
Software Testing

Gregory M. Kapfhammer
Department of Computer Science

Allegheny College
gkapfham@allegheny.edu

I shall not deny that the construction of these testing programs has been a major intellectual
effort: to convince oneself that one has not overlooked “a relevant state” and to convince
oneself that the testing programs generate them all is no simple matter. The encouraging
thing is that (as far as we know!) it could be done.

Edsger W. Dijkstra [Dijkstra, 1968]

1 Introduction

When a program is implemented to provide a concrete representation of an algorithm, the developers of
this program are naturally concerned with the correctness and performance of the implementation. Soft-
ware engineers must ensure that their software systems achieve an appropriate level of quality. Software
verification is the process of ensuring that a program meets its intended specification [Kaner et al., 1993].
One technique that can assist during the specification, design, and implementation of a software system is
software verification through correctness proof. Software testing, or the process of assessing the func-
tionality and correctness of a program through execution or analysis, is another alternative for verifying a
software system. As noted by Bowen, Hinchley, and Geller, software testing can be appropriately used in
conjunction with correctness proofs and other types of formal approaches in order to develop high quality
software systems [Bowen and Hinchley, 1995, Geller, 1978]. Yet, it is also possible to use software testing
techniques in isolation from program correctness proofs or other formal methods.

Software testing is not a “silver bullet” that can guarantee the production of high quality software
systems. While a “correct” correctness proof demonstrates that a software system (which exactly meets
its specification) will always operate in a given manner, software testing that is not fully exhaustive can
only suggest the presence of flaws and cannot prove their absence. Moreover, Kaner et al. have noted that
it is impossible to completely test an application because [Kaner et al., 1993]: (1) the domain of program
inputs is too large, (2) there are too many possible input paths, and (3) design and specification issues are
difficult to test. The first and second points present obvious complications and the final point highlights
the difficulty of determining if the specification of a problem solution and the design of its implementation
are also correct.

Using a thought experiment developed by Beizer, we can explore the first assertion by assuming
that we have a method that takes a String of ten characters as input and performs some arbitrary oper-
ation on the String. In order to test this function exhaustively, we would have to input 280 Strings
and determine if they produce the appropriate output.1 The testing of our hypothetical method might also
involved the usage of anomalous input, like Strings consisting of more or less than ten characters, to de-
termine the robustness of the operation. In this situation, the total number of inputs would be significantly
greater than 280. Therefore, we can conclude that exhaustive testing is an intractable problem since it is
impossible to solve with a polynomial-time algorithm [Binder, 1999, Neapolitan and Naimipour, 1998].
The difficulties alluded to by the second assertion are exacerbated by the fact that certain execution paths
in a program could be infeasible. Finally, software testing is an algorithmically unsolvable problem since
there may be input values for which the program does not halt [Beizer, 1990, Binder, 1999].

1Suppose that our String is encoded in extended ASCII. There are 256 = 2
8 different extended ASCII characters characters.

Since we are dealing with a String of ten characters, there are 2
80 possible unique Strings.

Underlying Principles 2

Thus far, we have provided an intuitive understanding of the limitations of software testing. How-
ever, Morell has proposed a theoretical model of the testing process that facilitates the proof of pessimistic
theorems that clearly state the limitations of testing [Morell, 1990]. Furthermore, Hamlet and Morell have
formally stated the goals of a software testing methodology and implicitly provided an understanding of
the limitations of testing [Hamlet, 1994, Morell, 1990]. Young and Taylor have also observed that every
software testing technique must involve some tradeoff between accuracy and computational cost because
the presence (or lack thereof) of defects within a program is an undecidable property [Young and Taylor,
1989]. The theoretical limitations of testing clearly indicate that it is impossible to propose and implement
a software testing methodology that is completely accurate and applicable to arbitrary programs [Young
and Taylor, 1989].

While software testing is certainly faced with inherent limitations, there are also a number of
practical considerations that can hinder the application of a testing technique. For example, some pro-
gramming languages might not readily support a selected testing approach, a test automation framework
might not easily facilitate the automatic execution of certain types of test suites, or there could be a lack
of tool support to test with respect to a specific test adequacy criterion. Even though any testing effort
will be faced with significant essential and accidental limitations, the rigorous, consistent, and intelligent
application of appropriate software testing techniques can improve the quality of the application under
development.

2 Underlying Principles

2.1 Terminology

The IEEE standard defines a failure as the external, incorrect behavior of a program [IEEE, 1996]. Tradi-
tionally, the anomalous behavior of a program is observed when incorrect output is produced or a runtime
failure occurs. Furthermore, the IEEE standard defines a fault as a collection of program source code
statements that causes a failure. Finally, an error is a mistake made by a programmer during the im-
plementation of a software system [IEEE, 1996].2 The purpose of software testing is to reveal software
faults in order to ensure that they do not manifest themselves as runtime failures during program usage.
Throughout this chapter, we will use P to denote the program under test and F to represent the specifi-
cation that describes the behavior of P .3 We say that a program’s execution is correct when its behavior
matches the functional and non-functional requirements specified in F [Sommerville, 2000]. Normally,
the program under test will operate in an environment that might include Java virtual machines, device
drivers, operating systems, databases, and a host of other environmental factors [Whittaker, 2000, Whit-
taker and Voas, 2000]. The majority of the testing theory and the practical testing techniques discussed
in this chapter disregard the environment of a software system and simply focus on the source code of P .
However, some of the new approaches to software testing that are described in Section 3.9 do address the
testing of an application and its interaction with its environment.

Building upon the definitions used in [Kapfhammer and Soffa, 2003, Memon, 2001], Definition 1
states our understanding of a test suite T that can be used to assess the quality of an application under
test. We use ∆f to denote the externally visible state of the application under test. Informally, ∆f can
be viewed as a set of pairs where the first value of each pair is a variable name and the second value of
each pair is a value for the variable name. Equation (1) formally defines ∆f , the externally visible state
after the execution of Tf . In this equation, we use var∆ and val∆ to denote a variable name and a variable
value in an external test state, respectively. Furthermore, we use U∆ and V∆ to respectively denote the
universe of valid variable names and variable values for externally visible test states. Finally, we require
value(var∆, f) to be a function that maps a variable name to the value for the variable name in a specified

2While these definitions are standard in the software engineering and software testing research community, they are different
than those that are normally used in the fault-tolerant computing community. For example, this community defines a fault as the
underlying phenomenon that causes an error. Furthermore, an error is recognized as a deviation in the system state from the correct
state. For more details, please refer to [Jalote, 1998]

3Throughout the remainder of this chapter, we will use the terms “program”, “application”, and “system” in an interchangeable
fashion.

2.1 Terminology 3

∆f . An external test state ∆f would contain the global variable values within the program under test, and
any variable values that are made accessible by live object instances.

Definition 1. A test suite T is a triple 〈∆0, 〈T1, . . . , Te〉, 〈∆1, . . . , ∆e〉〉, consisting of an initial ex-
ternal test state, ∆0, a test case sequence 〈T1, . . . , Te〉 for state ∆0, and expected external test states
〈∆1, . . . , ∆e〉 where ∆f = Tf (∆f−1) for f = 1, . . . , e. 2

∆f = {(var∆, val∆) ∈ U∆ × V∆ | value(var∆, f) = val∆} (1)

Definition 2 notes that a specific test Tf ∈ 〈T1, . . . , Te〉 can be viewed as a sequence of test
operations that cause the application under test to enter into states that are only visible to Tf . We used δh

to denote the internal test state that is created after the execution of Tf ’s test case operation oh. Intuitively,
δh can also be viewed as a set of pairs where the first value is a variable name and the second value is a
value for the variable name. Equation (2) formally defines δh in similar fashion to the definition of ∆f in
Equation (1). An internal test state δh would contain the expected and actual values for the test operation
oh, the return value from the program method under test, and the values of any temporary testing variables.
Section 3.2 provides several examples of internal test states.

Definition 2. A test case Tf ∈ 〈T1, . . . , Te〉, is a triple 〈δ0, 〈o1, . . . , og〉, 〈δ1, . . . , δg〉〉, consisting of an
initial internal test state, δ0, a test operation sequence 〈o1, . . . , og〉 for state δ0, and expected internal test
states 〈δ1, . . . , δg〉 where δh = oh(δh−1) for h = 1, . . . , g. 2

δh = {(varδ , valδ) ∈ Uδ × Vδ | value(varδ , h) = valδ} (2)

In Definition 3, we describe a restricted type of test suite where each test case returns the appli-
cation under test back to the initial state, ∆0, before it terminates [Pettichord, 1999]. If a test suite T is not
independent, we do not place any restrictions upon the 〈∆1, . . . , ∆e〉 produced by the test cases and we
simply refer to it as a non-restricted test suite. Our discussion of test execution in Section 3.6 will reveal
that the JUnit test automation framework facilitates the creation of test suites that adhere to Definition 1
and Definition 2 and are either independent or non-restricted in nature (although, JUnit encourages the
creation of independent test suites) [Gamma and Beck, 2004, Hightower, 2001, Jackson, 2003, Jeffries,
1999].

Definition 3. A test suite T is independent if and only if for all γ ∈ {1, . . . e}, ∆γ = ∆0. 2

Figure 1 provides a useful hierarchical decomposition of different testing techniques and their
relationship to different classes of test adequacy criteria. While our hierarchy generally follows the defi-
nitions provided by Binder and Zhu et. al, it is important to note that other decompositions of the testing
process are possible [Binder, 1999, Zhu et al., 1997]. This chapter focuses on execution-based soft-
ware testing techniques. However, it is also possible to perform non-execution-based software testing
through the usage of software inspections [Fagan, 1976]. During a software inspection, software en-
gineers examine the source code of a system and any documentation that accompanies the system. A
software inspector can be guided by a software inspection checklist that highlights some of the impor-
tant questions that should be asked about the artifact under examination [Brykczynski, 1999]. While an
inspection checklist is more sophisticated than an ad-hoc software inspection technique, it does not dictate
how an inspector should locate the required information in the artifacts of a software system. Scenario-
based reading techniques, such as Perspective-Based Reading (PBR), enable a more focused review of
software artifacts by requiring inspectors to assume the perspective of different classes of program users
[Laitenberger and Atkinson, 1999, Shull et al., 2001].

Since the selected understanding of adequacy is central to any testing effort, the types of tests
within T will naturally vary based upon the chosen adequacy criterion C. As shown in Figure 1, all
execution-based testing techniques are either program-based, specification-based, or combined [Zhu
et al., 1997]. A program-based testing approach relies upon the structure and attributes of P ’s source
code to create T . A specification-based testing technique simply uses F ’s statements about the functional
and/or non-functional requirements for P to create the desired test suite. A combined testing technique

2.2 Model of Execution-based Software Testing 4

Software Testing

Execution−based Testing

Program−based
Testing

Non−execution−based Testing

Inspections

Ad−hoc
Checklist

Scenario−based

Specification−based
Testing

Structurally−based

Combined
Testing

Fault−based
Criterion Criterion Criterion Requires

Decomposes Into
Error−based

Figure 1: Hierarchy of Software Testing Techniques.

creates a test suite T that is influenced by both program-based and specification-based testing approaches
[Zhu et al., 1997]. Moreover, the tests in T can be classified based upon whether they are white-box,
black-box, or grey-box test cases. Specification-based test cases are black-box tests that were created
without knowledge of P ’s source code. White-box (or, alternatively, glass-box) test cases consider the
entire source code of P , while so called grey-box tests only consider a portion of P ’s source code. Both
white-box and grey-box approaches to testing would be considered program-based or combined tech-
niques.

A complementary decomposition of the notion of software testing is useful to highlight the cen-
trality of the chosen test adequacy criterion. The tests within T can be viewed based upon whether they
are “good” with respect to a structurally-based, fault-based, or error-based adequacy criterion [Zhu
et al., 1997]. A structurally-based criterion requires the creation of a test suite T that solely requires the
exercising of certain control structures and variables within P . Thus, it is clear that structurally-based
test adequacy criterion require program-based testing. Fault-based test adequacy criterion attempt to en-
sure that P does not contain the types of faults that are commonly introduced into software systems by
programmers [DeMillo et al., 1978, Morell, 1990, Zhu et al., 1997]. Traditionally, fault-based criterion
are associated with program-based testing approaches. However, Richardson et al. have also described
fault-based testing techniques that attempt to reveal faults in F or faults in P that are associated with mis-
understandings of F [Richardson et al., 1989]. Therefore, a fault-based adequacy criterion C can require
either program-based, specification-based, or combined testing techniques. Finally, error-based testing
approaches rely upon a C that requires T to demonstrate that P does not deviate from F in any typical
fashion. Thus, error-based adequacy criteria necessitate specification-based testing approaches.

2.2 Model of Execution-based Software Testing

Figure 2 provides a model of execution-based software testing. Since there are different understandings
of the process of testing software, it is important to note that our model is only one valid and useful view
of software testing. Using the notation established in Section 2.1, this model of software testing takes a
system under test, P , and a test adequacy criterion, C, as input. This view of the software testing process
is iterative in nature. That is, the initial creation and execution of T against P can be followed by multiple
refinements of T and subsequent re-testings of P . Ideally, the testing process will stop iterating when

2.2 Model of Execution-based Software Testing 5

Test Case Generation

Test Execution

Adequacy
Measurements

Regression Testing
Results

Test Case
Descriptions

(C)

Test Case Specification

System Under Test
(P)

eM1

Test Cases
Executable

TTT1 2 e

Test Adequacy Criterion

Regression Testing

2 M

R

Test Results

R1 2 eR

M

Test Adequacy Evaluation

Figure 2: A Model of the Software Testing Process.

the tests within test suite T have met the adequacy criterion C and the testing effort has established the
desired level of confidence in the quality of P [Zhu et al., 1997]. In practice, testing often stops when a
release deadline is reached, monetary resources are exhausted, or the developers have an intuitive sense
that P has reached an acceptable level of quality. Yet, it is important to note that even if the testing effort
stops when T meets C, there is no guarantee that T has isolated all of the defects within P . Since C

traditionally represents a single view of test case quality, it is often important to use multiple adequacy
criterion and resist the temptation to allow the selected C(s) to exclusively guide the testing effort [Marick,
1998, 1999].4 The formulation of a test adequacy criterion is a function of a chosen representation of P

and a specific understanding of the “good” qualities that T should represent. In Section 3.3 we review the
building blocks of programs that are commonly used to formulate test adequacy criterion. Furthermore,
Section 3.4 reviews some test adequacy metrics that have been commonly discussed in the literature and/or
frequently used in practice. The test specification stage analyzes a specific P in light of a chosen C in
order to construct a listing of the tests that must be provided to create a completely adequate test suite.

4Even though multiple adequacy criteria are normally used during a testing effort, we will continue to use a single adequacy
criterion C in order to simplify our notation.

Best Practices 6

1 import j a v a . l a n g . Math ;
2 p u b l i c c l a s s K i n e t i c
3 {
4 p u b l i c s t a t i c S t r i n g c o m p u t e V e l o c i t y (i n t k i n e t i c , i n t mass)
5 {
6 i n t v e l o c i t y s q u a r e d , v e l o c i t y ;
7 S t r i n g B u f f e r f i n a l v e l o c i t y = new S t r i n g B u f f e r () ;
8 i f (mass ! = 0)
9 {

10 v e l o c i t y s q u a r e d = 3 ∗ (k i n e t i c / mass) ;
11 v e l o c i t y = (i n t) Math . s q r t (v e l o c i t y s q u a r e d) ;
12 f i n a l v e l o c i t y . append (v e l o c i t y) ;
13 }
14 e l s e
15 {
16 f i n a l v e l o c i t y . append (” Undef ined ”) ;
17 }
18 re turn f i n a l v e l o c i t y . t o S t r i n g () ;
19 }
20 }

Figure 3: The Kinetic class that Contains a Fault in computeVelocity.

That is, the test case specification stage shown in Figure 2 is responsible for making C directly apply to
the system under test. Once a test case specification tool has created test case descriptions for P , the test
case generation phase can begin. Section 3.5 examines different techniques that can be used to manually
or automatically generate test cases.

After the test cases have been generated, it is possible to perform test execution. Once again, the
execution of the tests within T can be performed in a manual or automated fashion. Also, the results from
the execution of the tests can be analyzed in either an automated or manual fashion to determine if each
individual test case passed or failed. The executable test cases that were constructed during the generation
phase can be analyzed by a test adequacy evaluator that measures the quality of T with respect to the test
case descriptions produced by the test specifier. The process of test execution is detailed in Section 3.6
and the test adequacy evaluation phase is described in Section 3.7. Of course, the test results from the
execution phase and the adequacy measurements produced by the evaluator can be used to change the
chosen adequacy criteria and/or augment the listing of test case descriptions that will be used during
subsequent testing.

The iterative process of testing can continue throughout the initial development of P . However,
it is also important to continue the testing of P after the software application has been released and it
enters the maintenance phase of the software lifecycle [Sommerville, 2000]. Regression testing is an
important software maintenance activity that attempts to ensure that the addition of new functionality
and/or the removal of program faults does not negatively impact the correctness of P . The regression
testing process can rely upon the existing test cases and the adequacy measurements for these tests to
iteratively continue all of the previously mentioned stages [Onoma et al., 1998].

3 Best Practices

3.1 An Example Program

In an attempt to make our discussion of software testing techniques more concrete, Figure 3 provides a
Java class called Kinetic that contains a static method called computeVelocity [Paul, 1996].
The computeVelocity operation is supposed to calculate the velocity of an object based upon its
kinetic energy and its mass. Since the kinetic energy of an object, K, is defined as K = 1

2mv2, it is clear
that computeVelocity contains a defect on line 10. That is, line 10 should be implemented with the
assignment statement velocity squared = 2 * (kinetic / mass).

