

float 8

short 2

char 2

byte 1

boolean 1

java.lang.Object (shell) 8

java.lang.Object (reference) 4

Table C1: Estimated Data Type Sizes for a 32-bit Java Virtual Machine.
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Variable Name Meaning

Tinstr Static instrumentation time

S Static size of an application

Texec Test coverage monitoring time

T binstore Time required for storing a TCM tree in binary

T xmlstore Time required for storing a TCM tree in XML

SN Number of nodes in a TCM tree

Smem In memory size of a TCM tree

Sbin File system size of a TCM tree in binary

Sxml File system size of a TCM tree in XML

outavg Average node out degree of a TCM tree

rmax, ravg Maximum and average node replication count in a TCM tree

Table C2: Metrics Used During the Evaluation of the Test Coverage Monitor.

Number NCSS Functions Classes Javadocs Class

1 8 1 0 0 exercise.ExerciseDatabaseCreator

2 187 70 0 10 exercise.TestExercise

3 167 14 0 14 exercise.Exercise

4 10 1 0 1 exercise.DatabaseExport

5 14 4 0 1 exercise.DatabaseDescription

Table C3: Exercise (EX) Case Study Application.

Dominance Operator (a) Enumeration Time (ms) Path Count (Suite) Path Count (Case)

Super Path (=) 104 90 221

Containing Path (�) 118 80 211

(a)

Dominance Operator (a) Enumeration Time (ms) Path Count (Suite) Path Count (Case)

Super Path (=) 154 46 535

Containing Path (�) 195 46 535

(b)

Table C4: Using the Traditional Coverage Tree for (a) GradeBook and (b) TransactionManager.
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