3.2 Fault/Failure Model 7

1 import j u n i t . f ramework .∗ ;
2 p u b l i c c l a s s K i n e t i c T e s t ex tends Tes tCase
3 {
4 p u b l i c K i n e t i c T e s t (S t r i n g name)
5 {
6 super (name) ;
7 }
8 p u b l i c s t a t i c T e s t s u i t e ()
9 {

10 re turn new T e s t S u i t e (K i n e t i c T e s t . c l a s s) ;
11 }
12 p u b l i c vo id t e s t O n e ()
13 {
14 S t r i n g e x p e c t e d = new S t r i n g (” Undef ined ”) ;
15 S t r i n g a c t u a l = K i n e t i c . c o m p u t e V e l o c i t y (5 , 0) ;
16 a s s e r t E q u a l s (expec ted , a c t u a l) ;
17 }
18 p u b l i c vo id t e s tTwo ()
19 {
20 S t r i n g e x p e c t e d = new S t r i n g (”0 ”) ;
21 S t r i n g a c t u a l = K i n e t i c . c o m p u t e V e l o c i t y (0 , 5) ;
22 a s s e r t E q u a l s (expec ted , a c t u a l) ;
23 }
24 p u b l i c vo id t e s t T h r e e ()
25 {
26 S t r i n g e x p e c t e d = new S t r i n g (”4 ”) ;
27 S t r i n g a c t u a l = K i n e t i c . c o m p u t e V e l o c i t y (8 , 1) ;
28 a s s e r t E q u a l s (expec ted , a c t u a l) ;
29 }
30 p u b l i c vo id t e s t F o u r ()
31 {
32 S t r i n g e x p e c t e d = new S t r i n g (” 20 ”) ;
33 S t r i n g a c t u a l = K i n e t i c . c o m p u t e V e l o c i t y (1 0 0 0 , 5) ;
34 a s s e r t E q u a l s (expec ted , a c t u a l) ;
35 }
36 }

Figure 4: A JUnit Test Case for the Faulty Kinetic Class.

3.2 Fault/Failure Model

In Section 1, we informally argued that software testing is difficult. DeMillo et al., Morell, and Voas have
separately proposed very similar fault/failure models that describes the conditions under which a fault will
manifest itself as a failure [DeMillo and Offutt, 1991, Morell, 1990, Voas, 1992]. Using the fault/failure
model proposed by Voas and the Kinetic example initially created by Paul, we can define a simple test
suite to provide anecdotal evidence of some of the difficulties that are commonly associated with writing
a test case that reveals a program fault [Paul, 1996]. As stated in the PIE model proposed by Voas, a
fault will only manifest itself in a failure if a test case Tf executes the fault, causes the fault to infect the
data state of the program, and finally, propagates to the output [Voas, 1992]. That is, the necessary and
sufficient conditions for the isolation of a fault in P are the execution, infection, and propagation of the
fault [DeMillo and Offutt, 1991, Morell, 1990, Voas, 1992].

Figure 4 provides the source code for KineticTest, a Java class that adheres to the JUnit test
automation framework [Gamma and Beck, 2004, Hightower, 2001, Jackson, 2003, Jeffries, 1999]. Using
our established notation, we have a T that contains a test case sequence 〈T1, T2, T3, T4〉 with each Tf con-
taining a single testing operation o1. For example, T1 contains the testing operation String actual
= Kinetic.computeVelocity(5,0). It is important to distinguish between the external test data
states and the internal test data states that occur during the execution of a test case from the internal data
states within the method under test [Voas, 1992]. To this end, we require λb to correspond to the internal
data state after the execution of line b in the method under test. Following the established terminology,
λb can be informally viewed as a set of pairs where the first value of each pair is a variable name and the
second value of each pair is a value for the variable name. Equation (3) formally defines a method data
state λb in a fashion that is similar to Equation (1) and Equation (2) in Section 2.1. A method data state
λb would include the value of local variables in the method under test and the current value of variables

3.2 Fault/Failure Model 8

that are members of the external test state. Finally, we use λE
b to denote the expected data state that would

normally result from the execution of a non-faulty version of line b.

λb = {(varλ, valλ) ∈ Uλ × Vλ | value(varλ, b) = valλ} (3)

Since our illustration describes δb for each Tf in T ’s test case sequence, we use δh(f) to denote
the hth internal test state induced by the execution of test Tf . We also use λb(f) and λE

b (f) to correspond
to the actual and expected method states created by test Tf after the execution of line b in the method
under test. Equation (4) describes the test state before the execution of o1 in T1. Equation (5) provides
the state of the Kinetic class after the faulty computeVelocity method has been executed.5 It is
important to note that this test case causes the computeVelocity method to produce the data state
δ1(1) where the actual data value corresponds to the expected data value. In this example, we are also
interested in the internal states λ10(1) and λE

10(1), which correspond to the actual and expected data states
after the execution of line 10. However, since T1 does not execute the defect on line 10, the test does not
produce the internal method data states that could result in the isolation of the fault.

δ0(1) = {(A, null), (E, Undefined), (K, 5), (m, 0)} (4)

δ1(1) = {(A, Undefined), (E, Undefined), (K, 5), (m, 0)} (5)

The execution of T2 corresponds to the initial and final internal test states as described by Equa-
tion (6) and Equation (7), respectively. In this situation, it is clear that the test case produces a final internal
test state δ1(2) where A correctly matches E. Equation (8) and Equation (9) show the actual and expected
internal method states that result after the execution of the faulty line in the method under test. While the
execution of this test case does cause the fault to be executed, the faulty statement does not infect the data
state (i.e. λ10(2) and λE

10(2) are equivalent). Due to the lack of infection, it is impossible for T2 to detect
the fault in the computeVelocity method.

δ0(2) = {(A, null), (E, 0), (K, 0), (m, 5)} (6)

δ1(2) = {(A, 0), (E, 0), (K, 0), (m, 5)} (7)

λ10(2) = {(K, 0), (m, 5), (v2, 0), (v, 0)(vf , 0)} (8)

λE
10(2) = {(K, 0), (m, 5), (v2, 0), (v, 0)(vf , 0)} (9)

Equation (10) and Equation (11) correspond to the initial and final test data states when T3 is
executed. However, state δ1(3) still contains an A that correctly corresponds to E. In this situation, the test
case does execute the fault on line 10 of computeVelocity. Since Equation (12) and Equation (13)
make it clear that the method data states λ10(3) and λE

10(3) are different, we know that the fault has
infected the method data state. However, the cast to an int on line 11 creates a coincidental correctness
that prohibits the fault from manifesting itself as a failure [Voas, 1992]. Due to the lack of propagation,
this test case has not isolated the fault within the computeVelocity method.

δ0(3) = {(A, null), (E, 4), (K, 8), (m, 1)} (10)

δ1(3) = {(A, 4), (E, 4), (K, 8), (m, 1)} (11)

λ10(3) = {(K, 8), (m, 1), (v2, 24), (v, 0), (vf , 0)} (12)

λE
10(3) = {(K, 8), (m, 1), (v2, 16), (v, 0), (vf , 0)} (13)

5For the sake of brevity, our descriptions of the internal test and method data states use the variables K, m, v2 , v, vf , A,
and E to mean the program variables kinetic, mass, velocity squared, velocity, final velocity, actual, and
expected, respectively.

3.3 Program Building Blocks 9

Test case T4 produces the initial and final internal test states that are described in Equation (14)
and Equation (15). Since the actual data value in A is different from the expected data value, the test is able
to reveal the fault in the computeVelocity method. This test case executes the fault and causes the
fault to infect the data state since the λ10(4) and λE

10(4) provided by Equation (16) and Equation (17) are
different. Finally, the method data state λ10(4) results in the creation of the internal test state δ1(4). Due
to the execution of line 10, the infection of the method data state λ10(4), and the propagation to the output,
this test case is able to reveal the defect in computeVelocity. The execution of the KineticTest
class in the JUnit test automation framework described in Section 3.6 will confirm that T4 will reveal the
defect in Kinetic’s computeVelocity method.

δ0(4) = {(A, null), (E, 20), (K, 1000), (m, 5)} (14)

δ1(4) = {(A, 24), (E, 20), (K, 1000), (m, 5)} (15)

λ10(4) = {(K, 1000), (m, 5), (v2, 600), (v, 0), (vf , 0)} (16)

λE
10(4) = {(K, 1000), (m, 5), (v2, 400), (v, 0), (vf , 0)} (17)

3.3 Program Building Blocks

As noted in Section 2.2, a test adequacy criterion is dependent upon the chosen representation of the
system under test. We represent the program P as an interprocedural control flow graph (ICFG). An
ICFG is a collection of control flow graphs (CFGs) G1, G2, . . . , Gu that correspond to the CFGs for P ’s
methods m1, m2, . . . , mu, respectively. We define control flow graph Gv so that Gv = (Nv, Ev) and we
use Nv to denote a set of CFG nodes and Ev to denote a set of CFG edges. Furthermore, we assume that
each n ∈ Nv represents a statement in method mv and each e ∈ Ev represents a transfer of control in
method mv. Also, we require each CFG Gv to contain unique nodes entryv and exitv that demarcate the
entrance and exit points of method mv , respectively. We use the sets pred(nτ) = {nρ|(nρ, nτ) ∈ Ev}
and succ(nρ) = {nτ |(nρ, nτ) ∈ Ev} to denote the set of predecessors and successors of node nτ and nρ,
respectively. Finally, we require N = ∪{Nv|v ∈ [1, u]} and E = ∪{Ev |v ∈ [1, u]} to contain all of the
nodes and edges in the interprocedural control flow graph for program P .

Figure 5 provides the control flow graphs Gcv and GT1
for the computeVelocity method

and the testOnemethod that can be used to test computeVelocity. Each of the nodes in these CFGs
are labeled with line numbers that correspond to the numbers used in the code segments in Figure 3 and
Figure 4. Each of these control flow graphs contain unique entry and exit nodes and GT1

contains a node
n15 labelled “Call computeVelocity” to indicate that there is a transfer of control from GT1

to Gcv.
Control flow graphs for the other methods in the KineticTest class would have the same structure
as the CFG for testOne. Even though these control flow graphs do not contain iteration constructs,
it is also possible to produce CFGs for programs that use for, while, and do while statements.
Control flow graphs for programs that contain significantly more complicated conditional logic blocks
with multiple, potentially nested, if, else if, else, or switch statements can also be created.

When certain test adequacy criterion and the testing techniques associated with the criterion re-
quire an inordinate time and space overhead to compute the necessary test information, an intraprocedu-
ral control flow graph for a single method can be used. Of course, there are many different graph-based
representations for programs. Harrold and Rothermel survey a number of graph-based representations
[Harrold and Rothermel, 1996] and the algorithms and tool support used to construct these representa-
tions [Harrold and Rothermel, 1995]. For example, the class control flow graph (CCFG) represents the
static control flow between the methods within a specific class [Harrold and Rothermel, 1996, 1994]. This
graph-based representation supports the creation of class-centric test adequacy metrics that only require
a limited interprocedural analysis. The chosen representation for the program under test influences the
measurement of the quality of existing test suites and the generation of new tests. While definitions in
Section 3.4 are written in the context of a specific graph-based representation of a program, these defini-
tions are still applicable when different program representations are chosen. Finally, these graph-based
representations can be created with a program analysis framework like Aristotle [Harrold and Rothermel,
1995] or Soot [Vallée-Rai et al., 1999].

3.4 Test Adequacy Metrics 10

Exit

6

7

computeVelocity

8

10 16

11

12

18

computeVelocity

Entry

(a)

Call computeVelocity

testOne

Exit testOne

15

16

Entry

14

(b)

Figure 5: The Control Flow Graphs for the computeVelocity and testOne methods.

3.4 Test Adequacy Metrics

As noted in Section 2.1, test adequacy metrics embody certain characteristics of test case “quality” or
“goodness.” Test adequacy metrics can be viewed in light of a program’s control flow graph and the
program paths and variable values that they require to be exercised. Intuitively, if a test adequacy criterion
Cα requires the exercising of more path and variable value combinations than criterion Cβ , it is “stronger”
than Cβ . More formally, a test adequacy criterion Cα subsumes a test adequacy criterion Cβ if every test
suite that satisfies Cα also satisfies Cβ [Clarke et al., 1985, Rapps and Weyuker, 1985]. Two adequacy
criteria Cα and Cβ are equivalent if Cα subsumes Cβ and vice versa. Finally, a test adequacy criterion
Cα strictly subsumes criterion Cβ if and only if Cα subsumes Cβ and Cβ does not subsume Cα [Clarke
et al., 1985, Rapps and Weyuker, 1985].

3.4.1 Structurally-based

Some software test adequacy criteria are based upon the control flow graph of a program under test.
Control flow-based criterion solely attempt to ensure that test suite T covers certain source code locations
and values of variables. While several control flow-based adequacy criterion are relatively easy to satisfy,
others are so strong that it is generally not possible for a T to test P and satisfy the criterion. Some control
flow-based adequacy criteria focus on the control structure of a program and the value of the variables

3.4 Test Adequacy Metrics 11

that are used in conditional logic predicates. Alternatively, data flow-based test adequacy criteria require
coverage of the control flow graph by forcing the selection of program paths that involved the definition
and/or usage of program variables.

Control Flow-Based Criterion
Our discussion of control flow-based adequacy criterion will use the notion of an arbitrary

path through P ’s interprocedural control flow graph G1, . . . , Gu. We distinguish π as a complete
path in an interprocedural control flow graph or other graph-based representation of a program mod-
ule. A complete path is a path in a control flow graph that starts at the program graph’s entry
node and ends at its exit node [Frankl and Weyuker, 1988]. Unless otherwise stated, we will as-
sume that all of the paths required by the test adequacy criterion are complete. For example, the
interprocedural control flow graph described in Figure 5 contains the complete interprocedural path
π = 〈entryT1

, n14, n15, entrycv, n6, n7, n8, n16, n18, exitcv, n16, exitT1
〉. Note that the first n16 in π

corresponds to a node in the control flow graph for computeVelocity and the second n16 corre-
sponds to a node in testOne’s control flow graph. Since the fault/failure model described in Section 3.2
indicates that it is impossible to reveal a fault in P unless the faulty node from P ’s CFG is included within
a path that T produces, there is a clear need for a test adequacy criterion that requires the execution of
all statements in a program. Definition 4 explains the all-nodes (or, alternatively, statement coverage)
criterion for a test suite T and a program under test P .

Definition 4. A test suite T for control flow graph Gv = (Nv , Ev) satisfies the all-nodes test adequacy
criterion if and only if the tests in T create a set of complete paths ΠNv

that include all n ∈ Nv at least
once. 2

Intuitively, the all-nodes criterion is weak because it is possible for a test suite T to satisfy
this criterion and still not exercise of all the transfers of control (i.e. the edges) within the control flow
graph [Zhu et al., 1997]. For example, if a test suite T tests a program P that contains a single while
loop, it can satisfy statement coverage by only executing the iteration construct once. However, a T

that simply satisfies statement coverage will not execute the edge in the control flow graph that returns
execution to the node that marks the beginning of the while loop. Thus, the all-edges (or, alternatively,
branch coverage) criterion described in Definition 5 requires a test suite to exercise every edge within an
interprocedural control flow graph.

Definition 5. A test suite T for control flow graph Gv = (Nv, Ev) satisfies the all-edges test adequacy
criterion if and only if the tests in T create a set of complete paths ΠEv

that include all e ∈ Ev at least
once. 2

Since the inclusion of every edge in a control flow graph implies the inclusion of every node
within the same CFG, it is clear that the branch coverage criterion subsumes the statement coverage
criterion [Clarke et al., 1985, Zhu et al., 1997]. However, it is still possible to cover all of the edges within
an intraprocedural control flow graph and not cover all of the unique paths from the entry point to the exit
point of P ’s CFG. For example, if a test suite T is testing a program P that contains a single while loop
it can cover all of the edges in the control flow graph by executing the iteration construct twice. Yet, a
simple program with one while loop contains an infinite number of unique paths since each iteration of
the looping construct creates a new path. Definition 6 explores the all-paths test adequacy criterion that
requires the execution of every path within the program under test.

Definition 6. A test suite T for control flow graph Gv = (Nv, Ev) satisfies the all-paths test adequacy
criterion if and only if the tests in T create a set of complete paths Πv that include all the execution paths
beginning at the unique entry node entryv and ending at the unique exit node exitv. 2

The all-paths criterion subsumes both all-edges and all-nodes. However, it is important to note
that it is possible for a test suite T to be unable to satisfy even all-nodes or all-edges if P contains infeasible
paths. Yet, it is often significantly more difficult (or, impossible) for a test suite to satisfy all-paths while
still being able to satisfy both all-edges and all-nodes. The distinct difference in the “strength” of all-paths

3.4 Test Adequacy Metrics 12

and the “weaker” all-edges and all-nodes presents a need for alternative adequacy criteria to “stand in the
gap” between these two criteria.

As noted in [Michael et al., 2001], there is also a hierarchy of test adequacy criteria that strengthen
the all-edges criterion described in Definition 5. The multiple condition coverage criterion requires a test
suite to account for every permutation of the boolean variables in every branch of the program’s control
flow graph, at least one time. For example, if a and b are boolean variables, then the conditional logic
statement if(a && b), requires a test suite T that covers the 22 = 4 different assignments to these
variables. The addition of a single boolean variable to a conditional logic statement doubles the number
of assignments that a test suite must produce in order to fulfill multiple condition coverage.

Another test adequacy criterion that is related to the all-edges criterion is condition-decision
coverage. We use the term condition to refer to an expression that evaluates to true or false while
not having any other boolean valued expressions within it [Michael et al., 2001]. Intuitively, condition-
decision coverage requires a test suite to cover each of the edges within the program’s control flow graph
and ensure that each condition in the program evaluates to true and false at least one time. For the
example conditional logic statement if(a && b), a test suite T could satisfy the condition-decision
adequacy criterion with the assignments (a = 0, b = 0) and (a = 1, b = 1). It is interesting to note that
these assignments also fulfill the all-edges adequacy criterion. Yet, (a = 1, b = 1) and (a = 1, b = 0)
fulfill all-edges without meeting the condition-decision criterion. Moreover, for the conditional logic
statement if(alwaysFalse(a,b)) (where alwaysFalse(boolean a, boolean b) simply
returns false), it is possible to fulfill condition-decision coverage with the assignments (a = 0, b = 0)
and (a = 1, b = 1) and still not meet the all-edges criterion. These examples indicate that there is no clear
subsumption relationship between all-edges and condition-decision. While multiple condition subsumes
both of these criterion, it is clearly subsumed by the all-paths test adequacy criterion.

Data Flow-Based Criterion
Throughout our discussion of data flow-based test adequacy criteria, we will adhere to the nota-

tion initially proposed in [Frankl and Weyuker, 1988, Rapps and Weyuker, 1982, 1985]. For a standard
program, the occurrence of a variable on the left hand side of an assignment statement is called a defini-
tion of this variable. Also, the occurrence of a variable on the right hand side of an assignment statement
is called a computation-use (or c-use) of this variable. Finally, when a variable appears in the predicate
of a conditional logic statement or an iteration construct, we call this a predicate-use (or p-use) of the
variable.

As noted in Section 3.3, we will view a method in an application as a control flow graph
Gv = (Nv , Ev) where Nv is the set of CFG nodes and Ev is the set of CFG edges. For simplicity,
our explanation of data flow-based test adequacy criteria will focus on data flow information within a
single method’s control flow graph of the entire ICFG for program P . However, our definitions can be
extended to the interprocedural control flow graph. In practice, interprocedural data flow analysis often
incurs significant time and space overhead and many testing techniques limit their adequacy metrics to
only require intraprocedural or limited interprocedural analysis. Yet, there are interprocedural data flow
analysis techniques such as the exhaustive algorithms proposed by Harrold and Soffa [Harrold and Soffa,
1994] and the demand-driven approach discussed by Duesterwald et al. [Duesterwald et al., 1996], that
can be used to compute data flow-based test adequacy criteria for an ICFG.

We define a definition clear path for variable varv as a path 〈nρ, . . . , nτ 〉 in Gv , such that none
of the nodes nρ, . . . , nτ contain a definition or undefinition of program variable varv [Frankl and Weyuker,
1988]. Furthermore, we define the def-c-use association as a triple 〈nd, nc−use, varv〉 where a definition
of variable varv occurs in node nd and a c-use of varv occurs in node nc−use. Also, we define the def-
p-use association as the two triples 〈nd, (np−use, t), varv〉 and 〈nd, (np−use, f), varv〉 where a definition
of variable varv occurs in node nd and a p-use of varv occurs during the true and false evaluations of
a predicate at node np−use [Frankl and Weyuker, 1988, Rapps and Weyuker, 1982, 1985]. A complete
path πvarv covers a def-c-use association if it has a definition clear sub-path, with respect to varv and the
method’s CFG, that begins with node nd and ends with node nc−use. Similarly, πvarv covers a def-p-use
association if it has definition clear sub-paths, with respect to varv and the program’s CFG, that begin

3.4 Test Adequacy Metrics 13

with node nd and end with the true and false evaluations of the logical predicate contained at node np−use

[Frankl and Weyuker, 1988].
In [Rapps and Weyuker, 1982, 1985], the authors propose a family of test adequacy measures

based upon data flow information in a program. Among their test adequacy measures, the all-uses data
flow adequacy criteria requires a test suite to cover all of the def-c-use and def-p-use associations in a pro-
gram. The all-uses criterion is commonly used as the basis for definition-use testing. Alternatively, the
all-c-uses criterion requires the coverage of all the c-use associations for a given method under test and the
all-p-uses adequacy criterion requires the coverage of all the p-use associations. Furthermore, the all-du-
paths coverage criterion requires the coverage of all the paths from the definition to a usage of a program
variable [Rapps and Weyuker, 1982, 1985]. Definition 7 through Definition 10 define several important
test adequacy criterion that rely upon data flow information. However, we omit a formal definition of
certain data flow-based test adequacy criterion, such as all-c-uses/some-p-uses, all-p-uses/some-c-uses,
and all-DUs [Hutchins et al., 1994, Rapps and Weyuker, 1982, 1985]. The all-c-uses/some-p-uses and
the all-p-uses/some-c-uses test adequacy criteria are combinations of the all-c-uses and all-p-uses metrics
described in Definition 7 and Definition 8. The all-DU test adequacy criterion is a modified version of
all-uses that simply requires the coverage of def-use associations without distinguishing between a p-use
and a c-use [Hutchins et al., 1994]. In each definition, we use Uv to refer to the universe of live program
variable names for method mv in program under test P .6

Definition 7. A test suite T for control flow graph Gv = (Nv , Ev) satisfies the all-c-uses test adequacy
criterion if and only if for each association 〈nd, nc−use, varv〉, where varv ∈ Uv and nd, nc−use ∈ Nv,
there exists a test Tf ∈ 〈T1, . . . , Te〉 to create a complete path πvarv in Gv that covers the association. 2

Definition 8. A test suite T for control flow graph Gv = (Nv, Ev) satisfies the all-p-uses test ad-
equacy criterion if and only if for each association 〈nd, (np−use, t), varv〉 and 〈nd, (np−use, f), varv〉
where varv ∈ Uv and nd, np−use ∈ Nv , there exists a test Tf ∈ 〈T1, . . . , Te〉 to create a complete path
πvarv in Gv that covers the association. 2

Definition 9. A test suite T for control flow graph Gv = (Nv, Ev) satisfies the all-uses test adequacy crite-
rion if and only if for each association 〈nd, nc−use, varv〉, 〈nd, (np−use, t), varv〉 and 〈nd, (np−use, f), varv〉
where varv ∈ Uv and nd, nc−use, np−use ∈ Nv, there exists a test Tf ∈ 〈T1, . . . , Te〉 to create a complete
path πvarv in G that covers the association. 2

Definition 10. A test suite T for control flow graph Gv = (Nv, Ev) satisfies the all-du-paths test
adequacy criterion if and only if for each association 〈nd, nc−use, varv〉, 〈nd, (np−use, t), varv〉 and
〈nd, (np−use, f), varv〉 where varv ∈ Uv and nd, nc−use, np−use ∈ Nv, the tests in T create a set of
complete paths Πvarv

v that include all of the execution paths that cover the associations. 2

Our discussion of subsumption for these test adequacy criteria is limited to the traditional un-
derstanding of data flow-based testing. A review of the feasible data flow testing criteria, a family
of test adequacy criteria that only require the coverage of associations that are actually executable, and
the subsumption hierarchy associated with these feasible criteria is provided in [Frankl and Weyuker,
1988]. Intuitively, the all-paths criterion subsumes all-du-paths because there might be complete paths
within P that do not involve the definition and usage of program variables. Furthermore, all-du-paths
subsumes all-uses because all-uses only requires one complete path to cover the required associations and
all-du-paths requires all of the complete paths that cover the association. It is clear that all-uses subsumes
both all-p-uses and all-c-uses and that there is no subsumption relationship between the all-p-uses and
all-c-uses. Because a p-use requires the evaluation of the true and false branches of a conditional
logic statement, it can be shown that all-p-uses subsumes both the all-edges and the all-nodes criterion
[Frankl and Weyuker, 1988]. Since structurally-based test adequacy criteria that use control flow and data
flow information are theoretically well-founded [Fenton, 1994, Nielson et al., 1999, Parrish and Zweben,
1991, Weyuker, 1986] and the criteria themselves can be organized into often meaningful subsumption
hierarchies, it is clear that they will continue to be an important component of future research and practice.

6Using the terminology established in Section 3.2, we can observe that Uv ⊆ Uλ since Uv only denotes the universe of live
variables within mv and Uλ is the universe of all valid variable names for method data states.

3.4 Test Adequacy Metrics 14

3.4.2 Fault-based

Mutation adequacy is the main fault-based test adequacy criterion. The conception of a mutation ade-
quate test suite is based upon two assumptions called the competent programmer hypothesis and the
coupling effect [DeMillo et al., 1988]. The competent programmer hypothesis assumes that competent
programmers create programs that compile and very nearly meet their specification. The coupling effect
assumption indicates that test suites that can reveal simple defects in a program under test can also reveal
more complicated combinations of simple defects [DeMillo et al., 1988]. Therefore, fault-based test ade-
quacy criterion attempt to ensure that a test suite can reveal all of the defects that are normally introduced
into software systems by competent programmers.

Definition 11 describes a test suite T that is adequate and Definition 12 defines the notion of
relative adequacy (or, alternatively, mutation adequacy) for test suites [DeMillo and Offutt, 1991]. In
these definitions, we use the notation Q(D) and F (D) to mean the “output” of a program Q and the
specification F on D, the entire domain of possible program inputs. Furthermore, we use the notation
Q(Tf) and F (Tf) to denote the “output” of a program Q and a specification F on a single test Tf that
provides a single input to Q and F . If a test suite T is adequate for a program under test P , then T is able
to distinguish between all of the incorrect implementations of specification F . If a test suite T is relative-
adequate (or, mutation adequate) for a program under test P , then T is able to distinguish between a finite
set ΦP = {φ1, . . . , φs} of incorrect implementations of specification F .

Definition 11. If P is a program to implement specification F on domain D, then a test suite T ⊂ D is
adequate for P and F if (∀ programs Q), [Q(D) 6= F (D)]⇒ [(∃Tf ∈ 〈T1, . . . , Te〉)(Q(Tf) 6= F (Tf))].
2

Definition 12. If P is a program to implement specification F on domain D and Φ is a finite collection
of programs, then a test suite T ⊂ D is adequate for P relative to Φ if (∀ programs Q ∈ Φ), [Q(D) 6=
F (D)]⇒ [(∃Tf ∈ 〈T1, . . . , Te〉)(Q(Tf) 6= F (Tf))]. 2

Clearly, an adequate test suite is “stronger” than a relative adequate one. However, through the
judicious proposal and application of mutation operators that create ΦP , the finite set of syntactically
incorrect programs, we can determine if a test suite can demonstrate that there is a difference between
each φr ∈ ΦP and the actual program under test. Under a strong mutation test adequacy criterion, a
test suite T is strong mutation adequate if it can kill each mutant in ΦP by showing that the output of the
mutant and the program under test differ. If a specific mutant φr ∈ ΦP remains alive after the execution
of T , this could indicate that T does not have the ability to isolate the specific defect that φr represents
[DeMillo and Offutt, 1991, Hamlet and Maybee, 2001]. Alternatively, it is possible that φr represents an
equivalent mutant, or a program that is syntactically different from P while still having the ability to
produce the same output as P .

Since strong mutation adequacy is often difficult to fulfill, the weak mutation test adequacy
criterion only requires that the data states that occur after the execution of the initial source code location
and the mutated code location differ [Hamlet and Maybee, 2001, Zhu et al., 1997]. Using the terminology
established in our discussion of the fault/failure model in Section 3.2, weak mutation adequacy simply
requires the execution of the source code mutation and the infection of the data state of each mutant
program φr ∈ ΦP . On the other hand, strong mutation adequacy requires the execution of the source
code mutation, the infection of the data state of each mutant program, and the propagation of the mutant
to the output. Both the strong and weak variants of mutation adequacy require the ability to automatically
construct the mutants within ΦP . While strong mutation adequacy only requires the ability to inspect
the output of the program under test, weak mutation adequacy also requires additional instrumentation to
reveal the data states that occur after a source code mutation is executed.

Ideally, mutation operators should produce the kinds of mutant programs that software engineers
are most likely to create. A fault model can be used to describe the types of programming pitfalls
that are normally encountered when a software system is implemented in certain types of programming
languages. In a procedural programming language like C, it might be useful to include mutation operators
that manipulate the relational operators found within a program. Therefore, the conditional logic statement
if(a < b) in the program under test could require the creation of mutants that replace < with every

3.4 Test Adequacy Metrics 15

other relational operator in the set < = {<=, ==, >=, >, ! =} [Hamlet and Maybee, 2001]. Other
mutation operators might involve the manipulation of scalar and boolean variables and constants [Jezequel
et al., 2001]. An arithmetic mutation operator designed to change arithmetic operators could mutate the
assignment statement a = b + 1 with the inverse of the + operator and create the mutant a = b - 1
[Jezequel et al., 2001].

Of course, the inheritance, polymorphism, and encapsulation provided by object-oriented lan-
guages makes it more challenging to propose, design, and implement mutation operators for program-
ming languages like Java. Alexander et al. and Kim et al. discuss some traditional “pitfalls” that are
found in software systems that are implemented with object-oriented programming languages [Alexander
et al., 2000, Kim et al., 2000]. However, these mutation operators lack generality because they are not
supported by a fault model that clearly describes the class of potential faults that are related to the unique
features of object-oriented programming languages. Kim et al. propose certain mutation operators for the
Java programming language after conducting a Hazard and Operability (HAZOP) study [Leveson, 1995]
of the Java programming language [Kim et al., 1999]. However, the authors omit the description of opera-
tors for some fundamental aspects of the object-oriented programming paradigm, such as certain forms of
method overriding, and they do not include operators for select facets of the Java programming language
[Kim et al., 1999]. Yet, Offutt et al. have proposed a fault model for object-oriented programming lan-
guages that describes common programmer faults related to inheritance and polymorphism [Offutt et al.,
2001].

Using the fault model described in [Offutt et al., 2001], Ma et al. include a comprehensive
listing of object-oriented mutation operators for the Java programming language [Ma et al., 2002]. The
proposed mutation operators fall into the following six types of common object-oriented programming
mistakes: (1) information hiding (access control), (2) inheritance, (3) polymorphism, (4), overloading, (5)
Java-specific features, and (6) common programming mistakes [Ma et al., 2002]. The Access Modifier
Change (AMC) mutation operator is an example of an operator that focuses on information hiding mis-
takes within object-oriented programs. For example, if a BankAccount class contained the declaration
of the field private double balance, the AMC operator would produce the following mutants:
public double balance, protected double balance, and double balance. The Java
this keyword deletion (JTD) mutation operator removes the usage of this inside of the constructor(s)
and method(s) provided by a Java class. For example, if the BankAccount class contained a public
BankAccount(double balance) constructor, that used the this keyword to disambiguate be-
tween the parameter balance and the instance variable balance, the JTD operator would remove the
keyword [Ma et al., 2002].

Figure 6 describes an algorithm that can be used to calculate the mutation adequacy score,
MS(P, T, Mo), for program P , test suite T , and a set of mutation operators Mo [DeMillo and Offutt,
1991]. Our description of the CalculateMutationAdequacy algorithm measures strong mutation adequacy
and thus requires the outputs of P and the automatically generated mutants to differ. However, the algo-
rithm could be revised to compute a weak mutation adequacy score for the test suite. The algorithm in
Figure 6 uses a n × s matrix, D, to store information about the dead mutants and the specific tests that
killed the mutants. The s column vectors in the test information matrix D indicate whether each of the
tests within T were able to kill one of the mutants in the set ΦP = {φ1, . . . , φs}. We use the notation
D[f][r] to denote access to the f th row and the rth column within D and we use a 1 to indicate that a
mutant was killed and a 0 to indicate that test Tf left mutant φr alive. Finally, the algorithm to calcu-
late MS(P, T, Mo) uses Zn×s to denote the n × s zero matrix and Zs to denote a single column vector
composed of s zeros.

If a specific test Tf is not able to kill the current mutant φr, it is possible that φr and P are
equivalent. Since the determination of whether φr is an equivalent mutant is generally undecidable [Zhu
et al., 1997], it is likely that the execution of the IsEquivalentMutant algorithm on line 11 of Calculate-
MutationAdequacy will require human intervention. When a mutant is not killed and it is determined that
φr is an equivalent mutant, we place a 1 in E [r] to indicate that the current mutant is equivalent to P . The
mutation testing information collected in D and E is complete once the algorithm has executed every test
case against every mutant for every mutation location in program P . Line 13 computes the number of
dead mutants, Dnum, by using the pos function to determine if the sum of one of the s column vectors is

3.4 Test Adequacy Metrics 16

Algorithm CalculateMutationAdequacy(T, P, Mo)
(∗ Calculation of Strong Mutation Adequacy ∗)
Input: Test Suite T ;

Program Under Test P ;
Set of Mutation Operators; Mo

Output: Mutation Adequacy Score; MS(P, T, Mo)
1. D ← Zn×s

2. E ← Zs

3. for l ∈ ComputeMutationLocations(P)
4. do ΦP ← GenerateMutants(l, P, Mo)
5. for φr ∈ ΦP

6. do for Tf ∈ 〈T1, . . . , Te〉
7. do RP

f ← ExecuteTest(Tf , P)

8. R
φr

f ← ExecuteTest(Tf , φr)

9. if RP
f 6= R

φr

f

10. do D[f][r]← 1
11. else if IsEquivalentMutant(P, φr)
12. do E [r]← 1
13. Dnum ←

∑s
r=1 pos(

∑n
f=1D[f][r])

14. Enum ←
∑s

r=1 E [r]
15. MS(P, T, Mo)←

Dnum

(|ΦP |−Enum)

16. return MS(P, T, Mo)

Figure 6: Algorithm for the Computation of Mutation Adequacy.

positive. We define the pos function to return 1 if
∑n

f=1D[f][r] > 0 and 0 otherwise. Finally, line 14
computes the number of equivalent mutants, Enum, and line 15 uses this information to calculate the final
mutation adequacy score for program P and test suite T [DeMillo and Offutt, 1991].

While the calculation of mutation test adequacy is conceptually simple, it is computationally
expensive. Choi et al. attempted to improve the cost-effectiveness and practicality of measuring mu-
tation adequacy by parallelizing the steps in algorithm ComputeMutationAdequacy and scheduling the
computation on the hypercube parallel computer architecture [Choi et al., 1989]. Krauser et al. have also
investigated a number of techniques that can improve the performance of mutation analysis on a single
instruction multiple data (SIMD) parallel computer architecture and evaluated these techniques with a
detailed system model that supported a simulation-based empirical analysis [Krauser et al., 1991]. As
noted in [Zhu et al., 1997], early attempts to improve the cost-effectiveness and practicality of mutation
testing through parallelization had limited impact because they required specialized hardware and highly
portable software. Yet, the availability of general purpose distributed computing middleware like Jini and
JavaSpaces [Arnold et al., 1999, Edwards, 1999, Freemen et al., 1999] and high-throughput computing
frameworks like Condor [Epema et al., 1996], will facilitate performance improvements in the algorithms
that measure mutation adequacy.

In another attempt to make mutation adequacy analysis more cost-effective and practical, Offutt
et al. have investigated the N-selective mutation testing technique that removes the N mutation operators
that produce the most mutants of the program under test [Offutt et al., 1996, 1993, Zhu et al., 1997].
Even though all mutation operators make small syntactic changes to the source code of the program under
test, some operators are more likely to produce a greater number of mutants. Furthermore, the semantic
impact, or the change in meaning of the program under test, associated with small syntactic changes can
vary from one mutation operator to another [Ma et al., 2002]. N-selective mutation test adequacy attempts
to compute a high fidelity mutation adequacy score without executing the mutation operators that create a
high number of mutants that do not truly shed light of the defect-revealing potential of the test suite. Ma et
al. observe that their AMC operator creates the most mutants out of their set of object-oriented mutation

3.4 Test Adequacy Metrics 17

operators [Ma et al., 2002]. Furthermore, Ma et al. also note that the Java staticmodified change (JSC)
operator and the AMC operator have a tendency to produce a significant number of equivalent mutants
[Ma et al., 2002].

Little is known about the subsumption relationship between different mutation-based test ade-
quacy criterion and between mutation adequacy and other notions of test adequacy. However, Wong has
shown that for the class of programs that have at least one variable and multiple definitions and uses of that
variable, mutation adequacy is not comparable to the all-c-uses, all-p-uses, and all-uses adequacy criteria
[Wong, 1993]. Furthermore, Budd has shown that if mutation analysis uses a mutation operator that re-
places each conditional logic statement in a program with the conditionals if(true) and if(false),
then mutation test adequacy will subsume branch coverage [Budd, 1980]. Wong has also experimentally
demonstrated, using an experiment design similar to those described in Section 3.4.4, that mutation test
adequacy requires the construction of test suites that have greater fault detecting ability than the tests cre-
ated to fulfill certain data flow-based test adequacy criteria [Wong, 1993]. It is clear that mutation analysis
is a promising practical technique that requires further implementation, empirical analysis, and theoretical
study.

3.4.3 Error-based

Error-based test adequacy criterion require a test suite T to demonstrate that the program under test P does
not deviate from F , the program’s specification, in a certain number of predefined ways. Certain elements
of the category-partition method proposed by Balcer et al. and Ostrand and Balcer are indicative of
error-based test adequacy criterion [Balcer et al., 1989, Ostrand and Balcer, 1988]. The category-partition
method requires the analysis of F to create a partition of the input domain of the program under test.
By relying upon the guidance of the tester, the category-partition method identifies the parameters and
environment conditions, known as categories, that impact the behavior of the program under test. Next,
the tester is responsible for the decomposition of each category into mutually exclusive choices that will
be used to describe the partitions of the input within the category [Balcer et al., 1989].

The test specification language (TSL) provides a mechanism that allows a tester to write suc-
cinct descriptions of the categories and choices that state the input and output of the program under test.
It is also possible for the tester to provide a description of the constraints that control the requirement of
specific values within the choices and categories. In [Ostrand and Balcer, 1988], the authors describe the
categories and choices that might be used for the find <pattern> <file> program that is often
distributed with the Unix and GNU/Linux operating systems. For example, the specification for find
might require that <file> is a valid file name. Thus, it would be important for the tests within T to
ensure that find can handle the situations when: (1) there is a valid file associated with the provided
name, (2) there is no file with the stated name, and (3) the file name is omitted when the usage of find
occurs [Ostrand and Balcer, 1988].

Error-based test adequacy criterion judge a test suite to be “stronger” if it covers more of the iden-
tified categories and choices. Since there is no general technique to automatically create an error-based
test adequacy criterion from F , most error-based adequacy metrics, such as those used in the category-
partition method, require human intervention [Zhu et al., 1997]. However, with the complete description
of F and the specification of the test adequacy criterion in TSL or some other test case specification
language, it is possible to automatically generate a test suite that will fulfill the adequacy criterion. For
example, the AETG system of Cohen et al. and the PairTest system of Lei et al. enable the generation
of combinatorially balanced test suites from test specifications [Cohen et al., 1996, 1997, Lei and Tai,
1998]. While combinatorial test case generation is not discussed in more detail in this chapter, more in-
formation about test data generation algorithms and their relation to test adequacy criterion is provided in
Section 3.5.

3.4.4 Comparing Test Adequacy Criteria

Many test adequacy criterion can be related in subsumption hierarchies. However, Ntafos has argued
that some test adequacy criteria are incomparable under the subsumption relation [Ntafos, 1988]. Ntafos
has also observed that even when it is possible to order test adequacy criterion through subsumption it

3.4 Test Adequacy Metrics 18

is likely that this ordering will not provide any direct indication of either the effectiveness of test suites
that fulfill the adequacy criteria or the costs associated with testing to the selected criteria [Ntafos, 1988].
Weyuker et al. categorized all comparisons of test adequacy criteria as being either uniform or pointwise
[Weyuker et al., 1991]. A uniform comparison of test adequacy criteria Cα and Cβ attempts to relate the
requirements of the criteria in light of all possible programs P and all test suites T [Weyuker et al., 1991].
The usage of the subsumption relation can be seen as a type of uniform comparison of test adequacy cri-
teria. However, a pointwise comparison of test adequacy criteria Cα and Cβ compares the behavior of the
two criteria with respect to a single (or, limited number of) P and T . While pointwise comparisons often
provide interesting insights into the effectiveness of selected test adequacy criteria for certain programs,
these types of comparisons often do not provide results that can be generalized. However, as noted in
[Weyuker et al., 1991] there are also severe limitations associated with uniform comparisons:

[...] We can conclude that a uniform comparison that guarantees one criterion to be more
effective at detecting program defects than another for all programs is no comparison at all.
This is a convincing argument against the use of comparisons that attempt to guarantee the
relative fault-exposing ability of criteria for all programs.

In light of these concerns about comparing test adequacy criteria, Weyuker et al. conclude their
thoughts with the following observation: “We see effectiveness and cost as the two most meaningful bases
by which test criteria can be compared; effectiveness is our ultimate concern” [Weyuker et al., 1991]. To
this end, Frankl, Weyuker, Weiss, and Hutchins et al. have conducted both analytical and empirical
investigations of the effectiveness of test adequacy criteria [Frankl and Weiss, 1993, Frankl and Weyuker,
1993, Hutchins et al., 1994]. Hutchins et al. compared the effectiveness of the all-edges and all-DU test
adequacy criteria. The all-DU test adequacy criterion is a modified version of all-uses that simply requires
the coverage of def-use associations without distinguishing between a p-use and a c-use [Hutchins et al.,
1994].

The experimental design of Hutchins et al. used the TSL system described in Section 3.4.3
to automatically generate an initial test pool (ITP) that was analyzed to determine the level of achieved
adequacy. Next, an additional test pool (ATP) was created to ensure that each of the exercisable coverage
units within their subject programs was touched by at least 30 test cases [Hutchins et al., 1994]. After the
construction of a large test universe from the union of the ITP and the ATP, test sets of specific sizes were
randomly selected from the test universe. Furthermore, the eight base programs selected by Hutchins et
al. were seeded with defects that the researchers deemed to be representative in terms of their similarity to
real-world defects and the “difficulty” associated with the isolation of the faults. An experimental design
of this nature enabled Hutchins et al. to examine the relationship between the fault detection ratio for
a testing technique and the adequacy and size of the resulting test suites. The fault detection ratio is the
ratio between the number of test suites that contain a fault-revealing test case and the number of test suites
whose adequacy is in a specific interval [Hutchins et al., 1994].

The empirical study conducted by Hutchins et al. reveals some interesting trends. For example,
the fault detection ratios for their candidate programs rose sharply as the test adequacy increased above
80 or 90 percent. Furthermore, as the size of a test suite increased, the fault detection ratio also increased.
However, the fault detection ratio for test suites that were completely adequate with respect to the all-
edges and all-DU criteria varied significantly [Hutchins et al., 1994]. Indeed, Hutchins et al. observe that
“the fault detection ratio of test sets with 100% DU coverage varied from .19 to 1.0 with an average of
.67 for the 31 faults in the DU class” [Hutchins et al., 1994]. Perhaps more interesting is the following
observation from Hutchins et al.:

[...] Rather, code coverage seems to be a good indicator of test inadequacy. If apparently
thorough tests yield only a low coverage level, then there is good reason to continue testing
and try to raise the coverage level. The value of doing this can be seen by examining the
detection ratios of test sets as their coverage levels approach 100%.

In a comparison of their operation difference (OD) test case selection technique, Harder et al.
propose a new area and stacking approach for comparing test adequacy criteria [Harder et al., 2003].

3.5 Test Case Generation 19

Indeed, Harder et al. contend that the fault detection ratio is an inappropriate measure of the “efficiency”
of test suites generated with respect to specific test adequacy criterion for two reasons. First, since the fault
detection ratio vs. test suite size curve relationship is not necessarily linear in nature, there is no guarantee
that a doubling in the size of a test suite will always double the ability of the tests to detect faults. Second,
and more importantly, the fault detection ratio does not directly reveal which test adequacy criterion is
most likely to engender the production of test suites that reveal the most defects [Harder et al., 2003].

Suppose that we were interested in comparing test adequacy criteria Cα and Cβ using the area
and stacking technique. In order to do so, we could use Cα and Cβ to guide the manual and/or automatic
generation of test suites Tα and Tβ that obtain a specific level of adequacy with respect to the selected
criteria. It is likely that the size of the generated test suites will vary for the two criteria and we refer
to size(Tα) and size(Tβ) as the natural size of the tests for the chosen criteria [Harder et al., 2003]. In
an attempt to fairly compare Cα and Cβ , Harder et al. advocate the construction of two new test suites
T β

α and T α
β , where T β

α denotes a test suite derived from Tα that has been stacked (or, reduced) to include
size(Tβ) tests and T α

β is a test suite derived from Tβ that has been stacked (or, reduced) to include size(Tα)
test cases. Harder et al. propose stacking as a simple technique that increases or decreases the size of a
base test suite by randomly removing tests or adding tests using the generation technique that created the
base test suite [Harder et al., 2003].

In a discussion about the size of a test suite, Harder et al. observed that “comparing at any
particular size might disadvantage one strategy or the other, and different projects have different testing
budgets, so it is necessary to compare the techniques at multiple sizes” [Harder et al., 2003]. Using the
base and faulty versions of the candidate programs produced by Hutchins et al., the authors measured
the number of faults that were detected for the various natural sizes of the tests produced with respect
to certain adequacy criterion. In our example, we could plot the number of revealed defects for the four
test suites Tα, Tβ, T β

α and T α
β at the two sizes of size(Tα) and size(Tβ). The calculation of the area

underneath the two fault-detection vs. test suite size curves can yield a new view of the effectiveness
of the test adequacy criteria Cα and Cβ . However, the area and stacking technique for comparing test
adequacy criteria has not been applied by other researchers and there is a clear need for the comparison
of this design to past experimental designs. While the comparison of test adequacy criteria is clearly
important, it is also an area of software testing that is fraught with essential and accidental difficulties.

3.5 Test Case Generation

The generation of test cases can be performed in a manual or automated fashion. Frequently, manual
test generation involves the construction of test cases in a general purpose programming language or a
test case specification language. Even though the KineticTest class in Figure 4 adheres to the JUnit
testing framework, it could have also been specified in a programming language-independent fashion by
simply providing the class under test, the method under test, the method input, and the expected output.
This specification could then be transformed into a language-dependent form and executed in a specific
test execution infrastructure. Alternatively, test cases can be “recorded” or “captured” by simply using the
program under test and monitoring the actions that were taken during usage [Steven et al., 2000].

An automated solution to the test data generation problem attempts to automatically create a T

that will fulfill selected adequacy criterion C when it is used to test program P . While it is possible for
C to be an error-based criterion, automated test data generation is more frequently performed with fault-
based and structurally-based test adequacy criteria. There are several different techniques that can be used
to automatically generate test data. Random, symbolic, and dynamic test data generation approaches are
all alternatives that can be used to construct a T that adequately tests P . A random test data generation
approach relies upon a random number generator to simply generate test input values.7 For complex
(and, sometimes quite simple) programs, it is often difficult for random test data generation techniques to
produce adequate test suites [Korel, 1996].

7Traditionally, random test data generation has been applied to programs that accept numerical inputs. However, these random
number generators could be used to produce Strings if we treat the numbers as ASCII or Unicode values. Furthermore, the
random number generator could create complex abstract data types if we assign a semantic meaning to specific numerical values.

3.5 Test Case Generation 20

PATDG

input

feedback

Instrumenter

Generator
Test Data

P

T

C

Figure 7: Dynamic Software Test Data Generation.

Symbolic test data generation attempts to express the program under test in an abstract and math-
ematical fashion. Intuitively, if all of the important aspects of a program can be represented as a system of
one or more linear equations, it is possible to use algebraic techniques to determine the solution to these
equations [Clarke, 1976, Ramamoorty et al., 1976]. Symbolic test data generation is appealing because it
does not require the execution of the program under test. However, this type of symbolic generation has
a limited practical value due to the problems associated with iteration constructs and arrays that depends
upon other program variables and pointers [Michael et al., 2001]. Alternatively, Howe et al. and Memon
et al. have chosen to represent aspects of the program under test with a specification of preconditions and
postconditions and then express the desired test cases in terms of initial program states and goal program
states [Howe et al., 1997, Memon et al., 2001a]. This type of abstract program representation facilitates
the usage of an artificial intelligence (AI) planner that can automatically produce a test case that causes
the program to progress from the start state to the goal state using the formally specified preconditions
and postconditions.

Dynamic test data generation is an approach that actually relies upon the execution of P (or, some
instrumented version of P) to generate an adequate T [Gupta et al., 1998, 1999, Korel, 1996, Michael
et al., 2001]. While any dynamic test data generation approach must incur the overhead associated with
actually executing the program under test, this execution can reveal additional insights about which test
requirements have not been satisfied. Furthermore, dynamic test data generation techniques can use infor-
mation gathered from program executions to determine how “close” the generator is to actually creating
a test suite that satisfies C. Furthermore, dynamic test generation methods can handle arrays and pointer
references because the values of array indices and pointers are know throughout the generation process.
Figure 7 provides a view of the dynamic test data generation process that relies upon a program instru-
menter to produce PATDG, a version of P that contains statements that allow P to interact with the test
generation subsystem. The test data generator that takes C as input can interact with PATDG in order to
facilitate the automatic generation of test suite T .

Frequently, dynamic test data generation is viewed as a function minimization problem [Ferguson
and Korel, 1996, Korel, 1996, Michael et al., 2001]. However, it is important to note that some test data
generation techniques that do use functions to represent a program do not focus on minimizing the selected
functions [Fisher et al., 2002b]. For the purposes of our discussion, we will examine automated test data
generation approaches that attempt to generate T by minimizing functions that describe P . For example,
suppose that the selected adequacy criterion requires the execution of the true branch of the conditional
logic statement if(mass != 0) provided on line 8 of the computeVelocity method listed

3.5 Test Case Generation 21

Decision Example Objective Function

if(c <= d) F(x) =

{

ci(x) − di(x), if ci(x) > di(x);
0, otherwise.

if(c >= d) F(x) =

{

di(x)− ci(x), if ci(x) < di(x);
0, otherwise.

if(c == d) F(x) = |ci(x) − di(x)|

if(c != d) F(x) = −|ci(x)− di(x)|

if(b) F(x) =

{

1000, if bi(x) = false;
0, otherwise.

Figure 8: General Form of Selected Objective Functions.

in Figure 3. We can ensure the execution of the true branch of this conditional logic statement by
minimizing the objective function F(x) = −|m8(x)| where m8(x) denotes the value of the variable
mass on line 8 that was induced by test input value x. Since there is a wide range of program inputs
that can lead to the satisfaction of this conditional logic statement, we can actually select any inputs that
cause F(x) to evaluate to a negative output and not directly focus on finding the minimum of the function.
Thus, automated test data generation often relies upon constrained function minimization algorithms that
search for minimums within certain bounds [Ferguson and Korel, 1996].

Figure 8 provides the general form of the objective function for several different conditional
logic forms. Our formulation of an objective function is based upon the “fitness functions” described in
[Michael et al., 2001] and the “branch functions” used in [Ferguson and Korel, 1996]. In this figure, we
use the notation ci(x) to denote the value of variable c on line i that was induced by test input x. Since
dynamic test data generation attempts to minimize objective functions while executing the program under
test, the actual value of either ci(x) or di(x) is known during the attempt to generate an adequate T . Yet,
the ci(x) and di(x) used in objective functions might be complex functions of the input to the program
under test. In this situation, an objective function cannot be minimized directly and it can only be used in
a heuristic fashion to guide the test data generator [Michael et al., 2001]. Yet, even when ci(x) and di(x)
are complicated functions of test input x, an objective function can still be used to provide “hints” to the
test data generator in an attempt to show whether the modification of the test input is improving test suite
adequacy.

It is important to note that the formulations of the objective functions for the conditional logic
statements if(c >= d), if(c <= d), if(c == d), and if(e) are constructed in a fashion that
causes the function to reach a minimum and then maintain this value. However, the conditional logic
statement if(c != d) can create functions that have no specific minimum value and therefore must be
minimized in a constrained fashion. Each of the functions in Figure 8 describe an F(x) that must be min-
imized in order to take the true branch of the condition; the objective functions for the false branches
could be developed in an analogous fashion. Our discussion of objective functions for conditional logic
predicates omits the details associated with dynamic test data generation for conjunctive and disjunctive
predicates. In [Fisher et al., 2002b], the authors propose a type of objective function that can handle more
complicated predicates. While we omit a discussion of the objective functions for conditional logic pred-

3.5 Test Case Generation 22

-10 -5 0 5 10
-10

-8

-6

-4

-2

0
ifHa != 0L

-10 -5 0 5 10
0

5

10

15

20
ifHb >= 5L

-10 -5 0 5 10 15 20

0
1
2
3
4
5

ifHc <= 10L

Figure 9: Objective Functions for Selected Conditional Logic Statements.

-20 -10 0 10 20
a

-20

-10

0

10

20

b

ifHa!=0L8ifHb>=5L8<<

-20 -10 0 10 20
a

-20

-10

0

10

20

c

ifHa!=0L8ifHc<=10L8<<

-20 -10 0 10 20
b

-20

-10

0

10

20

c

ifHb>=5L8ifHc<=10L8<<

Figure 10: Objective Functions for Nested Conditional Logic Statements.

icates that include the > and < relational operators, [Ferguson and Korel, 1996] describe the form of the
functions for conditional logic predicates that use these operators.

Figure 9 depicts the graphs of the objective functions for several different conditional logic state-
ments. These graphs can be viewed as specific instantiations of the general objective functions described
in Figure 8. The first graph represents the objective function for the conditional logic statement if(a
!= 0) where variable a is a component of test input x. The second and third graphs offer the plots of the
objective functions associated with the conditional logic statements if(b >= 5) and if(c <= 10),
respectively. Of course, P might have multiple conditional logic statements that are nested in an arbitrary
fashion. For example, the conditional logic block associated with the statement if(a != 0) might
have a conditional logic block for if(b >= 5) located at an arbitrary position within it’s own body. If
Fa(x) corresponds to the objective function for if(a != 0) and Fb(x) represents the objective func-
tion for if(b >= 5), then the objective function Fa(x) + Fb(x) must be minimized in an attempt to
exercise the true branches of the nested conditional logic statement if(a != 0){<...>if(b >=
5){<...>}} [Michael et al., 2001].

Figure 10 includes the contour plots for the three of the unique combinations of the objective
functions that are described in Figure 9 (there are three alternative conditional logic nestings that we do
not consider). For simplicity, we assume that the objective functions are direct functions of the test inputs
so that ai(x) = a, bi(x) = b, and ci(x) = c and that the test input x is composed of three values (a, b, c).
Since the addition of two objective functions for different program variables creates a three-dimensional
function, these contour plots represent “high” areas in the combined objective function with light colors
and “low” areas in the combined function with dark colors. Furthermore, each contour plot places the
outer conditional logic statement on the x-axis and the inner conditional logic statement on the y-axis.

As expected, the contour plot for the nested conditional logic statement if(a != 0){<...>if(b
>= 5){<...>}} is at minimum levels in the upper left and right corners of the plot. Since our auto-
mated test data generation algorithms attempt to seek minimums in objective functions, either of these

3.6 Test Execution 23

. . . . F
Time : 0 . 0 2 6
There was 1 f a i l u r e :

1) t e s t F o u r (K i n e t i c T e s t) j u n i t . f ramework . A s s e r t i o n F a i l e d E r r o r : e x p e c t e d :<20>
b u t was:<24>

a t K i n e t i c T e s t . t e s t F o u r (K i n e t i c T e s t . j a v a : 4 8)
a t sun . r e f l e c t . Na t iveMethodAccesso r Impl . i nvoke0 (N a t i v e Method)
a t sun . r e f l e c t . Na t iveMethodAccesso r Impl . i nvoke

(Na t iveMethodAccesso r Impl . j a v a : 3 9)
a t sun . r e f l e c t . D e l e g a t i n g M et ho d Acc esso r Im p l . i nvoke

(D e l e g a t i n g M e t ho dA cce sso r I m pl . j a v a : 2 5)

FAILURES ! ! !
T e s t s run : 4 , F a i l u r e s : 1 , E r r o r s : 0

Figure 11: The Results from Executing KineticTest in the junit.textui.TestRunner.

dark regions could lead to the production of test data that would cause the execution of the true branches
of both conditional logic statements. While the contour plot associated with the nested conditional logic
statement if(a != 0){<...>if(c <= 5){<...>}} also contains two dark regions on the left
and right sections of the graph, the statement if(b >= 0){<...>if(c <= 10){<...>}} only
has a single dark region on the right side of the plot.

3.6 Test Execution

The execution of a test suite can occur in a manual or automated fashion. For example, the test case
descriptions that are the result of the test selection process could be manually executed against the pro-
gram under test. However, we will focus on the automated execution of test cases and specifically ex-
amine the automated testing issues associated with the JUnit test automation framework [Hightower,
2001, Jeffries, 1999]. JUnit provides a number of TestRunners that can automate the execution of
any Java class that extends junit.framework.TestCase. For example, it is possible to exe-
cute the KineticTest provided in Figure 4 inside of either the junit.textui.TestRunner,
junit.awtui.TestRunner, or the junit.swingui.TestRunner. While each TestRunner
provides a slightly different interface, they adhere to the same execution and reporting principles. For ex-
ample, JUnit will simply report “okay” if a test case passes and report a failure (or, error) with a message
and a stack trace if the test case does not pass. Figure 11 shows the output resulting from the execution of
the KineticTest provided in Figure 4 of Section 3.2.

The JUnit test automation framework is composed of a number of Java classes. Version 3.7 of the
JUnit testing framework organizes its classes into nine separate Java packages. Since JUnit is currently
released under the open source Common Public License 1.0, it is possible to download the source code
from http://www.junit.org in order to learn more about the design and implementation choices
made by Kent Beck and Erich Gamma, the creators of the framework. In this chapter, we will highlight
some of the interesting design and usage issues associated with JUnit. More details about the intricacies
of JUnit can be found in [Gamma and Beck, 2004, Jackson, 2003].

The junit.framework.TestCase class adheres to the Command design pattern and thus
provides the run method that describes the default manner in which tests can be executed. As shown in
Figure 4, a programmer can write a new collection of tests by creating a subclass of TestCase. Unless a
TestCase subclass provides a new implementation of the runmethod, the JUnit framework is designed
to call the default setUp, runTest and tearDownmethods. The setUp and tearDownmethods are
simply responsible for creating the state of the class(es) under test and then “cleaning up” after a single
test has executed. That is, JUnit provides a mechanism to facilitate the creation of independent test suites,
as defined in Definition 3 of Section 2.1.

JUnit uses the Composite design pattern to enable the collection of TestCases into a single
TestSuite, as described by Definition 1 and Definition 2 in Section 2.1. The Test interface in JUnit
has two subclasses: TestCase and TestSuite. Like TestCase, a TestSuite also has a run

3.6 Test Execution 24

1 import j u n i t . f ramework .∗ ;
2 p u b l i c c l a s s BankAccountTest ex tends Tes tCase
3 {
4 p r i v a t e BankAccount a c c o u n t = new BankAccount (1 0 0 0) ;
5 p r i v a t e s t a t i c double NO DELTA = 0 . 0 ;
6 p u b l i c BankAccountTest (S t r i n g name)
7 {
8 super (name) ;
9 }

10 p u b l i c s t a t i c T e s t s u i t e ()
11 {
12 re turn new T e s t S u i t e (BankAccountTest . c l a s s) ;
13 }
14
15 p u b l i c vo id t e s t V a l i d W i t h d r a w ()
16 {
17 double e x p e c t e d = 5 0 0 . 0 0 ;
18 a c c o u n t . w i thd raw (5 0 0) ;
19 double a c t u a l = a c c o u n t . g e t B a l a n c e () ;
20 a s s e r t E q u a l s (expec ted , a c t u a l , NO DELTA) ;
21 }
22 p u b l i c vo id t e s t I n v a l i d W i t h d r a w ()
23 {
24 t r y
25 {
26 a c c o u n t . w i thd raw (1 5 0 0) ;
27 f a i l (” Should have thrown O v e r d r a f t E x c e p t i o n ”) ;
28 }
29 ca tch (O v e r d r a f t E x c e p t i o n e)
30 {
31 / / t e s t i s c o n s i d e r e d t o be s u c c e s s f u l
32 }
33 }
34 }

Figure 12: The BankAccountTest with Valid and Invalid Invocations of withdraw.

method. However, TestSuite is designed to contain 1 to e TestCases and it’s run method calls the
run method of each of the instances of TestCase that it contains [Jackson, 2003]. A TestCase can
describe the tests that it contains by providing a suitemethod. JUnit provides an interesting “shorthand”
that enables a subclass of TestCase to indicate that it would simply like to execute all of the tests
that it defines. The statement return new TestSuite(KineticTest.class) on line 10 of the
suite method in Figure 4 requires the JUnit framework to use the Java reflection facilities to determine,
at run-time, the methods within KineticTest that start with the required “test” prefix.

The run method in the Test superclass has the following signature: public void
run(TestResult result) [Gamma and Beck, 2004]. Using the terminology established in [Beck,
1997, Gamma and Beck, 2004], result is known as a “collecting parameter” because it enables the
collection of information about whether the tests in the test suite passed or caused a failure or an error to
occur. Indeed, JUnit distinguishes between a test that fails and a test that raises an error. JUnit test cases
include assertions about the expected output of a certain method under test or the state of the class under
test and a failure occurs when these assertions are not satisfied. On the other hand, the JUnit framework au-
tomatically records that an error occurred when an unanticipated subclass of java.lang.Exception
is thrown by the class under test. In the context of the terminology established in Section 2.1, JUnit’s
errors and failures both reveal faults in the application under test.

JUnit also facilitates the testing of the expected “exceptional behavior” of a class under test.
For example, suppose that a BankAccount class provides a withdraw(double amount) method
that raises an OverdraftException whenever the provided amount is greater than the balance
encapsulated by the BankAccount instance. Figure 12 provides the BankAccountTest class that
tests the normal and exceptional behavior of a BankAccount class. In this subclass of TestCase, the
testInvalidWithdraw method is designed to fail when the withdraw method does not throw the
OverdraftException. However, the testValidWithdrawmethod will only throw an exception
if the assertEquals(expected, actual, NO DELTA) is violated. In this test, the third param-

3.7 Test Adequacy Evaluation 25

System Under Test
(P)

Java Virtual Machine

Covered
Test Requirements

Program Instrumenter

(C)
Test Adequacy Criterion

Cumulative Adequacy Table

Instrumented
System Under Test

Test Requirements
Residual

R(C,P)(P)

Figure 13: The Iterative Process of Residual Test Coverage Monitoring. Source: Christina Pavlopoulou
and Michal Young. Residual test coverage monitoring. In Proceedings of the 21st International Confer-
ence on Software Engineering, pages 277–284. IEEE Computer Society Press, 1999. Permission granted.

eter in the call to assertEquals indicates that the test will not tolerate any small difference in the
double parameters expected and actual.

3.7 Test Adequacy Evaluation

It is often useful to determine the adequacy of an existing test suite. For example, an automated test data
generation algorithm might be configured to terminate when the generated test suite reaches a certain level
of adequacy. If test suites are developed in a manual fashion, it is important to measure the adequacy of
these tests to determine if the program under test is being tested “thoroughly.” In our discussion of test
adequacy evaluation, we use R(C, P) to denote the set of test requirements (or, alternatively, the set of test
descriptions) for a given test adequacy criterion C and a program under test P . If the all-nodes criterion
was selected to measure to adequacy of a T used to test the computeVelocity method in Figure 3,
then we would have R(C, P) = {enter cv, n6, n7, n8, n10, n11, n12, n16, n18, exitcv}. Alternatively, if
C was the all-uses test adequacy criterion, then R(C, P) would contain all of the def-c-use and def-p-
use associations within computeVelocity. For example, line 11 of computeVelocity contains
a definition of the variable velocity and lines 12 contains a computation-use of velocity and this
def-use association would be include in R(C, P).

Normally, the adequacy of test suite T is evaluated by instrumenting the program under test to
produce PR(C,P), a version of P that can report which test requirements are covered during the execution
of T . Pavlopoulou and Young have proposed, designed, and implemented a residual test adequacy
evaluator that can instrument the program under test and calculate the adequacy of the test suites used
during development [Pavlopoulou and Young, 1999]. Figure 13 provides a high-level depiction of this test
adequacy evaluation system for Java programs. The residual coverage tool described by these authors can
also measure the coverage of test requirements after a software system has been deployed and it is being
used in the field. Finally, this test coverage monitoring tool provides the ability to incrementally remove
the test coverage probes placed in the program under test after the associated test requirements have been
exercised [Pavlopoulou and Young, 1999]. Pavlopoulou and Young report that the removal of the probes
used to monitor covered test requirements often dramatically reduces the overhead associated with test
adequacy evaluation [Pavlopoulou and Young, 1999].

3.8 Regression Testing 26

3.8 Regression Testing

After a software system experiences changes in the form of bug fixes or additional functionality, a software
maintenance activity known as regression testing can be used to determine if these changes introduced
defects. As described in Section 2.2 and depicted in Figure 2, the regression testing process applies all
of the other software testing stages whenever the program under test changes. The creation, maintenance,
and execution of a regression test suite helps to ensure that the evolution of an application does not result
in lower quality software. The industry experiences noted by Onoma et al. indicate that regression testing
often has a strong positive influence on software quality [Onoma et al., 1998]. Indeed, the importance
of regression testing is well understood. However, as noted by Beizer, Leung, and White, many software
development teams might choose to omit some or all of the regression testing tasks because they often
account for as much as one-half the cost of software maintenance [Beizer, 1990, Leung and White, 1989].
Moreover, the high costs of regression testing are often directly associated with the execution of the test
suite. Other industry reports from Rothermel et al. show that the complete regression testing of a 20,000
line software system required seven weeks of continuous execution [Rothermel et al., 1999]. Since some
of the most well-studied software failures, such as the Ariane-5 rocket and the 1990 AT&T outage, can be
blamed on the failure to test changes in a software system [Hamlet and Maybee, 2001], many techniques
have been developed to support efficient regression testing.

Several different methods have been developed in an attempt to reduce the cost of regression
testing. Regression test selection approaches attempt to reduce the cost of regression testing by selecting
some appropriate subset of the existing test suite [Ball, 1998, Rothermel and Harrold, 1997, Vokolos and
Frankl, 1997]. Test selection techniques normally use the source code of a program to determine which
tests should be executed during the regression testing stage [Rothermel and Harrold, 1996]. Regression
test prioritization techniques attempt to order a regression test suite so that those tests with the highest
priority, according to some established criterion, are executed earlier in the regression testing process than
those with lower priority [Elbaum et al., 2000, Rothermel et al., 1999]. By prioritizing the execution of
a regression test suite, these methods hope to reveal important defects in a software system earlier in the
regression testing process. Regression test distribution is another alternative that can make regression
testing more practical by more fully utilizing the computing resources that are normally available to a
testing team [Kapfhammer, 2001].

Throughout our discussion of regression testing, we will continue to use the notation described in
Section 2.1 and extend it with additional notation used in [Rothermel and Harrold, 1996]. Therefore, we
will use P ′ to denote a modified version of program under test P . Problem 1 characterizes the regression
testing problem in a fashion initially proposed in [Rothermel and Harrold, 1994]. It is important to note
that any attempt to solve the regression testing problem while attempting to make regression testing more
cost-effective could use regression test selection, prioritization, and distribution techniques in conjunction
with or in isolation from one another. In Section 3.8.1 through Section 3.8.3, we iteratively construct a
regression testing solution that can use test selection, prioritization, and distribution techniques.

Problem 1. Given a program P , its modified version P ′, and a test suite T that was used to previously
test P , find a way to utilize T to gain sufficient confidence in the correctness of P ′. 2

3.8.1 Selective Regression Testing

Selective retest techniques attempt to reduce the cost of regression testing by identifying the portions of
P ′ that must be exercised by the regression test suite. Intuitively, it might not be necessary to re-execute
test cases that test source code locations in P ′ that are the same as the source locations in P . Any selective
regression testing approach must ensure that it selects all of the test cases that are defect-revealing for P ′,
if there are any defects within P ′. Selective retesting is distinctly different from a retest-all approach that
conservatively executes every test in an existing regression test suite. Figure 14 uses the RTS algorithm to
express the steps that are commonly associated with a regression testing solution that uses a test selection
approach [Rothermel and Harrold, 1996, 1998]:

Each one of the steps in the RTS algorithm addresses a separate facet of the regression testing
problem. Line 1 attempts to select a subset of T that can still be used to effectively test P ′. Line 3

3.8 Regression Testing 27

Algorithm RTS(T, P, P ′)
(∗ Regression Testing with Selection ∗)
Input: Initial Regression Test Suite T ;

Initial Program Under Test P ;
Modified Program Under Test P ′

Output: Final Regression Test Suite TL

1. T ′ ← SelectTests(T, P, P ′)
2. R1 ← ExecuteTests(T ′, P ′)
3. T ′′ ← CreateAdditionalTests(T ′, P, P ′, R1)
4. R2 ← ExecuteTests(T ′′, P ′)
5. TL ← CreateFinalTests(T, T ′, R1, T

′′, R2, P
′)

6. return TL

Figure 14: Regression Testing with Selection.

tries to identify portions of P ′ that have not been sufficiently tested and then seeks to create these new
regression tests. Line 2 and line 4 focus on the efficient execution of the regression test suite and the
examination of the testing results, denoted R1 and R2, for incorrect results. Finally, line 5 highlights the
need to analyze the results of all previous test executions, the test suites themselves, and the modified
program in order to produce the final test suite. When the RTS algorithm terminates, modified program
P ′ becomes the new program under test and TL is now treated as the test suite that will be used during
any further regression testing that occurs after the new P changes. Traditionally, regression test selection
mechanisms limit themselves to the problem described in line 1. Furthermore, algorithms designed to
identify T ′ must conform to the controlled regression testing assumption. This assumption states that
the only valid changes that can be made to P in order to produce P ′ are those changes that impact the
source code of P [Rothermel and Harrold, 1997].

3.8.2 Regression Test Prioritization

Regression test prioritization approaches assist with regression testing in a fashion that is distinctly differ-
ent from test selection methods. Test case prioritization techniques allow testers to order the execution of
a regression test suite in an attempt to increase the probability that the suite might detect a fault at earlier
testing stages [Elbaum et al., 2000, Rothermel et al., 1999, 2001a, Wong et al., 1997]. Figure 15 uses
the formalization of Elbaum et al. and Rothermel and Harrold to characterize the typical steps taken by a
technique that employs both selection and prioritization to solve the regression testing problem [Elbaum
et al., 2000, Rothermel and Harrold, 1996].

The expression of the RTSP algorithm in Figure 15 is intended to indicate that a tester can use
regression test selection and prioritization techniques in either a collaborative or independent fashion.
Line 1 allows the tester to select T ′ such that it is a proper subset of T or such that it actually contains
every test that T contains. Furthermore, line 2 could produce T ′

r such that it contains an execution ordering
for the regression tests that is the same or different than the ordering provided by T ′. The other steps in
the RTSP algorithm are similar to those outlined in Figure 14, the regression testing solution that relied
only upon test selection.

The test case prioritization approaches developed by Elbaum et al. restrict themselves to the
problem described in line 2. Testers might desire to prioritize the execution of a regression test suite
such that code coverage initially increases at a faster rate. Or, testers might choose to increase the rate at
which high-risk faults are first detected by a test suite. Alternatively, the execution of a test suite might
be prioritized in an attempt to ensure that the defects normally introduced by competent programmers
are discovered earlier in the testing process. Current techniques that prioritize a regression test suite by
the fault-exposing-potential of a test case also rely upon the usage of mutation analysis [Elbaum et al.,
2000, Rothermel et al., 2001a], as previously described in Section 3.4.2. When a regression test suite for
a given program P is subjected to a mutation analysis, a finite set of syntactically different versions of P

3.8 Regression Testing 28

Algorithm RTSP(T, P, P ′)
(∗ Regression Testing with Selection and Prioritization ∗)
Input: Initial Regression Test Suite T ;

Initial Program Under Test P ;
Modified Program Under Test P ′

Output: Final Regression Test Suite TL

1. T ′ ← SelectTests(T, P, P ′)
2. T ′

r ← PermuteTests(T ′, P, P ′)
3. R1 ← ExecuteTests(T ′

r, P
′)

4. T ′′ ← CreateAdditionalTests(T ′
r, P, P ′, R1)

5. R2 ← ExecuteTests(T ′′, P ′)
6. TL ← CreateFinalTests(T, T ′

r, R1, T
′′, R2, P

′)
7. return TL

Figure 15: Regression Testing with Selection and Prioritization.

are produced. Then, the entire regression test suite is executed for each one of the mutated versions of P

in order to determine if the tests can detect the fault that each mutant represents. Even though mutation
analysis has proven to be a viable regression test prioritization technique, its practicality is limited because
it is so computationally intensive [Elbaum et al., 2000, Rothermel et al., 2001a].

Regression test suite prioritization algorithms are motivated by the empirical investigations of test
adequacy criteria, as discussed in Section 3.4.4, which indicate that tests that are highly adequate are often
more likely to reveal program defects. In an empirical evaluation of regression test suite prioritization,
techniques that create a prioritized test suite can be evaluated based upon the weighted average of the
percentage of faults detected over the life of the test suite, or the APFD [Elbaum et al., 2003]. For
example, suppose that a regression test suite T was prioritized by its code coverage ability in order to
produce T c

r and was also prioritized by its fault exposing potential, thereby creating T fep
r . If the faults in

the program under test were known and the APFD of T fep
r was greater than the APFD of T c

r , then it is
likely that we would prefer the usage of mutation adequacy over code coverage to prioritize the execution
of T . Yet, Elbaum et al. caution against this interpretation when they observe that “to assume that a higher
APFD implies a better technique, independent of cost factors, is an oversimplification that may lead to
inaccurate choices among techniques” [Elbaum et al., 2003].

Since the APFD metric was used in early studies of regression test suite prioritization techniques
and because it can still be used as a basis for more comprehensive prioritization approaches that use cost-
benefit thresholds [Elbaum et al., 2003], it is important to investigate it in more detail. If we use the
notation established in Section 2.1 and we have a test suite T and a total of g faults within program under
test P , then Equation (18) defines the APFD(T, P) [Elbaum et al., 2003]. We use reveal(i, T) to denote
the position within T of the first test that reveals fault i.

APFD(T, P) = 1−

∑g
i=1 reveal(i, T)

ng
+

1

2n
(18)

For example, suppose that we have the test suite T with test sequence 〈T1, . . . , T5〉 and
we know that the tests detect faults f1, . . . , f5 in P according to Figure 16. Next, assume that
PermuteTests(T ′, P, P ′) creates a T ′

r1
with test sequence 〈T1, T2, T3, T4, T5〉, thus preserving the ordering

of T . In this situation, we now have APFD(T ′
r1

, P) = 1 − .4 + .1 = .7. If PermuteTests(T ′, P, P ′)
does change the order of T to produce T ′

r2
with test sequence 〈T3, T4, T1, T2, T5〉, then we have

APFD(T ′
r2

, P) = 1 − .2 + .1 = .9. In this example, T ′
r2

has a greater weighted average of the per-
centage of faults detected over its life than T ′

r1
. This is due to the fact that the tests which are able to

detect all of the faults in P , T3 and T4, are executed first in T ′
r2

. Therefore, if the prioritization technique
used to produce T ′

r2
is not significantly more expensive than the one used to create T ′

r1
, then it is likely a

wise choice to rely upon the second prioritization algorithm for our chosen P and T .

3.9 Recent Software Testing Innovations 29

Test Case Faults
f1 f2 f3 f4 f5

T1 × ×
T2 × ×
T3 × × ×
T4 × × ×
T5 × ×

Figure 16: The Faults Detected by a Regression Test Suite T = 〈T1, . . . , T5〉.

3.8.3 Distributed Regression Testing

Any technique that attempts to distribute the execution of a regression test suite will rely upon the avail-
able computational resources during line 2, line 3, and line 5 of algorithm RTSP in Figure 15. That is,
when tests are being selected, prioritized, or executed, distributed regression testing relies upon all of the
available testing machines to perform the selection, prioritization, and execution in a distributed fashion.
If the changes that are applied to P to produce P ′ involve the program’s environment and this violates
the controlled regression testing assumption, a distribution mechanism can be used to increase regression
testing cost-effectiveness. When the computational requirements of test case prioritization are particularly
daunting, a distributed test execution approach can be used to make prioritizations based upon coverage-
levels or fault-exposing-potential more practical [Kapfhammer, 2001]. In situations where test selection
and/or prioritization are possible, the distributed execution of a regression test suite can be used to further
enhance the cost-effectiveness of the regression testing process. When only a single test machine is avail-
able for regression testing, the distribution mechanism can be disabled and the other testing approaches
can be used to solve the regression testing problem.

3.9 Recent Software Testing Innovations

The software testing and analysis research community is actively proposing, implementing, and analyzing
new software testing techniques. Recent innovations have been both theoretical and practical in nature.
In this section, we summarize a selection of recent testing approaches that do not explicitly fit into the
process model proposed in Section 2.2. Yet, it is important to note that many of these techniques have
relationship(s) to the “traditional” phases described by our model.

3.9.1 Robustness Testing

A software system is considered to be robust if it can handle inappropriate inputs in a graceful fashion.
Robustness testing is a type of software testing that attempts to ensure that a software system performs
in an acceptable fashion when it is provided with anomalous input or placed in an inappropriate execu-
tion environment. Robustness testing is directly related to the process of hardware and software fault
injection. For example, the FUZZ system randomly injects data into selected operating system kernel
and utility programs in order to facilitate an empirical examination of operating system robustness [Miller
et al., 1990]. Initial studies indicate that it was possible to crash between 25% and 33% of the utility
programs that were associated with 4.3 BSD, SunOS 3.2, SunOS 4.0, SCO Unix, AOS Unix, and AIX
1.1 Unix [Miller et al., 1990]. Subsequent studies that incorporated additional operating systems like AIX
3.2, Solaris 2.3, IRIX 5.1.1.2, NEXTSTEP 3.2 and Slackware Linux 2.1.0 indicate that there was a no-
ticeable improvement in operating system utility robustness during the intervening years between the first
and second studies [Miller et al., 1998]. Interestingly, the usage of FUZZ on the utilities associated with
a GNU/Linux operating system showed that these tools exhibited significantly higher levels of robustness
than the commercial operating systems included in the study [Miller et al., 1998].

Other fault injection systems, like FTAPE, rely upon the usage of computer hardware to inject
meaningful faults into a software system [Tsai and Iyer, 1995]. Yet, most recent fault injection systems,

3.9 Recent Software Testing Innovations 30

such as Ballista, do not require any special hardware in order to perform robustness testing. Ballista can
perform robustness testing on the Portable Operating System Interface (POSIX) API in order to assess
the robustness of an entire operating system interface [Koopman and DeVale, 2000]. Instead of randomly
supplying interfaces with test data, Ballista builds test cases that are based upon the data types that are
associated with procedure parameters. Ballista associates each of the possible parameter data types with
a finite set of test values that can be combined to generate test inputs for operations.

A Ballista test case can be automatically executed in an infrastructure that supports the testing
of operating systems such as AIX 4.41, Free BSD 2.2.5, HP-UX 10.20, Linux 2.0.18, and SunOS 5.5
[Koopman and DeVale, 2000]. Finally, if a test causes the operating system to perform in an anoma-
lous fashion, the test records the severity of the test results based upon the CRASH scale that describes
Catastrophic, Restart, Abort, Silent, and Hindering failures. According to [Biyani and Santhanam, 1997],
[Krop et al., 1998], and [Koopman and DeVale, 2000], a catastrophic failure occurs when a utility program
(or an operating system API) causes the system to hang or crash while a restart failure happens when the
procedure under test never returns control to the test operation in a specific robustness test. Furthermore,
abort failures are traditionally associated with “core dumps” and silent failures occur when the operating
system does not provide any indication of the fact that the robustness testing subject just performed in
an anomalous fashion. Finally, hindering failures happen when the procedure under test returns an error
code that does not properly describe the exceptional condition that arose due to robustness testing. An
empirical analysis of Ballista’s ability to detect robustness failures indicates that a relatively small number
of POSIX functions in the candidate operating systems did not ever register on the CRASH scale [Krop
et al., 1998].

Several robustness testing systems have also been developed for the Windows NT operating
system [Ghosh et al., 1998, 1999, Tsai and Singh, 2000]. For example, Ghosh et al. discuss the fault
injection simulation tool (FIST) and a wrapping technique that can improve the robustness of Windows
NT applications. In [Ghosh et al., 1999], the authors describe the usage of FIST to isolate a situation in
which Microsoft Office 97 performs in a non-robust fashion and then propose a wrapping technique that
can enable the Office application to correctly handle anomalous input. Furthermore, an empirical analysis
that relied upon the application of a fault injection tool called the Random and Intelligent Data Design
Library Environment (RIDDLE) revealed that GNU utilities ported to Windows NT appear to be less
robust than the same utilities on the Unix operating system [Ghosh et al., 1998]. Finally, the dependability
test suite (DTS) is another fault injection tool that can be used to determine the robustness of Windows
NT applications such as Microsoft IIS Server and SQL Server [Tsai and Singh, 2000]. While robustness
testing and software fault injection frequently focus their testing efforts at the operating system level,
Haddox et al. have developed techniques that use fault injection to test and analyze software commercial
off the shelf, or COTS, components of a finer level of granularity than a complete operating system API
or an entire application [Haddox et al., 2001, 2002].

3.9.2 Testing Spreadsheets

Our discussion of software testing has generally focused on the testing and analysis of programs that are
written in either procedural or object-oriented programming languages. However, Rothermel et al. and
Fisher et al. have focused on the testing and analysis of programs written in spreadsheet languages [Fisher
et al., 2002a,b, Rothermel et al., 1997, 2000, 2001b]. The form-based visual programming paradigm, of
which spreadsheet programs are a noteworthy example, is an important mode of software development.
Indeed, Frederick Brooks makes the following observation about spreadsheets and databases: “These
powerful tools, so obvious in retrospect and yet so late in appearing, lend themselves to a myriad of uses,
some quite unorthodox” [Jr., 1995]. However, until recently, the testing and analysis of spreadsheet pro-
grams has been an area of research that has seen little investigation. Rothermel et al. echo this sentiment
in the following observation [Rothermel et al., 2000]:

Spreadsheet languages have rarely been studied in terms of their software engineering prop-
erties. This is a serious omission, because these languages are being used to create produc-
tion software upon which real decisions are being made. Further, research shows that many
spreadsheets created with these languages contain faults. For these reasons, it is important

3.9 Recent Software Testing Innovations 31

to provide support for mechanisms, such as testing, that can help spreadsheet programmers
determine the reliability of values produced by their spreadsheets.

Rothermel et al. have described some of the differences between form-based programming lan-
guages and imperative programming language paradigms, noting that these “programs” are traditionally
composed of cells that have formulas embedded within them [Rothermel et al., 1997]. These authors
have proposed the cell relation graph (CRG) as an appropriate model for a form-based program that is
loosely related to the control-flow graph of an imperative program [Rothermel et al., 1997]. The CRG
includes information about the control flow within the formulas that are embedded within cells and the
dependencies between the program’s cells. Rothermel et al. have also examined the usefulness of differ-
ent understandings of test adequacy for spreadsheet programs, such as traditional node and edge-based
criteria defined for a program’s CRG. However, Rothermel et al. conclude that a data flow-based test ad-
equacy criterion is most appropriate for form-based programs because it models the definition and usage
of the cells within a program. Furthermore, since form-based programs do not contain constructs such as
array indexing operations and pointer accesses, it is often much easier to perform data flow analysis on
the CRG of a spreadsheet program than it would be to perform a data flow analysis on the ICFG of an
imperative program [Rothermel et al., 1997].

In [Rothermel et al., 2001b], the authors provide all of the algorithms associated with a testing
methodology for the Forms/3 spreadsheet language. In this chapter, we will focus on the issues associated
with automated test data generation [Fisher et al., 2002b] and test reuse [Fisher et al., 2002a] for programs
written in spreadsheet languages. The “What You See Is What You Test” (WYSIWYT) spreadsheet testing
methodology proposed by Fisher et al. and Rothermel et al. includes a test data generation mechanism
for the output-influencing-all-du-pairs (or, oi-all-du-pairs) test adequacy criterion that is based upon the
CRG representation of a spreadsheet [Fisher et al., 2002b, Rothermel et al., 2001b]. This test adequacy
criterion is similar to the standard all-uses and all-DUs criteria, except that it requires the coverage of
the def-use associations in a spreadsheet’s CRG that influence the cells that contain user-visible output.
The goal-oriented test data generation approach implemented by the authors is similar to Ferguson and
Korel’s chaining approach [Ferguson and Korel, 1996] because it represents a spreadsheet as a collection
of branch functions. The constrained linear search procedure described in [Fisher et al., 2002b] attempts
to exercise uncovered output influencing def-use associations by causing the branch functions associated
with the selected CRG path to take on positive values.

Test suite reuse is also an important facet of spreadsheet testing because end-users often share
spreadsheets and production spreadsheets must be revalidated when new versions of commercial spread-
sheet engines are released [Fisher et al., 2002a]. Current spreadsheet reuse algorithms are similar to the
regression test suite selection techniques presented in Section 3.8.1. When a spreadsheet user modifies
a spreadsheet application, the reuse algorithms must determine which portion of the test suite must be
executed in order to validate the program in a manner that is cost-effective and practical. Since the WYSI-
WYT tools are designed to be used by a spreadsheet developer in a highly interactive fashion, the timely
retesting of a spreadsheet often can only occur in the test suite is reused in an intelligent fashion. In
[Fisher et al., 2002a], the authors propose specific test reuse actions that should occur when the spread-
sheet developer deletes a cell, changes the formula within a spreadsheet cell, or inserts a new cell into a
spreadsheet. For example, if the programmer changes the formula within a specific spreadsheet cell, the
test reuse algorithms must select all of the existing test(s) that validate the output of the modified cell and
any other impacted cells. Alternatively, if the formula changes for a certain cell change cause the formula
to rely upon new and/or different spreadsheet input cells, some test cases might be rendered obsolete
[Fisher et al., 2002a].

3.9.3 Database-Driven Application Testing

Even simple software applications have complicated and ever-changing operating environments that in-
crease the number of interfaces and the interface interactions that must be tested. Device drivers, operating
systems, and databases are all aspects of a software system’s environment that are often ignored during
testing [Whittaker, 2000, Whittaker and Voas, 2000]. Yet, relatively little research has specifically focused
on the testing and analysis of applications that interact with databases. Chan and Cheung have proposed

3.9 Recent Software Testing Innovations 32

a technique that can test database-driven applications that are written in a general purpose programming
language, like Java, C, or C++, and include embedded structured query language (SQL) statements that
are designed to interact with a relational database [Chan and Cheung, 1999a,b]. In their approach, Chan
and Cheung transform the embedded SQL statements within a database-driven application into general
purpose programming language constructs. In [Chan and Cheung, 1999a], the authors provide C code
segments that describe the selection, projection, union, difference, and cartesian product operators that
form the relational algebra and thus heavily influence the structured query language. Once the embedded
SQL statements within the program under test have been transformed into general purpose programming
language constructs, it is possible to apply traditional test adequacy criteria, as described in Section 3.4,
to the problem of testing programs that interact with one or more relational databases.

Chays et al. and Chays and Deng have described the challenges associated with testing database-
driven applications and proposed the AGENDA tool suite as a solution to a number of these challenges
[Chays et al., 2000, 2002, Chays and Deng, 2003]. In fact, Chays et al. observe that measuring the “cor-
rectness” of database-driven applications might involve the following activities: (1) determining whether
the program behaves according to specification, (2) deciding whether the relational database schema is
correctly designed, (3) showing that the database is secure, (4) measuring the accuracy of the data within
the database, and (5) ensuring that the database management system correctly performs the SQL opera-
tions required by the application itself [Chays et al., 2000]. In [Chays et al., 2000], the authors propose a
partially automatable software testing methodology, inspired by the category-partition method described
in Section 3.4.3, that addresses the first understanding of database-driven application correctness. When
provided with the relational schema of the database(s) used by the program under test and a description
of the categories and choices for the attributes required by the relational tables, the AGENDA tool can
generate meaningful test databases [Chays et al., 2002, Chays and Deng, 2003]. AGENDA also provides
a number of database testing heuristics, such as “determine the impact of using attribute boundary values”
or “determine the impact of null attribute values” that can enable the tester to gain insights into the
behavior of a program when it interacts with a database that contains “interesting” states [Chays et al.,
2000, 2002, Chays and Deng, 2003]. Deng et al. have recently extended AGENDA to support the test-
ing of database transaction concurrency by using a dataflow analysis to determine database transaction
schedules that might reveal program faults [Deng et al., 2003].

While the AGENDA tool suite does provide innovative techniques for populating the relational
database used by a database-driven application, it does not explicitly test the interactions between the
program and the database. As noted by Daou et al. and Kapfhammer and Soffa, a database interaction
point in a program can be viewed as an interaction with different entities of a relational database, depend-
ing upon the granularity with which we view the interaction [Daou et al., 2001, Kapfhammer and Soffa,
2003]. That is, we can view a SQL statement’s interaction with a database at the level of databases, re-
lations, records, attributes, or attribute values. In [Kapfhammer and Soffa, 2003], the authors propose an
approach that can enumerate all of the relational database entities that a database-driven program interacts
with and then create a database interaction control flow graph (DICFG) that specifically models the ac-
tions of the program and its interactions with a database [Kapfhammer and Soffa, 2003]. As an example,
the lockAccount method provided in Figure 17 could be a part of a database-driven ATM application.
Lines 6 and 7 of this program contain a database interaction point where the lockAccount method
sends a SQL update statement to a relational database. Figure 18 offers a database interaction control
flow graph for the lockAccount method that represents the operation’s interaction with the relational
database at the level of the database and attribute interactions.8

After proposing a new representation for database-driven applications, Kapfhammer and Soffa
also describe a family of test adequacy criteria that can facilitate the measurement of the test suite quality
for programs that interact with relational database. The all-database-DUs, all-relation-DUs, all-record-
DUs, all-attribute-DUs, and all-attribute-value-DUs test adequacy criteria that are extensions of the
traditional all-DUs proposed by Hutchins et al. and discussed in Section 3.4.4. Definition 13 defines the
all-relation-DUs test adequacy criterion. In this definition, we use Rl to denote the set of all the database

8In this example, we assume that the program interacts with a single relational database called Bank. Furthermore, we assume
that the Bank database contains two relations, Account and UserInfo. Finally, we require the Account relation to contain the
attributes id, acct name, balance, and card number.

3.9 Recent Software Testing Innovations 33

1 p u b l i c boolean l ockAccoun t (i n t ca rd number)
2 throws SQLExcept ion
3 {
4 boolean comple t ed = f a l s e ;
5 S t r i n g q u l o c k =
6 ”UPDATE U s e r I n f o SET a c c t l o c k =1 WHERE card number =” +
7 ca rd number + ” ; ” ;
8 S t a t e m e n t u p d a t e l o c k = m connec t . c r e a t e S t a t e m e n t () ;
9 i n t r e s u l t l o c k = u p d a t e l o c k . e x e c u t e U p d a t e (q u l o c k) ;
1 0 i f (r e s u l t l o c k = = 1)
1 1 {
1 2 comple t ed = t rue ;
1 3 }
1 4 re turn comple t ed ;
1 5 }

Figure 17: The lockAccount in an ATM Application.

relations that are interacted with by a method in a database-driven application. While Kapfhammer and
Soffa define the all-relation-DUs and other related test adequacy criteria in the context of the database
interaction control flow graph for a single method, the criteria could be defined for a “database enhanced”
version of the class control flow graph or the interprocedural control flow graph [Kapfhammer and Soffa,
2003].

Definition 13. A test suite T for database interaction control flow graph GDB = (NDB , EDB) satisfies
the all-relation-DUs test adequacy criterion if and only if for each association 〈nd, nuse, varDB〉, where
varDB ∈ Rl and nd, nuse ∈ NDB , there exists a test in T to create a complete path πvarDB in GDB that
covers the association. 2

3.9.4 Testing Graphical User Interfaces

The graphical user interface (GUI) is an important component of many software systems. While past
estimates indicated that an average of 48% of an application’s source code was devoted to the interface
[Myers and Rosson, 1992], current reports reveal that the GUI represents 60% of the overall source of
a program [Memon, 2002]. While past research has examined user interface (UI) usability and widget
layout [Sears, 1993], interactive system performance [Endo et al., 1996], and GUI creation framework
performance [Howell et al., 2003], relatively little research has focused on the testing and analysis of
graphical user interfaces. Memon et al. have conducted innovative research that proposes program rep-
resentations, test adequacy criteria, and automated test data generation algorithms that are specifically
tailored for programs with graphical user interfaces [Memon et al., 2001a,b, Memon, 2002]. As noted in
the following observation from [Memon et al., 1999], the testing of GUIs is quite challenging.

In particular, the testing of GUIs is more complex than testing conventional software, for not
only does the underlying software have to be tested but the GUI itself must be exercised and
tested to check for bugs in the GUI implementation. Even when tools are used to generate
GUIs automatically, they are not bug free, and these bugs may manifest themselves in the
generated GUI, leading to software failures.

To complicate matters further, the space of possible GUI states is extremely large. Memon et
al. chose to represent a GUI as a series of operators that have preconditions and postconditions related to
the state of the GUI [Memon et al., 1999, 2001a]. This representation classifies the GUI events into the
categories of menu-open events, unrestricted-focus events, restricted-focus events, and system-interaction
events [Memon et al., 2001a]. Menu-open events are normally associated with the usage of the pull-down
menus in a GUI and are interesting because they do not involve interaction with the underlying application.
While unrestricted-focus events simply expand the interaction options available to a GUI user, restricted
focus events require the attention of the user before additional interactions can occur. Finally, system
interaction events require the GUI to interact with the actual application [Memon et al., 2001a]. In order
to perform automated test data generation, Memon et al. rely upon artificial intelligence planners that can

3.9 Recent Software Testing Innovations 34

A

result_lock = update_lock.executeUpdate(qu_lock)

exit

exit Guse(temp4)

define(temp3) define(temp2)

Dentry entry

update_lock = m_connect.createStatement()

qu_lock = "UPDATE UserInfo ..." + temp1 + ";"

completed = false

temp3 = LocalDatabaseEntity1:acct_lock

temp1 = parameter0:card_number

entry lockAccount

G G

G

r

r2

r 2

r 1

1

if(result_lock == 1)

completed = true

exit lockAccount

temp2 = LocalDatabaseEntity0:Bank

temp4 = LocalDatabaseEntity2:card_number

Figure 18: A DICFG for lockAccount. Source: Gregory M. Kapfhammer and Mary Lou Soffa. A
Family of Test Adequacy Criteria for Database-Driven Applications. In Proceedings of the 9th Euro-
pean Software Engineering Conference and the 11th ACM SIGSOFT Symposium on the Foundations of
Software Engineering. ACM Press. Permission granted.

use the provided GUI events and operations to automatically produce tests that cause the GUI to progress
from a specified initial GUI state to a desired goal state.

In an attempt to formally describe test adequacy criteria for GUI applications, Memon et al.
propose the event-flow graph as an appropriate representation for the possible interactions that can oc-
cur within a graphical user interface component [Memon et al., 2001b]. Furthermore, the integration
tree shows the interactions between all of the GUI components that comprise a complete graphical inter-
face. Using this representation, Memon et al. define intra-component and inter-component test adequacy
criteria based upon GUI event sequences. The simplest intra-component test adequacy criterion, event-
interaction coverage, requires a test suite to ensure that after a certain GUI event e has been performed,
all events that directly interact with e are also performed [Memon et al., 2001b]. The length-n event se-
quence test adequacy criterion extends the simple event-interaction coverage by requiring a context of n

events to occur before GUI event e actually occurs. Similarly, Memon et al. propose inter-component test
adequacy criteria that generalize the intra-component criteria and must be calculated by using the GUI’s
integration tree [Memon et al., 2001b]

Conclusion 35

4 Conclusion

Testing is an important technique for the improvement and measurement of a software system’s quality.
Any approach to testing software faces essential and accidental difficulties. Indeed, as noted by Edsger Di-
jkstra the construction of the needed test programs is a “major intellectual effort” [Dijkstra, 1968]. While
software testing is not a “silver bullet” that can guarantee the production of high quality applications, the-
oretical and empirical investigations have shown that the rigorous, consistent, and intelligent application
of testing techniques can improve software quality. Software testing normally involves the stages of test
case specification, test case generation, test execution, test adequacy evaluation, and regression testing.
Each of these stages in our model of the software testing process plays an important role in the produc-
tion of programs that meet their intended specification. The body of theoretical and practical knowledge
about software testing continues to grow as research expands the applicability of existing techniques and
proposes new testing techniques for an ever-widening range of programming languages and application
domains.

5 Defining Terms

Software Verification: The process of ensuring that a program meets its intended specification.

Software Testing: The process of assessing the functionality and correctness of a program through exe-
cution or analysis.

Failure: The external, incorrect behavior of a program.

Fault: A collection of program source statements that cause a program failure.

Error: A mistake made by a programmer during the implementation of a software system.

Test Case Specification: The process of analyzing the program under test, in light of a chosen test ade-
quacy criterion, in order to produce a list of tests that must be provided in order to create a com-
pletely adequate test suite.

Test Case Generation: The manual or automatic process of creating test cases for the program under
test. Automatic test case generation can be viewed as an attempt to satisfy the constraints imposed
by the selected test adequacy criteria.

Test Adequacy Evaluation: The measurement of the quality of an existing test suite for a specific test
adequacy criterion and a selected program under test.

Regression Testing: An important software maintenance activity that attempts to ensure that the addition
of new functionality and/or the removal of program faults does not negatively impact the correctness
of the program under test.

PIE Model: A model proposed by Voas which states that a fault will only manifest itself in a failure
when it is executed, it infects the program data state, and finally propagates to the output.

Coincidental Correctness: A situation when a fault in a program does not manifest itself in a failure
even though the fault has been executed and it has infected the data state of the program.

Interprocedural Control Flow Graph: A graph-based representation of the static control flow for an
entire program. In object-oriented programming languages, the interprocedural control flow graph
is simply a collection of the intraprocedural control flow graphs for each of the methods within the
program under test.

Subsumption: A relationship between two test adequacy criterion. Informally, if test adequacy criterion
Cα subsumes Cβ , then Cα is considered to be “stronger” than Cβ .

Defining Terms 36

Complete Path: A path in a control flow graph that starts at the program graph’s entry node and ends at
its exit node.

All-nodes/Statement Coverage: A test adequacy criterion that requires the execution of all the state-
ments within the program under test.

All-edges/Branch Coverage: A test adequacy criterion that requires the execution of all the branches
within the program under test.

Multiple Condition Coverage: A test adequacy criterion that requires a test suite to account for every
permutation of the boolean variables in every branch of a program.

Condition: An expression in a conditional logic predicate that evaluates to true or false while not
having any other boolean valued expressions within it.

Condition-decision Coverage: A test adequacy criterion that requires a test suite to cover all of the
edges within a program’s control flow graph and to ensure that each condition evaluates to true
and false at least one time.

All-uses: A test adequacy criterion, used as the basis for definition-use testing, that requires the coverage
of all the definition-c-use and definition-p-use associations within the program under test.

Competent Programmer Hypothesis: An assumption that competent programmers create programs that
compile and very nearly meet their specification.

Coupling Effect: An assumption that test suites that can reveal simple defects in a program can also
reveal more complicated combinations of simple defects.

Mutation Adequacy/Relative Adequacy: A test adequacy criterion, based upon the competent pro-
grammer hypothesis and the coupling effect assumption, that requires a test suite to differentiate
between the program under test and a set of programs that contain common programmer errors.

Strong Mutation Adequacy: A test adequacy criterion that requires that the mutant program and the
program under test produce different output. This adequacy criterion requires the execution, infec-
tion, and propagation of the mutated source locations within the mutant program.

Weak Mutation Adequacy: A test adequacy criterion that requires that the mutant program and the pro-
gram under test produce different data states after the mutant is executed. This test adequacy crite-
rion requires the execution and infection of the mutated source locations within the mutant program.

Mutation Operator: A technique that modifies the program under test in order to produce a mutant that
represents a faulty program that might be created by a competent programmer.

Equivalent Mutant: A mutant that is not distinguishable from the program under test. Determining
whether a mutant is equivalent is generally undecidable. When mutation operators produce equiva-
lent mutants, the calculation of mutation adequacy scores often requires human intervention.

N-selective Mutation Testing: A mutation testing technique that attempts to compute a high fidelity
mutation adequacy score without executing the mutation operators that create the highest number
of mutants and do not truly shed light on the defect-revealing potential of the test suite.

Category-partition Method: A partially automatable software testing technique that enables the gener-
ation of test cases that attempt to ensure that a program meets its specification.

Fault Detection Ratio: In the empirical evaluation of test adequacy criteria, the ratio between the number
of test suites whose adequacy is in a specific interval and the number of test suites that contain a
fault-revealing test case.

REFERENCES 37

Residual Test Adequacy Evaluator: A test evaluation tool that can instrument the program under test
in order to determine the adequacy of a provided test suite. A tool of this nature inserts probes into
the program under test in order to measure adequacy and can remove these probes once certain test
requirements have been covered.

Regression Test Suite Selection: A technique that attempts to reduce the cost of regression testing by
selecting some appropriate subset of an existing test suite for execution.

Regression Test Suite Prioritization: A technique that attempts to order a regression test suite so that
the test cases that are most likely to reveal defects are executed earlier in the regression testing
process.

Regression Test Suite Distribution: A technique that attempts to make regression testing more cost-
effective and practical by using all of the available computational resources during test suite selec-
tion, prioritization, and execution.

Robustness Testing/Fault Injection: A software testing technique that attempts to determine how a soft-
ware system handles inappropriate inputs.

Commercial off the Shelf Component: A software component that is purchased and integrated into a
system. Commercial off the shelf components do not often provide source code access.

References
Roger T. Alexander, James M. Bieman, and John Viega. Coping with Java programming stress. IEEE Computer, 33

(4):30–38, April 2000.

Ken Arnold, Bryan O’Sullivan, Robert W. Scheifler, Jim Waldo, and Ann Wollrath. The Jini Specification. Addison-
Wesley, Inc., Reading, MA, 1999.

M. Balcer, W. Hasling, and T. Ostrand. Automatic generation of test scripts from formal test specifications. In
Proceedings of the ACM SIGSOFT Third Symposium on Software Testing, Analysis, and Verification, pages 210–
218. ACM Press, 1989.

T. Ball. The limit of control flow analysis for regression test selection. In Proceedings of the International Symposium
on Software Testing and Analysis, pages 134–142. ACM Press, March 1998.

Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

Boris Beizer. Software Testing Techniques. Van Nostrong Reinhold, New York, NY, 1990.

Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley, Boston, MA,
1999.

R. Biyani and P. Santhanam. TOFU: Test optimizer for functional usage. Software Engineering Technical Brief, 2(1),
1997.

Jonathan P. Bowen and Michael G. Hinchley. Ten commandments of formal methods. IEEE Computer, 28(4):56–63,
April 1995.

Bill Brykczynski. A survey of software inspection checklists. ACM SIGSOFT Software Engineering Notes, 24(1):82,
1999.

T.A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Department of Computer Science, Yale University,
New Haven, CT, 1980.

Man-yee Chan and Shing-chi Cheung. Applying white box testing to database applications. Technical Report
HKUST-CS9901, Hong Kong University of Science and Technology, Department of Computer Science, Febru-
ary 1999a.

REFERENCES 38

Man-yee Chan and Shing-chi Cheung. Testing database applications with SQL semantics. In Proceedings of the 2nd
International Symposium on Cooperative Database Systems for Advanced Applications, pages 363–374, March
1999b.

David Chays, Saikat Dan, Phyllis G. Frankl, Filippos I. Vokolos, and Elaine J. Weyuker. A framework for testing
database applications. In Proceedings of the 7th International Symposium on Software Testing and Analysis, pages
147–157, August 2000.

David Chays and Yuetang Deng. Demonstration of AGENDA tool set for testing relational database applications. In
Proceedings of the International Conference on Software Engineering, pages 802–803, May 2003.

David Chays, Yuetang Deng, Phyllis G. Frankl, Saikat Dan, Filippos I. Vokolos, and Elaine J. Weyuker. AGENDA:
A test generator for relational database applications. Technical Report TR-CIS-2002-04, Department of Computer
and Information Sciences, Polytechnic University, Brooklyn, NY, August 2002.

B. Choi, A. Mathur, and B. Pattison. PMothra: Scheduling mutants for execution on a hypercube. In Proceedings
of the Third ACM SIGSOFT Symposium on Software Testing, Analysis, and Verficiation, pages 58–65, December
1989.

L.A. Clarke. A system to generate test data symbolically. IEEE Transactions on Software Engineering, 2(3):215–222,
September 1976.

Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. A comparison of data flow path selection
criteria. In Proceedings of the 8th International Conference on Software Engineering, pages 244–251. IEEE
Computer Society Press, 1985.

David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton. The combinatorial design
approach to automatic test generation. IEEE Software, 13(5):83–87, September 1996.

David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton. The AETG system: An approach
to testing based on combinatorial design. IEEE Transactions on Software Engineering, 23(7):437–443, July 1997.

Bassel Daou, Ramzi A. Haraty, and Nash’at Mansour. Regression testing of database applications. In Proceedings of
the 2001 ACM Symposium on Applied Computing, pages 285–289. ACM Press, 2001.

R.A. DeMillo, D.S. Guindi, W.M. McCracken, A.J. Offutt, and K.N. King. An extended overview of the Mothra soft-
ware testing environment. In Proceedings of the ACM SIGSOFT Second Symposium on Software Testing,Analysis,
and Verficiation, pages 142–151, July 1988.

R.A. DeMillo, R. J. Lipton, and F.G. Sayward. Hints on test data selection: Help for the practicing programmer. IEEE
Computer, 11(4):34–41, April 1978.

R.A. DeMillo and A.J. Offutt. Constraint-based automatic test data generation. IEEE Transactions on Software
Engineering, 17(9):900–910, September 1991.

Yuetang Deng, Phyllis Frankl, and Zhongqiang Chen. Testing database transaction concurrency. In Proceedings of
the 18th International Conference on Automated Software Engineering, Montreal, Canada, October 2003.

Edsger W. Dijkstra. The structure of the THE multiprogramming system. Communications of the ACM, 11(5):
341–346, 1968.

Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A demand-driven analyzer for data flow testing at the
integration level. In Proceedings of the 18th International Conference on Software Engineering, pages 575–584.
IEEE Computer Society Press, 1996.

W. Keith Edwards. Core Jini. Prentice Hall PTR, Upper Saddle River, NJ, 1999.

Sebastian Elbaum, Alexey G. Malishevsky, and G. Rothermel. Prioritizing test cases for regression testing. In
Proceedings of the International Symposium on Software Testing and Analysis, pages 102–112. ACM Press, August
2000.

Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G. Malishevsky. Selecting a cost-effective test case
prioritization technique. Technical Report 03-01-01, Department of Computer Science and Engineering, University
of Nebraska – Lincoln, January 2003.

REFERENCES 39

Yasuhiro Endo, Zheng Wang, J. Bradley Chen, and Margo Seltzer. Using latency to evaluate interactive system per-
formance. In Proceedings of the Second USENIX Symposium on Operating Systems Design and Implementation,
pages 185–199. ACM Press, 1996.

D. Epema, M. Livny, R.V. Dantzig, X. Evers, and J. Pruyne. A worldwide flock of Condors: Load sharing among
workstation clusters. Journal on Future Generations of Computer Systems, 12(1):53–65, December 1996.

M. Fagan. Design and code inspections to reduce errors in program development. IBM Systems Journal, 15(3):
182–211, 1976.

N. Fenton. Software measurement: A necessary scientific basis. IEEE Transactions on Software Engineering, 20(3):
199–206, March 1994.

Roger Ferguson and Bogdan Korel. The chaining approach for software test data generation. ACM Transactions on
Software Engineering and Methodology, 5(1):63–86, 1996.

M. Fisher, D. Jin, G. Rothermel, and M. Burnett. Test reuse in the spreadsheet paradigm. In Proceedings of the 13th
International Symposium on Software Reliability Engineering, Annapolis, MD, November 2002a.

Marc Fisher, Mingming Cao, Gregg Rothermel, Curtis R. Cook, and Margaret M. Burnett. Automated test case
generation for spreadsheets. In Proceedings of the 24th International Conference on Software Engineering, pages
141–153. ACM Press, 2002b.

Phyllis G. Frankl and Elaine J. Weyuker. An applicable family of data flow testing criteria. IEEE Transactions on
Software Engineering, 14(10):1483–1498, October 1988.

Pyhllis G. Frankl and Stuart Weiss. An experimental comparison of the effectiveness of branch testing and data flow
testing. IEEE Transactions on Software Engineering, 19(8):774–787, August 1993.

Pyhllis G. Frankl and Elaine J. Weyuker. A formal analysis of the fault-detecting ability of testing methods. IEEE
Transactions on Software Engineering, 19(3):202–213, March 1993.

Eric Freemen, Susanne Hupfer, and Ken Arnold. JavaSpaces: Principles, Patterns, and Practice. Addison-Wesley,
Inc., Reading, MA, 1999.

Erich Gamma and Kent Beck. JUnit: A cook’s tour. 2004. http://www.junit.org/.

Matthew Geller. Test data as an aid in proving program correctness. Communications of the ACM, 21(5):368–375,
1978.

Anup K. Ghosh, Matt Schmid, and Frank Hill. Wrapping Windows NT software for robustness. In Twenty-Ninth
Annual International Symposium on Fault-Tolerant Computing, June 1999.

Anup K. Ghosh, Matt Schmid, and Viren Shah. Testing the robustness of Windows NT software. In Proceedings of
the Ninth International Symposium on Software Reliability Engineering, pages 231–235. IEEE Computer Society,
November 1998.

Neelam Gupta, Aditya A. Mathur, and Mary Lou Soffa. Automated test data generation using an iterative relaxation
method. In Proceedings of the 5th ACM SIGSOFT Symposium on Foundations of Software Engineering. ACM
Press, November 1998.

Neelam Gupta, Aditya P. Mathur, and Mary Lou Soffa. UNA based iterative test data generation and its evaluation. In
Proceedings of the 14th International Conference on Automated Software Engineering, pages 224–232, October
1999.

Jennifer Haddox, Gregory M. Kapfhammer, and C.C. Michael. An approach for understanding and testing third-party
software components. In 48th Reliability and Maintainability Symposium, January 2002.

Jennifer Haddox, Gregory M. Kapfhammer, C.C. Michael, and Michael Schatz. Testing commercial-off-the-shelf
components with software wrappers. In Proceedings of the 18th International Conference on Testing Computer
Software, Washington, D.C., June 2001.

Dick Hamlet. Foundations of software testing: dependability theory. In Proceedings of the 2nd ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 128–139. ACM Press, 1994.

REFERENCES 40

Dick Hamlet and Joe Maybee. The Engineering of Software. Addison Wesley, Boston, MA, 2001.

Michael Harder, Jeff Mellen, and Michael D. Ernst. Improving test suites via operational abstraction. In Proceedings
of the 24th International Conference on Software Engineering, pages 60–71. IEEE Computer Society Press, 2003.

Mary Jean Harrold and Gregg Rothermel. Performing data flow testing on classes. In Proceedings of the 2nd ACM
SIGSOFT Symposium on Foundations of Software Engineering, pages 154–163. ACM Press, 1994.

Mary Jean Harrold and Gregg Rothermel. Aristotle: A system for research on and developement of program-analysis-
based tools. Technical Report OSU-CISRC-3/97-TR17, The Ohio State University, Department of Computer and
Information Science, March 1995.

Mary Jean Harrold and Gregg Rothermel. A coherent family of analyzable graphical representations for object-
oriented software. Technical Report Technical Report OSU-CISRC-11/96-TR60, Department of Computer and
Information Sciences, Ohio State University, November 1996.

Mary Jean Harrold and Mary Lou Soffa. Efficient computation of interprocedural definition-use chains. ACM Trans-
actions on Programming Languages and Systems, 16(2):175–204, 1994.

Richard Hightower. Java Tools for Extreme Programming: Mastering Open Source Tools, Including Ant, JUnit, and
Cactus. John Wiley and Sons, Inc., New York, NY, 2001.

Adele E. Howe, Anneliese von Mayrhauser, and Richard T. Mraz. Test case generation as an AI planning problem.
Automated Software Engineering: An International Journal, 4(1):77–106, January 1997.

Christopher J. Howell, Gregory M. Kapfhammer, and Robert S. Roos. An examination of the run-time performance
of GUI creation frameworks. In Proceedings of the 2nd ACM SIGAPP International Conference on the Principles
and Practice of Programming in Java, Kilkenny City, Ireland, June 2003.

Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments of the effectiveness of dataflow-
and controlflow-based test adequacy criteria. In Proceedings of the 16th International Conference on Software
Engineering, pages 191–200. IEEE Computer Society Press, 1994.

IEEE. IEEE Standard Glossary of Software Engineering Terminology. ANSI/IEEE Std 610.12-1990, 1996.

Daniel Jackson. Lecture 17: Case study: JUnit. 2003. http://ocw.mit.edu/6/6.170/f01/lecture-notes/index.html.

Pankaj Jalote. Fault Tolerance in Distributed Systems. PTR Prentice Hall, Upper Saddle River, New Jersey, 1998.

Ronald E. Jeffries. Extreme testing. Software Testing and Quality Engineering, March/April 1999.

Jean-Marc Jezequel, Daniel Deveaux, and Yves Le Traon. Reliable objects: Lightweight testing for OO languages.
IEEE Software, 18(4):76–83, July/August 2001.

Frederick P. Brooks Jr. The Mythical Man-Month. Addison-Wesley, Reading, Massachusetts, 1995.

Cem Kaner, Jack Falk, and Hung Quoc Hguyen. Testing Computer Software. International Thompson Computer
Press, London, UK, 1993.

Gregory M. Kapfhammer. Automatically and transparently distributing the execution of regression test suites. In
Proceedings of the 18th International Conference on Testing Computer Software, Washinton, D.C., June 2001.

Gregory M. Kapfhammer and Mary Lou Soffa. A family of test adequacy criteria for database-driven applications.
In Proceedings of the 9th European Software Engineering Conference and the 11th ACM SIGSOFT Symposium on
Foundations of Software Engineering. ACM Press, 2003.

Sunwoo Kim, John A. Clark, and John A. McDermid. The rigorous generation of Java mutation operators using
HAZOP. In Proceedings of the 12th International Conference on Software and Systems Engineering and their
Applications, December 1999.

Sunwoo Kim, John A. Clark, and John A. McDermid. Class mutation: Mutation testing for object-oriented programs.
In Proceedings of the Object-Oriented Software Systems, Net.ObjectDays Conference, October 2000.

REFERENCES 41

Philip Koopman and John DeVale. The exception handling effectiveness of POSIX operating systems. IEEE Trans-
actions on Software Engineering, 26(9):837–848, September 2000.

Bogdan Korel. Automated test data generation for programs with procedures. In Proceedings of the 1996 Interna-
tional Symposium on Software Testing and Analysis, pages 209–215. ACM Press, 1996.

E.W. Krauser, A.P. Mathur, and V.J. Rego. High performance software testing on SIMD machines. IEEE Transactions
on Software Engineering, 17(5):403–423, May 1991.

Nathan P. Krop, Philip J. Koopman, and Daniel P. Siewiorek. Automated robustness testing of off-the-shelf software
components. In Proceedings of the 28th Fault Tolerant Computing Symposium, pages 230–239, June 1998.

Oliver Laitenberger and Colin Atkinson. Generalizing perspective-based inspection to handle object-oriented devel-
opment artifacts. In Proceedings of the 21st international conference on Software engineering, pages 494–503.
IEEE Computer Society Press, 1999.

Yu Lei and K.C. Tai. In-parameter-order: A test generation strategy for pairwise testing. In Proceedings of the
High-Assurance Systems Engineering Symposium, pages 254–261, November 1998.

H. K. N. Leung and L. J. White. Insights into regression testing. In Proceedings of the International Conference on
Software Maintenance, pages 60–69. IEEE Computer Society Press, October 1989.

Nancy G. Leveson. Safeware: System safety and computers. Addison-Wesley Publishing Co., Reading, MA, Septem-
ber 1995.

Yu-Seung Ma, Yong-Rae Kwon, and Jeff Offutt. Inter-class mutation operators for Java. In Proceedings of the Twelfth
International Symposium on Software Reliability Engineering, November 2002.

Brian Marick. When should a test be automated? In Proceedings of the 11th International Quality Week Conference,
San Francisco, CA, May, 26–29 1998.

Brian Marick. How to misuse code coverage. In Proceedings of the 16th Interational Conference on Testing Computer
Software, June 1999.

Atif M. Memon. A Comprehensive Framework for Testing Graphical User Interfaces. PhD thesis, University of
Pittsburgh, Department of Computer Science, 2001.

Atif M. Memon. GUI testing: Pitfalls and process. IEEE Computer, 35(8):90–91, August 2002.

Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Using a goal-driven approach to generate test cases
for GUIs. In Proceedings of the 21st International Conference on Software Engineering, pages 257–266. IEEE
Computer Society Press, 1999.

Atif M. Memon, Martha E. Pollock, and Mary Lou Soffa. Heirarchical GUI test case generation using automated
planning. IEEE Transactions on Software Engineering, 27(2):144–155, February 2001a.

Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage criteria for GUI testing. In Proceedings of the 8th
European Software Engineering Conference and the 9th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 256–267. ACM Press, 2001b.

Christoph C. Michael, Gary McGraw, and Michael Schatz. Generating software test data by evolution. IEEE Trans-
actions on Software Engineering, 27(12):1085–1110, December 2001.

B. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of operating system utilities. Communications
of the ACM, 33:32–44, December 1990.

B. Miller, D. Koski, C. Lee, V. Maganty, A. Natarajan, and J. Steidl. Fuzz revisited: A re-examiniation of the
reliability of UNIX utilities and services. Technical Report 1268, University of Wisconsin-Madison, May 1998.

L. J. Morell. A theory of fault-based testing. IEEE Transactions on Software Engineering, 16(8):844–857, 1990.

Brad A. Myers and Mary Beth Rosson. Survey on user interface programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 195–202. ACM Press, 1992.

REFERENCES 42

Richard Neapolitan and Kumarss Naimipour. Foundations of Algorithms. Jones and Bartlett Publishers, Boston,
Massachusetts, 1998.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis. Springer-Verlag, Berlin,
Germany, 1999.

Simeon C. Ntafos. A comparison of some structural testing strategies. IEEE Transactions on Software Engineering,
14(6):868–874, June 1988.

A. Jefferson Offutt, Ammei Lee, Gregg Rothermel, Roland H. Untch, and Christian Zapf. An experimental determi-
nation of sufficient mutant operators. ACM Transactions on Software Engineering and Methodology, 5(2):99–118,
1996.

A.J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of selective mutation testing. In Proceedings of
the 15th International Conference on Software Engineering, pages 100–107, May 1993.

Jeff Offutt, Roger Alexander, Ye Wu, Quansheng Xiao, and Chuck Hutchinson. A fault model for subtype inheritance
and polymorphism. In Proceedings of the Twelfth International Symposium on Software Reliability Engineering,
pages 84–95, November 2001.

Akira K. Onoma, Wei-Tek Tsai, Mustafa Poonawala, and Hiroshi Suganuma. Regression testing in an industrial
environment. Communications of the ACM, 41(5):81–86, 1998.

T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and generating fuctional tests. Commu-
nications of the ACM, 31(6):676–686, 1988.

Allen Parrish and Stuart H. Zweben. Software test data adequacy properties. IEEE Transactions on Software Engi-
neering, 17(6):565–581, June 1991.

Adam S. Paul. SAGE: A static metric for testability under the PIE model. Technical Report 96-5, Allegheny College,
Department of Computer Science, 1996.

Christina Pavlopoulou and Michal Young. Residual test coverage monitoring. In Proceedings of the 21st International
Conference on Software Engineering, pages 277–284. IEEE Computer Society Press, 1999.

Bret Pettichord. Seven steps to test automation success. In Proceedings of the International Conference on Software
Testing, Analysis, and Review, San Jose, CA, November 1999.

C.V. Ramamoorty, S.F. Ho, and W.T. Chen. On the automated generation of program test data. IEEE Transactions
on Software Engineering, 2(4):293–300, December 1976.

Sandra Rapps and Elaine J. Weyuker. Data flow analysis techniques for test data selection. In Proceedings of the 6th
International Conference on Software Engineering, pages 272–278. IEEE Computer Society Press, 1982.

Sandra Rapps and Elaine J. Weyuker. Selecting software test data using data flow information. IEEE Transactions on
Software Engineering, 11(4), April 1985.

D. Richardson, O. O’Malley, and C. Tittle. Approaches to specification-based testing. In Proceedings of the ACM
SIGSOFT Third Symposium on Software Testing, Analysis, and Verification, pages 86–96. ACM Press, 1989.

G. Rothermel and M. J. Harrold. A framework for evaluating regression test selection techniques. In Proceedings of
the Sixteenth International Conference on Software Engineering, pages 201–210. IEEE Computer Society Press,
May 1994.

G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques. IEEE Transactions on Software
Engineering, 22(8):529–551, August 1996.

G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique. ACM Transactions on Software
Engineering and Methodology, 6(2):173–210, April 1997.

G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test selection technique. IEEE Transactions
on Software Engineering, 24(6):401–419, June 1998.

REFERENCES 43

G. Rothermel, L. Li, and M. Burnett. Testing strategies for form-based visual programs. In Proceedings of the 8th
International Symposium on Software Reliability Engineering, pages 96–107, Albuquerque, NM, November 1997.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Test case prioritization: An empirical study. In Proceedings
of the International Conference on Software Maintenance, pages 179–188, August 1999.

G. Rothermel, Roland H. Untch, Chengyun Chu, and M. J. Harrold. Prioritizing test cases for regression testing.
IEEE Transactions on Software Engineering, 27(10):929–948, October 2001a.

Gregg Rothermel, Margaret Burnett, Lixin Li, Christopher Dupuis, and Andrei Sheretov. A methodology for testing
spreadsheets. ACM Transactions on Software Engineering and Methodology, 10(1):110–147, January 2001b.

Karen J. Rothermel, Curtis R. Cook, Margaret M. Burnett, Justin Schonfeld, T. R. G. Green, and Gregg Rothermel.
WYSIWYT testing in the spreadsheet paradigm: an empirical evaluation. In Proceedings of the 22nd International
Conference on Software Engineering, pages 230–239. ACM Press, 2000.

Andrew Sears. Layout appropriateness: A metric for evaluating user interface widget layout. IEEE Transactions on
Software Engineering, 19(7):707–719, 1993.

Forrest Shull, Ioana Rus, and Victor Basili. Improving software inspections by using reading techniques. In Pro-
ceedings of the 23rd International Conference on Software Engineering, pages 726–727. IEEE Computer Society,
2001.

Ian Sommerville. Software Engineering. Addison-Wesley, 6th edition, August 2000.

John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jRapture: A capture/replay tool for observation-based
testing. In Proceedings of the International Symposium on Software Testing and Analysis, pages 158–167. ACM
Press, 2000.

T. Tsai and R. Iyer. Measuring fault tolerance with the FTAPE fault injection tool. In Proceedings of the 8th
International Conference on Modeling Techniques and Tools for Computer Performance Evaluation, pages 26–40,
1995.

Timothy K. Tsai and Navjot Singh. Reliability testing of applications on Windows NT. In Proceedings of the
International Conference on Dependable Systems and Networks, New York City, USA, June 2000.

Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon, and Phong Co. Soot - a Java
optimization framework. In Proceedings of CASCON 1999, pages 125–135, 1999.

Jeffrey M. Voas. PIE: a dynamic failure-based technique. IEEE Transactions on Software Engineering, 18(8):717–
735, 1992.

F. Vokolos and P. Frankl. Pythia: A regression test selection tool based on textual differencing. In Third International
Conference of Reliability, Quality, and Safety of Software Intensive Systems, May 1997.

Elaine Weyuker. Axiomatizing software test data adequacy. IEEE Transactions on Software Engineering, (12):
1128–1138, December 1986.

Elaine J. Weyuker, Stewart N. Weiss, and Dick Hamlet. Comparison of program testing strategies. In Proceedings of
the Symposium on Testing, Analysis, and Verification, pages 1–10. ACM Press, 1991.

James A. Whittaker. What is software testing? and why is it so hard? IEEE Software, 17(1):70–76, January/February
2000.

James A. Whittaker and Jeffrey Voas. Toward a more reliable theory of software reliability. IEEE Computer, 32(12):
36–42, December 2000.

W.E. Wong. On Mutation and Data Flow. PhD thesis, Department of Computer Science, Purdue University, West
Lafayette, IN, December 1993.

W.E. Wong, J.R. Horgan, S. London, and H. Agrawal. A study of effective regression testing in practice. In Proceed-
ings of the 8th International Symposium on Software Reliability Engineering, pages 230–238, November 1997.

Further Information 44

Michael Young and Richard N. Taylor. Rethinking the taxonomy of fault detection techniques. In Proceedings of the
11th International Conference on Software Engineering, pages 53–62. ACM Press, 1989.

Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and adequacy. ACM Computing
Surveys, 29(4):366–427, 1997.

6 Further Information

Software testing and analysis is an active research area. The ACM/IEEE International Conference on
Software Engineering, the ACM SIGSOFT Symposium on the Foundations of Software Engineering, the
ACM SIGSOFT International Symposium on Software Testing and Analysis, and the ACM SIGAPP Sym-
posium on Applied Computing’s Software Engineering Track are all important forums for new research in
the areas of software engineering and software testing and analysis. Other important conferences include:
IEEE Automated Software Engineering, IEEE International Conference on Software Maintenance, IEEE
International Symposium on Software Reliability Engineering, the IEEE/NASA Software Engineering
Workshop, and the IEEE Computer Software and Applications Conference.

There are also several magazines and journals that provide archives for important software en-
gineering and software testing research. The IEEE Transactions on Software Engineering and the ACM
Transactions on Software Engineering and Methodology are two noteworthy journals that often publish
software testing papers. Other journals include: Software Testing, Verification, and Reliability, Software:
Practice and Experience, Software Quality Journal, Automated Software Engineering: An International
Journal, and Empirical Software Engineering: An International Journal. Magazines that publish soft-
ware testing articles include Communications of the ACM, IEEE Software, IEEE Computer, and Better
Software (formerly known as Software Testing and Quality Engineering). ACM SIGSOFT also sponsors
the bi-monthly newsletter called Software Engineering Notes.

7 Acknowledgements

Robert D. Cupper was supportive of the writing of this chapter from its inception. Some of my undergrad-
uate students, including James A. Clause, Richard C. Geary, and Matthew J. Rummel, read several drafts
of this chapter and provided insightful comments. Timothy K. Tsai and Jennifer Haddox-Schatz both read
an intermediate draft of the chapter and pointed out unclear passages and definitions. Mary Lou Soffa has
often helped me to refine my understanding of software testing and indirectly influenced many portions
of this chapter. My wife Jessica M. Kapfhammer and my daughter Madelyn M. Kapfhammer provided
loving support and encouragement during the writing of this chapter and they continue to demonstrate that
they truly are God’s gift to me. The most important acknowledgement that I can make begins with the one
that was made by Frederick P. Brooks, Jr. in his preface to the 20th anniversary edition of The Mythical
Man-Month. Soli Deo Gloria – To God Alone be Glory. Sola Scriptura – By the Scriptures Alone.
Solus Christus – By Christ Alone. Sola Gratia – By Grace Alone. Sola Fide – By Faith Alone.

